Volume 8, Issue 29 (vol. 8, no. 29 2019)                   j.plant proc. func. 2019, 8(29): 299-311 | Back to browse issues page

XML Persian Abstract Print

Abstract:   (1867 Views)

In order to investigate effects of Azomite application in reducing salinity stress in basil herb, a pot factorial experiment based on completely randomized design with three replications was conducted in the research greenhouse of Agriculture Faculty, Ferdowsi University of Mashhad. Treatments were consisted of salinity stress at three levels (0, 50 and 100 mM) as the first factor and the application of Azomite mixed with soil before cultivation at four levels (0, 3, 6 and 9 g per kg of soil) as the second factor. Vegetative traits such as plant height, number of branches, inflorescence length, leaf length and leaf fresh and dry weight were significantly decreased with increasing salinity stress. Application of 9 g/kg Azomite at high levels of salinity stress improved these traits compared to control plants (non-application of Azomite). Also, the highest chlorophyll a content was obtained in control plants (non-salinity stress) and 50 mM salinity stress treatments with application of 9 g/kg Azomite which were 8.33 and 7.48 mg/g.FW, respectively. The highest antioxidant activity (90%), total phenol (0.93 mg/g.FW) and proline (0.4 mg/g.DW) was observed in 100 mM salinity stress treatment and application 9 g/kg Azomite. The highest relative water content (RWC) was obtained under non salinity stress conditions (control) and application of 9 g/kg Azomite. In general, it could be concluded that using of Azomit as a natural substance consistent with sustainable agriculture under salt stress conditions can increase plant growth and improve Basil's biochemical traits.

Full-Text [PDF 599 kb]   (321 Downloads)    
Type of Study: Research | Subject: Salt Stress
Received: 2017/07/15 | Accepted: 2017/10/4 | Published: 2019/05/18