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Abstract

In the current study, the effect of different silicon dioxide nanoparticles (SiO2 NPs) concentrations was investigated on
biomass yield, chlorophyll (Chl a) pigment, antioxidant enzymes, and defence metabolites of Spirulina platensis alga. The alga
sample was cultured in the Zarrouk medium supplemented with various SiO2 NPS concentrations (0, 50, 100, and 150 mg L)
for two weeks. Results showed that SiO2 NPs at 100 mg L increased significantly dry weight, specific growth rate, and Chl
pigment, possibly due to the induction of protein content and antioxidant enzyme activities of catalase and peroxidase.
Secondary metabolites such as phycobiliprotein, phycocyanin, allophycocyanin, phycoerythrin, carotenoids, and extracellular
polymeric substances increased upon all concentrations of SiO2 NP, although their contents were more increased under 100
mg L treatment. Treatment of SiO2 NP at 150 mg L induced toxicity in the algal growth along with the accumulation of
H20z, inhibition of antioxidant enzyme activities, and decline in the content of secondary metabolites. The findings suggest
that 100 mg L SiO2NPs is an optimum concentration for sustainable production of S. platensis, and may act as an elicitor to

stimulate antioxidant metabolites for suppressing oxidative injuries.
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Introduction

Today, microalgae cultivation has paid more
attention due to their value biomass, which is a rich
source of biologically active compounds and
macromolecules such as fatty acids, carbohydrates,
proteins, carotenoids (Car), and antioxidants (Khorshidi
et al., 2022). Arthrospira platensis (commonly called
Spirulina platensis) is a multicellular, filamentous, and
blue-green microalga belonging to the Oscillatoriaceae
family and widely found in tropical alkaline lakes
(Gershwin and Belay, 2007; Gupta et al., 2013).
Spirulina is a valuable source of protein (approximately
60-70% of dry weight) and also contains Chl pigment,
carbohydrates, fatty acids, and high-valued secondary
metabolites, including carotenoids, phycobiliproteins,
and phenolic compounds, which can be used in
pharmacological, cosmetological, and nutraceutical
industries (Markou et al., 2012; Beheshtipour et al.,
2012; Spolaore et al., 2006). It has been reported that S.
platensis extract has various biological activities,
including anti-inflammatory, antioxidant,
anticarcinogenic (Tajvidi et al., 2021; Konickova et al.,
2014), and neuroprotective effects (Haider et al., 2021).
Moreover, Spirulina produces extracellular polymeric
substances (EPSs), and its polysaccharide moiety has
biological activities such as antibacterial, antiviral, and

anticoagulant agents (Challouf et al., 2011; Rechter et
al., 2006). Several studies have reported that various
environmental factors and the composition of the
cultural medium can influence the production of algal
biomass and bioactive compounds (Khorshidi et al.,
2022; Zhang et al., 2019). Therefore, obtaining the
optimal vegetative-growth condition will be so valuable
to access sustainable production of spirulina.
Nanoparticles (NPs) are particle materials with size
ranges between 1 and 100 nm. NPs contain unique
physicochemical properties such as a high surface-to-
volume ratio, small size, and specific physical and
chemical properties, which cause them to be widely
applied in industry, medicine, plant biology, agriculture,
etc. (Khan et al., 2019). Silicon (Si) is not an essential
nutrient for alga and/or plant culture, but several studies
have reported that it has beneficial impacts on many
species by increasing nutrient availability (Pavlovic et
al., 2021). It has many biotechnological applications
such as cancer therapy, DNA transfection, drug
delivery, and enzyme immobilization (Santos et al.,
2014; Slowing et al., 2008; Fenollosa et al., 2014).
Researchers have reported that metal-based NPs can
transport from the cell wall and plasma membrane into
the cells and cause various physiological and
biochemical responses, which depend on several factors
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such as NPs size and concentration, solubility, kind of
species, etc. (Khan et al., 2019; Hassanpour et al.,
2021). The toxicity impact of these particles can result
from their ability to induce oxidative stress and damage
to the living tissues (Min et al., 2023). For example, in
Chlorella kessleri, SiO, NPs decreased the Chl content
and cell proliferation compared to the control group
(Fujiwara et al., 2008). Phenolic metabolites secreted to
the extracellular medium induced in A. platensis and
Haematococcus pluvialis after treatment with TiO.NPs
(Comotto et al., 2014). Artemisinin content changed
significantly in Artemisia annua L. hairy root cultures
after AgNPs application for 20 days (Zhang et al.,
2013). Hy0, production and lipid peroxidation
stimulated in Matricaria chamomilla seedlings under
Fe;Os NPs (Rastegaran et al.,, 2022). Moreover,
antioxidant enzyme activities revealed different
responses under NPs in a dose-dependent manner
(Torabzadeh et al., 2019; Ahmadi et al., 2020). There is
no data about the impact of SiO, NPs on the growth
responses and secondary metabolites in S. platensis
cyanobacteria, and their mechanisms are not clear.
Thus, the purpose of this study was to investigate the
effect of SiO, NPs at different concentrations on
biomass production, Chl pigment, and secondary
metabolites of Car and EPS in S. platensis alga. Data
from this study will aid wus in elevating our
understanding of the underlying physiological and
biochemical mechanisms of the toxic and suitable
concentrations of nanoparticles in algae.

Material and methods
Materials: All chemicals, solvents, and standards used
in this study were purchased from Merck and Sigma-
Aldrich Chemical Companies.

Microalga growth conditions and NPs treatment:
S. platensis MGH-1 was obtained from the Iranian
Research Organization for Science and Technology
(accession no. of MW628543) and grown in Zarrouk’s
medium (1966). The initial biomass concentration of S.
platensis MGH-1 (0.1 g L?) in the logarithmic growth
phase was inoculated in the Zarrouk medium
supplemented with various SiO2 NPS concentrations (0,
50, 100, and 150 mg L) and afterward placed under the
condition of 25 + 2 °C, pH 9, 70 pmol photons m2 st
white LED-light intensity, and 200 mL min? airflow
(Iwaki filter, 0.2 pm pore size). The NPs were
homogenized in deionized water and dimethy! sulfoxide
0.05% with an IKA ULTRA-TURRAX Disperser (T18,
German) at 20000 rpm for 30s and then kept in water in
an ultrasonic bath for 25 min. After the preparation of
Zarrouk medium, different NPs concentrations were
added to the medium at 40-45 °C. After 15 days of
cultivation, the samples were harvested at three
replications by centrifugation (8,000 x g for 5 min),
washed twice with the deionized water, and then the
pellets were stored at -80 °C for the biochemical
analyses.

Growth parameter: For determination of the algal

growth, based on the time and NPs concentration, S.
platensis MGH-1 was inoculated in Zarrouk medium.
The alga growth curve was evaluated by weighing the
biomass every three days for 18 days. After
centrifugation (8,000 x g for 5 min) of alga suspension,
fresh pellets were washed twice with the distilled water
to remove the salt and then dried overnight at 70 °C to
access the dry weight. The optical density of each
sample was also obtained at 750 nm and the following
formula is used to calculate the maximum specific
growth rate () Costa et al. (2002):

p = (LnN2 — LnNy)/(t2 — t2).

Where N, was the dry weight measured at day t», N1
was the dry weight measured at day t;.

Photosynthetic  pigment measurement: For
determination of Chl a, 10 mL of algal suspension of
control and each treatment was centrifuged at 10,000 x
g for 5 min, washed twice with distilled water, and
pellets (ca. 50 mg) were extracted with 5 mL of 80%
(v/v) acetone for 24 h at 4.0 °C (Marker, 1972). After
the removal of the cell debris by centrifugation, the
absorbance of the supernatant was recorded at 461 and
664 nm, and the Chl and Car concentrations were
determined using the following equations (Chamovitz et
al., 1993).

Chl a (ug mL ™) = 13.14 x OD664
Car (ug mL 1) =[ OD461 — (0.046 x OD664)] x 4

Phycobiliprotein assay: The frozen samples (100
mg) were homogenized in 50 mM phosphate buffer (10
mL, pH 6.8) and then centrifuged at 8000 x g for 10
min. The absorption spectrum was measured with a
spectrophotometer  (UNICO, 2802, USA) at
wavelengths of 620, 650, and 565 nm. The
concentration of phycobilins was calculated according
to the formula given by Bryant et al. (1976).
Phycobiliproteins (total phycobilins) = phycocyanin
(PC) + allophycocyanin (APC) + phycoerythrin (PE)

PC = (ODg20-0.72 ODsgsp) / 6.29 (mg mL* of extract)
APC = (ODgs50-0.191 ODs20) / 5.79 (mg mL* of extract)
PE = (ODsgs-2.41 (PC) -1.4 (APC) / 13.02 (mg mL* of
extract)

H202 content: The H,0, evaluation was quantified
by the procedure described by Velikova et al. (2000).
The extraction of fresh algae cells (15 mg) was
conducted in 2 mL trichloroacetic acid 0.1% (w/v) in an
ice bath. After centrifugation at 12,000 x g for 15 min,
the extract (0.5 mL) was added to 0.5 ml of 10 mM
potassium phosphate buffer (pH 7.0) and 1 ml of 1 M
KI. The absorbance of the supernatant was measured at
390 nm and H,O, content was calculated using a
standard curve.

Protein content and antioxidant enzyme
activities: The frozen samples (0.1 g) were
homogenized in 2.5 mL cold Tris-HCI (1 M, pH 6.8), as
an extraction buffer and after centrifugation (12000 x g,
4 C for 10 min), the extracts were used for protein and
antioxidant enzymes assays. Total protein content was
evaluated by Bradford’s procedure (1976), using bovine
serum albumin (BSA) as standard. The absorbance was
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measured at 595 nm.

Peroxidase (POX) activity assays were evaluated
spectrophotometrically (UNICO, UV/VIS, 4802, USA)
based on the procedure of Abeles and Biles (1991). The
reaction mixture was 2 mL of acetate buffer (0.2 M, pH
4.8), 0.2 mL H;0; (3%), 0.2 ml benzidine (20 mM), and
enzyme extract (30 pL). The absorbance of the reaction
solution was measured using a spectrophotometer
(UNICO UV/Vis, 4802, USA) at 530 nm. The POX
activity was specified as 1 pumol of benzidine oxidized
per min per mg protein. Catalase activity assay was
measured as the rate of H,O, decomposition, which was
measured by decreasing the absorbance at 240 nm
(Aebi, 1984). The reaction mixture contained 0.625 mL
of sodium phosphate buffer (50 mM, pH 7.0), 0.075 mL
H>0, (3%), and 5 pL enzyme extract. The enzyme
activity was defined as 1 pmol of H.O, oxidized per
min per mg protein.

Extracellular polymeric substance (EPS): EPS
content was determined using the method described by
Lewin (1956). Briefly, the total recovered filtrates of
each experimental culture were used for EPS content
determination by evaporation of water in open crucibles
in a forced-air oven for 24 h at 105 °C. The obtained
dried matter was incinerated in a muffle furnace at 550
+ 5 °C until white ash remains. The change in the
weight of the crucibles, containing EPS-free water and -
free ashes, was considered as the EPS content.

Experiment analyses were performed by the One-
way ANOVA (SPSS 21.0). The analyses were
conducted with five replications for growth and three
replications for the biochemical analyses. Comparisons
of the data were performed with the Duncan test at the
level of P < 0.05. Principal component analysis (PCA)
was carried out through the XLSTAT 2021.2.2
software.

Results
Alga growth rate and Chl pigment: The growth curve
of S. platensis showed that there was no actual lag phase
at the initial days of cultivation (Fig. 1a). Cells were in
the logarithmic phase until the 12" day with the highest
dry weight (0.76 + 0.028 g L™%). Then cells entered the
stationary phase until the 18" day and their growth did
not change considerably compared to the 12" day.
Moreover, SiO, NPs application at 50 and 100 mg L™
increased significantly the dry weight and specific
growth rate (SGR) of S. platensis as compared to the
control (P < 0.05), while at higher concentration (150
mg L) it decreased the algal growth (Fig. 1b, Table 1).

Chl a content increased at 100 mg L of SiO, NPs
with a 51.7 % rise as compared to the control, while its
content decreased under the higher concentration of
SiO2 NPs (150 mg L1) (Fig. 1c). Car content increased
markedly at 150 mg L SiO, NPs with a 82.6% rise as
compared to the control (Fig. 1d).

Phycobiliproteins: Phycobiliproteins displayed an
increasing trend compared to the control, especially at
treatments of 50 and 100 mg L™ SiO, NPs (Fig. 2). As

the amount of phycocyanin showed a rise of 3.96 and
3.56-folds at 50 and 100 mg L SiO, NPs as compared
to the control (Fig. 2a). The highest content of
phycoerythrin, allophycocyanin, and total phycobilins
was observed at the treatment of 100 mg L SiO; NPs
with the 5.4, 1.7, and 2.1-fold rise compared to the
control, respectively (Fig. 2 b, ¢, and d).

H20: and protein contents: The H,O; level showed
a considerable alteration at 100 and 150 mg L SiO;
NPs treatments with 46.1 and 109.2% enhancement
compared to the control, respectively (Table 1).
However, there was no significant change in H,O;
content between SiO, NPs at 50 mg L and control
conditions.

Protein content changed variously under SiO2 NPs
treatments. Its content didn’t change under 50 mg L*
SiO2 NPs, increased significantly (ca. 41.8%, P < 0.05)
under 100 mg L* SiO, NPs, and decreased slightly
under 150 mg L SiO, NPs.

Antioxidant enzyme  activities:  Antioxidant
enzyme activities of CAT and POX showed an
increasing trend under 50 and 100 mg L SiO, NPs
(Table 1). As the highest CAT and POX activities were
observed at 100 mg L* SiO; NPs with 91.7 and 54.1%
increase compared to the control. However, enzyme
activities didn’t change significantly under the higher
concentration of SiO, NPs 150 mg L™ compared to the
control.

Extracellular polymeric substances (EPS): EPS
content increased slightly (17.1%) at 150 mg L SiO;
NPs, and augmented under 50 and 100 mg L SiO, NPs
with 24.3 and 53.6% enhancement compared to the
control (Fig. 3).

Discussion

The present study was performed to clear the underlying
mechanisms of potential and toxicity impacts of
different SiO2 NPs concentrations on the S. platensis
growth and defense metabolites. Cell growth (biomass
concentration curve) of S. platensis in the Zarrouk
medium showed that alga cells from 1 to 12 days of
culture are in the logarithmic phase, and then cells enter
the stationary phase (Fig. 1a). The largest cellular
growth was obtained at day of 12 of culture (0.76 g DW
L), so this time was selected to harvest the samples
after application of SiO, NPs treatments. As shown in
Fig. 1b and Table 1, SiO, NPs at 100 mg L enhanced
markedly S. platensis dry weight and specific growth
rate and this concentration can be considered a suitable
concentration to improve the alga growth. The PCA
graph showed the results from Chl a, protein,
antioxidant enzymes, SGR, and growth are closely
loaded to F1 axis and are positively related together
(Fig. 4). Algae typically have glycoproteins and
polysaccharides in their cell walls. S. platensis cell wall
is composed of multilayers of glucan and peptidoglycan
polymers covered with a sheath of polysaccharides on
the outside (Vaneykelenburg, 1977). These components
can act as binding sites to promote the adsorption of
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Figure 1. Growth curve after 18 days (a) and effect of different SiO2 NPs concentrations on the biomass concentration (b), Chl
a (c), and Car (d) in S. platensis alga. Values are given as mean + SE (n = 5 for biomass and n=3 for pigments) in each group.
Different letters present significant differences at P < 0.05 (Duncan test).

Table 1. The effects of different SiO2 NPs concentrations on the specific growth rate (SGR), H202 and protein contents, and
enzyme activities of catalase (CAT) and peroxidase (POX) in S. platensis.

i . CAT POX
SiO2 NPs SGR H202 Protein i -
(mg L) (day™) (molg?Fw)  (mggtFw) o )
0 0.073+£0.0021 P 179.8+18.26¢ 5249+2.28° 3.26+0.49°¢ 1.09+0.06 ¢
50 0.094 +0.0038 188.4 +11.62°¢ 55.35+3.92b 5.08+0.61" 1.38 +0.091 b
100 0.098 + 0.0044 @ 252.6 +14.56° 7442 +3.852 6.25+0.262 1.68 +0.106 2
150 0.065 +0.0026 ¢ 376.1+15.2928 43.61 +2.79" 348+0.35¢ 1.12 +0.072°¢

Values are means = SE of three replicates. Different letters indicate significant differences (P<0.05) (Duncan test) and the

same letters indicate no differences.

NPs (Navarro et al., 2008). After NPs entrance into the
cytoplasm, they can contact with organelles such as
chloroplasts, vacuoles, endoplasmic reticulum, golgi
apparatus, and mitochondria, and significantly damage
or alter their function and structures (Zhao et al., 2016),
which may associate with alga species and/ or NPs size
and concentrations. On the other hand, they can
aggregate in the cytoplasm, influence the metabolism
and reproductive function of the algal cell, and/ or
transport to the DNA and cause upregulating or
downregulating specific genes linked to the growth (Wu
et al., 2018). In the present study, the higher
concentration of SiO, NPs decreased the algal growth,
which may be related to the low absorption of essential
macro-and microelements, NPs aggregation in the
cytoplasm, or injury in the organelle structures under

toxicity NPs concentration (Tian et al., 2018;
Hassanpour et al., 2021). Fujiwara et al. (2008) revealed
the morphological changes and cellular deformation
resulting from a collision with silica NPs at high
concentrations.

Chl a is an important photosynthetic pigment
responsible to absorb light energy and is located in the
reaction center. Chl pigments can absorb light energy
between 400 and 500 nm in the blue zone and 650 and
720 nm in the red zone (Chen and Blankenship, 2011).
In this research, Chl a content increased considerably at
100 mg L of SiO; NPs. It has been reported that Si
elements can interact with the macro and micro-nutrient
elements and affect the uptake and transport of nutrient
elements, including magnesium, iron, nitrogen, calcium,
etc. from the medium culture into cells (Pavlovic et al.,
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2021). Buchelt et al. (2020) stated that the impact of Si
on the alleviation of Mg stress is mediated through the
enhancement of Mg use efficiency. It seems that
increased Chl content under SiO; NPs may be
associated with more access to elements linked to Chl
biosynthesis in S. platentis. On the other hand, the
content of Chl a, as a main pigment in the reaction
center decreased slightly under higher concentrations
(150 mg L1). Ko et al. (2018) reported that the Chl
content and alga growth declined considerably under
ZnO NPs, which may be related to the chemical
properties of NPs (such as the size, surface chemistry,
dissolution of ions, etc.) or oxidative stress induced by
these particles.

Phycobilisome (PBS) is a multiprotein complex in
cyanobacteria and red algae, which efficiently captures
light energy in the wavelength range of 450— 650 nm at
green and yellow zones, and transfers them to the Chl
molecules in the photosystem. The major component of
PBS is phycobiliproteins (PBPs), which are divided into
three main groups, including allophycocyanins,
phycocyanins, and phycoerythrins (David et al., 2014).
Besides its auxiliary function in light absorption of
cyanobacterial cells, PBPs have several biological
activities such as inhibition of oxidative stress, anti-
inflammatory (Prabakaran et al., 2020), and anti-cancer
activities (Kaur et al., 2020). In the present study, the
content of allophycocyanin, phycocyanin, and
phycoerythrin increased under SiO, NPs, especially at
100 mg L* treatment, and total PBPs reached the
highest content (17.1 mg g* FW) in this treatment
comparing to control (8.22 mg g** FW). PBPs content
decreased at the treatment of 150 mg L (11.9 mg g*
FW) compared to 100 mg L%, although its content was

higher than the control condition. Similarly, Cepoi et al.
(2020) reported that the application of AgNPs (0.05
M) increased the content of phycobilins in S. platensis.
Phycocyanin isolated from S. platensis inhibited
oxidative stress through the inhibition of NAD(P)H
oxidase activity and radical superoxide production
(Zheng et al., 2013). In this study, the enhancement of
PBPs was most likely due to the protective function of
PBPs on photosystems via reactive oxygen species
(ROS) detoxification and/or its impact on the absorption
of light energy under stress conditions.

H>O; content increased at all concentrations of SiO;
NPsin S. platensis, and treatment of 150 mg L showed
the highest level of this parameter. ROS are natural by-
products of normal cell activity and participate in
cellular signaling. ROS accumulation at a high level can
induce deleterious impacts on cell division and growth,
cell hemostasis, and finally, it results in oxidative stress
(Ghalkhani et al., 2020). Sosan et al. (2016) stated that
the induction of Ca?* and ROS signaling by NPs can be
conducted via the enhancement of Ca?* permeable pores
and oxidation of apoplastic L-ascorbic acid. In
Arabidopsis thaliana, Mittler (2017) reported that the
accumulation of cellular ROS is mediated through
plasma membrane-bound NADPH oxidase enzymes. To
minimize the oxidative damage, enzymatic and non-
enzymatic defense machinery are activated in algal and
plant cells to scavenge the excessive ROS (Khorshidi et
al., 2022; Hassanpour and Ghanbarzadeh, 2021), which
is in agreement with the results of the increase in
antioxidant enzyme activities in this research. As the
activity of POX and CAT enzymes increased under
SiO2 NPs, especially at 50 and 100 mg L (Table 1).
CAT activity was significantly elevated upon treatment
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of wheat roots with CuO NPs (Dimkpa et al., 2012),
which was related to cell membrane protection from
lipid peroxidation. In this research, SiO2 NPs induced
Car and EPS to mitigate the oxidative damage in S.
platensis, and their content decreased with enhancing
NPs concentrations (Fig. 3). In the PCA graph, the
results of Car and EPS were highly closed F2 axis, and
showed a positive relation with H,O; level (Fig. 4). Car
pigments are involved in preventing the photodamage of
the photosynthetic machinery from excess light energy
and also can act as an antioxidant metabolite to prevent
the oxidative injuries. Moreover, the sulfated
polysaccharide moiety of EPS has antioxidant activity
(Zhang and Yi, 2022). EPSs have strong reductive
groups (OH, C=C, C=0 C-O-C groups) and also
complex structure containing a-pyranose, which able
them to scavenge superoxide and hydroxyl free radicals,
and finally prevent oxidative damage (Zhang and Yi,
2022). In Dunaliella, Car content decreased with
enhancing concentrations of silica NPs (Shariati and
Shirazi, 2019), which was related to NPs agglomeration
and reducing surface area to volume ratio.

However, increased content of Car and EPS under
the suitable concentration of SiO2 NPs in this study may
state the induction of ROS signaling, antioxidant
machinery, mitogen-activated protein kinase (MAPK)
cascades, etc., which could lead to transcriptional
reprogramming of secondary metabolism, including
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SiO, NPs at higher content (150 mg L™) induced
toxicity (H20, as a marker of cellular damage), and
accumulation of EPS and Car metabolites. The
oxidative damage resulted in a decline in algal growth.
Nevertheless, the underlying molecular mechanism of
defense metabolites is unclear in S. platensis alga and
needs to more investigate in the future.
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