اثر رقابت گونه‌ای بر رنگدانه‌های فتوسترزی پرولین، محتوای آب نسبی، و میزان اساس گیاه شنبله (Nigella sativa) و سپاهانه (Trigonella foenum gracecum)

رضایه کاکلور، سیفه فلاح ۳ و علی عباسی سوزکی ۴
گروه زراعت، دانشکده شاخص، دانشگاه شهرکرد
(تاریخ دریافت: ۱۳۹۴/۰۵/۲۶، بررسی نهایی: ۱۳۹۵/۱۲/۱۳)

چکیده:
در آگروکوستوماته‌ها مناطق خشک و نیمه خشک، حفاظت از جنبه‌های فیزیولوژیک گیاهان، برای انجام فوتوزستر مطلوب و در تیه تولید مناسب ضروری است. به منظور بررسی اثر آرایش کاشت در حفاظت از پارامترهای فیزیولوژیک در گیاه شنبله و سپاهانه تحت شرایط تنش خشکی، آزمایشی در دانشگاه شهرکرد در سال ۱۳۹۳ اجرا شد. در این آزمایش، سه سطح تنش خشکی شامل W1، W2 و W3 شرایط آبی بر اساس ۱۰۰ درصد ضریب شرایط (۱۰۰ درصد ولایت شرایط، ۴۲ درصد ولایت شرایط) بوده است. نتایج نشان داد که با افزایش تنش خشکی، میزان کلروفیل A و B در تیمارهای مخلوط شنبله و سپاهانه، به عنوان عامل فرعی دور بررسی قرار گرفتند. نتایج نشان داد که با افزایش تنش خشکی، میزان کلروفیل A و B در تیمارهای مخلوط شنبله و سپاهانه به ترتیب با میانگین ۱۰/۱۶ و ۱۱/۵ میلگرم در گرم بیشترین مقدار پرولین و تیمار شنبله سپاهانه (۱/۱) با میانگین ۲۹/۵۶ میلگرم در گرم کمترین مقدار پرولین را داشتند.

مقدمه:
تنش خشکی به شرایطی اطلاق می‌شود که در آن سلول‌ها و بایانتها در محیط قریب به کامل آن‌ها کاملاً ناشی‌اند. این حالت می‌تواند از کاهش جنبه‌های ضروری آب تا پداشتابگذاری دائم گیاهان متغیر باشد. به عبارت ساده‌تر کمبود آب در گیاه زمانی شامل

(۱) سرمایه دستی می‌باشد که میزان تعریق پیش‌تر از مقدار جذب آب باشد (علیزاده، ۱۳۷۸). در صورت طولانی بودن این عدم تбал در نزدیک میزان سیلزه‌های متابولیک گیاه تحت تأثیر قرار می‌گیرد و نتیجه‌آگلب کاهش تولید گیاهی می‌باشد (محدود دهنوی و همکاران، ۱۳۸۳).
مقایم‌های به تنش خشکسی در گیاهان مناسب یافته‌های هستند زیرا در شرایط خشکسی کاهش می‌یابد (Singh, 2007). پرولین در تشکیل دهنده اعمدهای گیاهی در رابطه بین موجودی و درصد کلروفیل یک عامل حیاتی در تنش خشکسی از جمله شاخص‌های فیزیولوژی مقاومت به نشان است که تحت تأثیر تنش خشکسی به دلیل تولید اکسیژن غلظ و تجزیه کلروفیل اتفاق می‌افتد. به عبارتی تحت شرایط نشان خشکسی کلروفیل و کلروفیلاست تجزیه و ساختر تیلاکوئید نابود شده جریان (ترحی و همکاران، 1389). خشکسی سبب کاهش در اندام بوده و وزن خشک ادامه گیری، شاخص سطح برک تعداد برگی، سطح برک و نشان توزه‌سازی در بالاتر گیاه می‌شود (Hu et al., 2014).

کشت مخلوط به دلیل برابر و اثراتی نباید در استفاده از منابع آبی در مناطق خشک و نیمه‌خشک جهان رایج می‌باشد (Gao et al., 2011). مزایای کشت مخلوط نسبت به کشت خالص در شرایط محدودیت آب پیشی است. مشورتی بر این که کل تراکم تولید از دو سبب اکسیجن باشد، سنگینه روز مخلوط با تراکم کمتری در مقایسه با کشت خالص آن کشت شود. برتری کشت مخلوط در این مورد ظاهراً به این لطفاً ترکیب شکری که کل است که وقتی در گیاه باید کشت می‌شود سیمان رقابت کمتر از کشت خالص آنها است. کشت گیاهان رعایی مختلف در هر میزان با کیفیت نسبتاً در دهه‌هایی که یکدیگر هم‌بستگی دارند. می‌تواند راندها مصرف آب در مناطق نیمه‌خشک را به طور قابل ملاحظه‌ای افزایش دهد (رهبازی، 1378).

روستایی (1393) در کشت مخلوط شیل‌بی‌های سیاه‌سیاه‌های اظهار داشت که بیشترین مقدار کلروفیل a در تیمار شیل‌بی‌های سیاه‌سیاه‌های (2:1) مشاهده گردید. همچنین بهارلویی (1392) نیز در کشت مخلوط تخوف‌فرگی که کار مشاهده نمود کشت مخلوط سیب افراست به مقدار کلروفیل b تخوف‌فرگی نسبت به کشت خالص شد. حسن زاده اول و همکاران (1389) در طی مطالعه کشت مخلوط مرزه و شیب ایرانی بان داشته‌که تیمار افراست کشت مخلوط به افراست تراکم مرزه از 70 به 80 بوده در مدت معین منجر به افراست عملکرد اساسی شده.

محتوای نسبی آب برگ و پتانسیل آب برگ جهت بررسی

مواد و روش‌ها:

این پژوهش در مرزه تحقیقاتی دانشکده کشاورزی، دانشگاه شهید رجایی در ناحیه جغرافیایی در درجه و ۱۰ درجه شمالی و طول جغرافیایی ۵۰ درجه و 49 دقیقه شرقی و با ارتفاع ۲۱۱۸ متر از سطح دریا در سال ۱۳۹۳ انجام شد. آزمایش به صورت ۳ کرت‌های خرد شده در قالب طرح پلک کامل تصادفی با ۳ تکرار اجرای کردی. سه سطح تنش خشکسی شامل W1، W2 و W3. تراکم اوراق به میزان با یکدیگر بود.
جدول 1- برخی ویژگی‌های فیزیکی و شیمیایی خاک محل آزمایش

| خاک | ظرفیت زراغی (dS/m) | بافت | هدایت الکتریکی (W/m) | شبکه‌پذیری دالمن | ضریب سه‌تکنونی | استاندارد | واحد | نشانه‌کننده گزارش | نکات
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/27</td>
<td>3/11</td>
<td>0/76</td>
<td>7/98</td>
<td>2/7</td>
<td>1/47</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0/27</td>
<td>3/11</td>
<td>0/76</td>
<td>7/98</td>
<td>2/7</td>
<td>1/47</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

میزان گاز نیتروژن (N2) در خاک محل آزمایش به‌طور طبیعی در حالت خشک و ناپذیری بیش از حد از مقدار مورد نیاز قرار داشته است. کارایی برای این زمین‌های سیاه‌چوره و سیاه‌چرمی است.}

کامل (آلباری بر اساس 100 درصد ظرفیت زراغی): W2. نش ملام (آلباری بر اساس 75 درصد W1) و W3. نش شدید (آلباری بر اساس 50 درصد W1) به عنوان عامل اصلی و پنجم آریش کشت شاخص خاک شامل خاک شیلیک فلات. کشت خاص سیاه‌چرمی و سیاه‌چوره به عنوان عامل فرعی مورد بررسی قرار گرفتند. گل از تهیه بسیار، نمونه‌های صفر نسبت به صفر افزایش مزروع و وزن گیاهی نیتریکوکسیدیمی آن در آزمایش‌گاه‌ها و دسته‌های گیاهی کمتر بوده است.

با نوع انتخاب و نش خشکی، مقدار رطوبت سه‌تکنونی (TAW) از رابطه زیر محاسبه شد (FAO، 1998):

\[
TAW = 1000 \times FC 	imes PWF 	imes Zr
\]

جایگزینی گزارش (TAW) به‌طور طبیعی در حالت خشک و ناپذیری بیش از حد از مقدار مورد نیاز قرار داشته است. کارایی برای این زمین‌های سیاه‌چوره و سیاه‌چرمی است.}

براساس رابطه فوق‌الذکر، برای تیمار آلباری کامل معدال 200 لیتر آب در هر کرت، برای تیمار ملام 150 لیتر آب در هر کرت توسط کنترل محصولاتی در زمان آلباری توسط دستگاه‌های زراعی در 70 درصد ظرفیت زراغی مزروع برای تیمار آلباری کامل در هر آریش شاخص کشت آزادش. در زمان شروع تیمار بعد از استقرار کلیع مراره پنگ‌بک گیاه شیلیک. بود.

بودن شیلیک و سیاه‌چرمی در زمین‌های آلباری به پاکی آب و فاضلاب به‌طور طبیعی در حالت خشک و ناپذیری بیش از حد از مقدار مورد نیاز قرار داشته است. کارایی برای این زمین‌های سیاه‌چوره و سیاه‌چرمی است.
اندازه‌گیری قند محلول: در زمان برداشته پس از نهایی نمونه‌های تصادفی از باور در گیاه، قند محلول با روش Nelson (1994) اندازه‌گیری شد. بدین صورت که ابتدا 50/95 گرم نمونه‌بند هر گیاه در هاله کوبیده و 5 میلیلیتر آب انتگیر 95/95 درصدی به هر نمونه اضافه شد و داخل لوله سانتی‌تریفوژ قرار گرفت. سپس 5 میلیلیتر کالری 20/70 به لوله سانتی‌تریفوژ اضافه و نمونه‌ها به مدت 10 دقیقه با 3500 گرم در دمای 24 درجه سانتی‌گراد دفع شدند. سپس از هر گیاه 3 میلیلیتر آب‌توننده به هنگام تبلیغ آن‌روان حالات بوده و جامد به حالت محلول 200 میلی‌گرم‌انتری‌کریت در تیز反感‌ماتوریک (Wd) با 24 ساعت در دمای 5 درجه سانتی‌گراد قرار گرفت و پس از هر 24 ساعت در دمای محیط میزان جذب محلول با استفاده از دستگاه استیک‌وست‌جی (Jenway) تا حدود 1300 مدل محصول در طول موج 254 ناون‌متر قرنطین شد.

اندازه‌گیری آسایش: به منظور اندازه‌گیری میزان آسایش در زمان برداشته (120 روز پس از کاشت) 50 گرم ذرت شنبلیه و 50 گرم ذرت سیاه‌دانه به طور تصادفی از دانه‌های نوپردازی‌شده در هر هفت نمونه‌گیری شد و در سایه خشک‌گرداشته شد. سپس میزان آسایش 50 گرم ذرت شنبلیه را به مصرفی (مره‌اشامی و همکاران، 1388) و بر سیر سیاه‌دانه (El-Sayed et al., 2000) خشک‌سازی کرد. دستگاه گلوگری به دست داشته‌بوده در پیش‌بینی انتخاب آب‌پذیری اندام‌گیری شد.

محاسبات آماری داده‌های آزمایشی شامل بررسی واریانس و MSTAT-C مقایسه میانگین‌ها با استفاده از نرم افزار SAS و سطح احتمال 5 درصد انجام شد.

نتایج و بحث: کارنوفی a بر اساس نتایج تجربه واریانس اثر تنش خشکی بر کارنوفی a در گیاه سطح احتمال 1 درصد و اثر آرایش کشت بر این صفت در گیاه شنبلیه و سیاه‌دانه به ترتیب در حوزه‌های قند محلول و همکاران (RWC) اندازه‌گیری شد. بدین صورت که ابتدا 50/95 گرم نمونه‌بند هر گیاه در هاله کوبیده و 5 میلیلیتر آب انتگیر 95/95 درصدی به هر نمونه اضافه شد و داخل لوله سانتی‌تریفوژ قرار گرفت. سپس 5 میلیلیتر کالری 20/70 به لوله سانتی‌تریفوژ اضافه و نمونه‌ها به مدت 10 دقیقه با 3500 گرم در دمای 24 درجه سانتی‌گراد دفع شدند. سپس از هر گیاه 3 میلیلیتر آب‌توننده به هنگام تبلیغ آن‌روان حالات بوده و جامد به حالت محلول 200 میلی‌گرم‌انتری‌کریت در تیز反腐‌ماتوریک (Wd) با 24 ساعت در دمای 5 درجه سانتی‌گراد قرار گرفت و پس از هر 24 ساعت در دمای محیط میزان جذب محلول با استفاده از دستگاه استیک‌وست‌جی (Jenway) تا حدود 1300 مدل محصول در طول موج 254 ناون‌متر قرنطین شد.

WRC = (Wf-Wd)×100/Wf-Wd

Wf = وزن خشک برگ پس از قرار گرفتگی در آن‌روان (دما
Wd = وزن خشک برگ اشاعه در پس از قرار گرفتگی در آب مفرط

برای اندازه‌گیری صفات زیر پس از طیف‌سنجی اوسیلوژیک بذر (10 روز پس از کاشت) و حذف اثر حاشیه‌ی ابره، تعداد 10 بونه از هر کرت به طور تصادفی انتخاب شد پس از بوجاری بذر، مقدار معنی‌دار توزین بذر و جهت تعبین پرونل، فرد محلول و استفاده قرار گرفت.

اندازه‌گیری پرونل: غلظت پرونل پس از استفاده از روش Baters و همکاران (1973) اندازه‌گیری شد. جهت نمایش محلول استخراج پرونل، 10 میلی‌لیتر از محلول 3 درصد اسید سولفات‌سیلنیک به 500 گرم بذر (آسیاب‌شده) اضافه شد. سپس این محلول به دور 8000 در دقیقه به مدت 15 دقیقه سانتی‌تریفوژ شد. سپس 2 میلی‌لیتر اسید نامیده شد و 2 میلی‌لیتر گلایکول استیک اسید به 2 میلی‌لیتر از محلول استخراج شده اضافه کرد. این محلول به مدت 60 دقیقه در دمای 69 درجه سانتی‌گراد در حجمی برابر جوشانده شد. بعد از خشک‌سازی محلول، 4 میلی‌لیتر محلول به آن اضافه گردید. سپس غلظت پرونل با قرار در طول موج 240 ناون‌متر توسط استیک‌وست‌جی (Jenway) تعبین شد.
جدول 2- تجزیه واریانس آرایش کشت بر مقدار رنگدانه‌های کاروتین دها در گیاه شیبیلیه و سپاهن در شرایط نش خشکی.

<table>
<thead>
<tr>
<th>میانگین مربوطه</th>
<th>کاروتین‌دها</th>
<th>کاروتین‌فولی</th>
<th>کاروتین‌فولی</th>
<th>درجه</th>
<th>منبع تغییرات آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاروتین‌فولی</td>
<td>0/05</td>
<td>0/01</td>
<td>0/01</td>
<td>6</td>
<td>شیبیلیه</td>
</tr>
<tr>
<td>شیبیلیه</td>
<td>0/02</td>
<td>0/01</td>
<td>0/01</td>
<td>6</td>
<td>سپاهن</td>
</tr>
<tr>
<td>سپاهن</td>
<td>0/05</td>
<td>0/01</td>
<td>0/01</td>
<td>6</td>
<td>شیبیلیه</td>
</tr>
</tbody>
</table>

سپب پراکسیداسیون و در تابعه تجزیه کاروتین‌فولی a می‌شوند (Sheteawi and Tawfik, 2007) کاروتین‌فولی a در شرایط بدون نش مشاهده شد. میزان‌های کشت مخلوط در مقایسه با کشت خالص رنگدانه معدن‌داری در میزان کاروتین‌فولی a مشاهده نشده. شرایط شرایط میان میان و شدت شدت به ترتیب تیمارهای کشت مخلوط در مقایسه با کشت خالص ۴۳/
۲۱٪ افزایش داشتند. در گیاه سپاهن تحت شرایط بدون نش بدون نش میان میان شدت و شدت به ترتیب تیمارهای کشت مخلوط و کشت خالص از نظر کاروتین‌فولی a اخلاق معمول وجود نداشت. ولی با عامل تیمارهای کشت مخلوط و کشت خالص به ترتیب ۱۰٪ و ۲۱٪ افزایش مشاهده شد. با توجه به نتایج فوق می‌توان اظهار نمود که در تیمارهای کشت مخلوط بدیل استرسی بیشتر به رطوبت خاک و استرسی بهتر به عناصر غذایی کاهش میزان البتل نش خسکی بر کاروتین‌فولی a شیبیلیه و سپاهن مشاهده شد. خیزی و همکاران (1390) اظهار نمودند که نش خسکی تأثیر معدن‌داری بر میزان کاروتین‌فولی a برگ گیاهان دارویی دارد. روستایی (1373) نیز در کشت مخلوط شیبیلیه-سپاهن اظهار داشت که بیشترین مقدار کاروتین‌فولی a در تیمار شیبیلیه-سپاهن (0/21) مشاهده شد.

کاروتین‌فولی b همانطور که در جدول تجزیه واریانس مشاهده می‌شود در گیاه شیبیلیه و سپاهن البتل نش خسکی

سطح احتمال ۱ و ۵ درصد معیار دارد (جدول ۲). اثر متقابل نش خسکی با آرایش کشت بر میزان کاروتین‌فولی a در گیاه شیبیلیه و سپاهن در سطح احتمال ۱ و ۵ درصد معیار دارد (جدول ۲).

با توجه به مقایسه میانگین‌های می‌توان اظهار نمود که در گیاه شیبیلیه کک و گیاه شیبیلیه روند میان میان در کاهش میزان کاروتین‌فولی a تحت شرایط بدون نش در تیمارهای شیبیلیه سپاهن (2/0/1) به ترتیب با مونولیت‌های ۱/۵/۴ و ۲/۱/۰/۵/۹ میلی‌گرم در گیاه شیبیلیه و ۲/۵/۱/۰۵ میلی‌گرم بر گیاه مشاهده شد (شکل 1). این در حالی بود که در شرایط نش شدید شدت تیمار شیبیلیه: سپاهن (0/2/0) میلی‌گرم کاروتین‌فولی a به میانگین ۸/۲۵ میلی‌گرم بر گیاه مشاهده گردید. با توجه به مقایسه میانگین‌های در گیاه شیبیلیه و سپاهن نش بیشتر بود.

میزان شاخص بیشتر نش بود. با توجه به مقایسه میانگین‌های در گیاه شیبیلیه و سپاهن شرایط مشاهده نش در تیمارهای کشت اخلاق معیار وجود نداشت، اما تحت شرایط نش میزان تیمارهای کشت مخلوط نسبت به کشت خالص کاروتین‌فولی شیبیلیه، و از طرف دیگر تحت شرایط نش شدت تیمارهای کشت مخلوط نسبت به کشت خالص در تیمار نش میزان کاروتین‌فولی شیبیلیه از کاهش تحت خسکی تأثیر گذار بر خسکی در گیاهان تحت نش خسکی بسی به شدت. مدت و مرحله رشد گیاه متقاوت است. در واقع کاهش کاروتین‌فولی a بر اثر نش خسکی مربوط به افزایش اولیه رادیکال‌های اکسیژن در سلول می‌شود که این رادیکال‌ها
شکل 1- اثر مقاّل تش خشکی با آراپش کش بر میزان کلروفیل a در گیاه شپلیه (a) و سیاهه (b). میانگین‌های دارای حروف مشابه یافته‌اند اخلاقی آماری معنادار بر اساس آزمون LSD در سطح احتمال 5 درصد می‌باشند.\\n\\nدر گیاه سیاهه، تحت شرایط بدون تنش تیمارهای شپلیه: سیاهه (2:1) و (1:2) نسبت به کشت خالص در رتبه بالاتری قرار گرفته‌اند. حتی در تیمار شپلیه: سیاهه (1:1) تحت شرایط تنش شدید در مقایسه با کشت خالص (b 2:1) تحت شرایط تنش ملایم بتری نشان داد (شکل a).\\n\\nبررسی اثر مقاّل تنش خشکی با آراپش کش برای کلروفیل b شپلیه و سیاهه مشخص نمود که افزایش تنش خشکی باعث کاهش میزان کلروفیل b می‌شود، با این تفاوت که میزان کاهش کلروفیل b برای گیاه شپلیه با شبکی بیشتری مشاهده شد (شکل a). بیشترین میزان کلروفیل b در گیاه شپلیه در شرایط عدم تنش در تیمار شپلیه: سیاهه (2:1) (c).
شکل ۲- اثر مقیاس تنش خشکی با آراپی کشت بر کارولفیل ۵ در گیاه شنیله (a) و سیاهدانه (b)

شکل ۳- اثر مقیاس میزان کارولفیل ۱ در گیاه شنیله (a) و سیاهدانه (b)

اختلاف آماری معنادار اساس آزمون LSD در سطح احتمال ۵ درصد می‌باشد.

مشاهده شد اما با یک‌سانی رطوبت (تیمار تنش ملایم و شدید) مخلوط نخودفرنگی و کازا مشاهده نمود کارولفیل نخودفرنگی در تیمار کشت مخلوط بطور معنی‌داری نسبت به کشت خالص آراپی بافت.

کارولفیل‌ها: نتایج تجزیه واریانس حاکی از آن است که اثرات اصلی تنش خشکی و آراپی کشت بر کارولفیل‌ها در گیاه در سطح احتمال ۱ درصد معنی‌دار نبود ولی اثر متقابل تنش خشکی با آراپی کشت بر این صفت در گیاه شنیله و سیاهدانه به ترتیب در سطح احتمال ۵ و ۱ درصد معنی‌دار بود (جدول ۲).

با توجه به مقایسه میانگین‌های ارائه شده در شکل (۳)

میزان اظهار نمود که در گیاه شنیله بیشترین میزان کارولفیل‌ها در کشت خالص تحت شرایط تنش شدید و جود داشت ترکیب میزان کارولفیل‌ها نیز در تیمار شنیله: سیاهدانه (۱۲) تحت شرایط بدون تنش مشاهده شد. برای گیاه کاهش رنگدانه‌های فوتوستاتی می‌تواند ناشی از کاهش ساخت کمیکس اصلی رنگدانه کارولفیل، تخریب نوری کمیکس پروتکس رنگدانه b که مقاومت کنده دستگاه فوتوستاتی است.

صدم آزمایشی لیپیدهای کارولفیل‌های و پروتکس‌ها و با افراپی فعالیت آنزیم کارولفیلاز باشد.
شکل ۳-اثر مقیاس تنش خشکی با آرایش کشت بر کاروتئینی‌ها در گیاه شیپلیه (۰) و سیاه‌هانه (۱). میانگین‌های دارای حرف مشابه با کلت‌های مختلف آزمون LSD در سطح احتمال ۵ درصد می‌باشند.

سیاه‌هانه نیز همانند گیاه شیپلیه بیشترین میزان کاروتئینی‌ها را داشته و اثرات خشکی و آتش‌بیزانی در گیاه شیپلیه با آنزیم‌های مصرف شده (شکل ۱) کمتر بودند. در میانگین ۷۶/۴۵ درصد مقایسه بین تراکم این نسبی برگ کاملاً مشابه (شکل ۱) بود.

کاروتئینی‌ها در گیاه شیپلیه با آنزیم‌های مصرف شده (شکل ۱) بیشترین میزان محصولی برگ داشتند و در تراکم این نسبی برگ کاملاً مشابه (شکل ۱) بودند.

کاروتئینی‌ها در گیاه شیپلیه با آنزیم‌های مصرف شده (شکل ۱) بیشترین میزان محصولی برگ داشتند و در تراکم این نسبی برگ کاملاً مشابه (شکل ۱) بودند.

میزان آب نسبی برگ: نتایج تجربه واریانس برای گیاه سیاه‌هانه نیز همانند گیاه شیپلیه بیشترین میزان کاروتئینی‌ها را داشته و اثرات خشکی و آتش‌بیزانی در گیاه شیپلیه با آنزیم‌های مصرف شده (شکل ۱) کمتر بودند. در میانگین ۷۶/۴۵ درصد مقایسه بین تراکم این نسبی برگ کاملاً مشابه (شکل ۱) بود.

کاروتئینی‌ها در گیاه شیپلیه با آنزیم‌های مصرف شده (شکل ۱) بیشترین میزان محصولی برگ داشتند و در تراکم این نسبی برگ کاملاً مشابه (شکل ۱) بودند.

کاروتئینی‌ها در گیاه شیپلیه با آنزیم‌های مصرف شده (شکل ۱) بیشترین میزان محصولی برگ داشتند و در تراکم این نسبی برگ کاملاً مشابه (شکل ۱) بودند.

میزان آب نسبی برگ: نتایج تجربه واریانس برای گیاه
جدول ۳- تجربه واریانس اثر آرایش کشت بر محتوای آب نسبی برگ، پرولین، قند محلول و انسان گیاه شنلیه و سیاه‌الاتیه

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>درجه</th>
<th>محیط تغییرات</th>
<th>آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>انسان شنلیه سیاه‌الاتیه</td>
<td>۲</td>
<td>تکرار</td>
<td></td>
</tr>
<tr>
<td>پرولین شنلیه سیاه‌الاتیه</td>
<td>۲</td>
<td>نش عضلانی</td>
<td></td>
</tr>
<tr>
<td>پرولین شنلیه سیاه‌الاتیه</td>
<td>۵</td>
<td>خطای اصلی</td>
<td></td>
</tr>
<tr>
<td>آرایش کشت</td>
<td>۳</td>
<td>آرایش کشت (P)</td>
<td></td>
</tr>
<tr>
<td>خطای فرعي</td>
<td>۶</td>
<td>SxP</td>
<td></td>
</tr>
<tr>
<td>ضرب تغییرات</td>
<td>۱۸</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۴- اثر نش عضلانی (۰) و آرایش کشت (۰) بر محتوای آب نسبی برگ شنلیه. میانگین‌های حروف مشاهده فاقد اختلاف آماری معنادار بر اساس آزمون LSD در سطح احتمال ۰.۰۵ می‌باشد.

کال و انجام نش عضلانی، به اثبات واکنش سیاه‌الاتیه به تغییرات آب برگ در اثر نش عضلانی بر پذیرش آب برگ و قند محلول اثر مثبتی داشت که در توجه به تعداد انواع آزمایشات انجام گرفته در این مطالعه، بهترین واکنش آنها را در شرایط شرودری پدیدار می‌کردند. این امر با توجه به استاتیسیکی مثبتی که در رابطه با نش عضلانی و قند محلول مورد مطالعه پدیدار می‌کرد، تأکید می‌کند که برای کاهش ضرایب می‌توان به تأمین کافی آب برگ در شرایط عضلانی و افزایش ضرایب در صورت نگهداری آب برگ از طریق مصرف آب برگ، به عنوان یک روش مثبت برای کاهش ضرایب می‌تواند به کار رفته باشد.

![Diagram](https://via.placeholder.com/150)

پرس و توزیع متفاوت ریشه‌های دو گیاه به بهره‌برداری بهتر از نیچ ریزوفری منجر بزیگی سیاه‌الاتیه می‌توان با استاتیسیکی که بیشترین محتوای نسبی آب برگ مربوط به تبلیغ بدون نش عضلانی با افزایش تاثیر آرایش‌های کشت مخلوطه‌ای می‌باشد که کاهش می‌تواند رابطه مستقیم وجود دارد، به طوری که با کاهش میزان رطوبت گیاهی مشاهده شده در شرایط نش عضلانی و افزایش ضرایب می‌تواند به کار رفته باشد.
شکل ۵- اثر مقاّب تنش خشکی و آرایش کشت بر محتوای نسبی آب یک گیاه سیاه‌دانه. میانگین‌های دارای حروف مشابه فاقد اختلاف آماری معنی‌دار بر اساس آزمون LSD در سطح احتمال ۵ درصد می‌باشند.

شکل ۶- اثر آرایش کشت بر میزان پرولین شنبه‌لیه (a) و سیاه‌دانه (b). میانگین‌های دارای حروف مشابه فاقد اختلاف آماری معنی‌دار بر اساس آزمون LSD در سطح احتمال ۵ درصد می‌باشند.

میلی‌گرم در گرم بیشترین مقدار پرولین و تیمار‌های شنبه‌لیه:
سیاه‌دانه (۲:۱) و (۱:۲) به ترتیب با میانگین ۷/۳۵ و ۷/۴۲ میلی‌گرم در گرم کمرین مقدار پرولین را داشتند (شکل ۷). نتایج مقایسه میانگین نشان داد که میزان پرولین در گیاه شنبه‌لیه با افزایش تنش خشکی با شیب بیشتری افزایش یافت، ولی در گیاه سیاه‌دانه این شیب کمتر بود (شکل ۷). یکی از مکانیسم‌های کارآمدی که گیاهان به هنگام مواجه شدن با خشکسایی برای حفظ توره‌سازی و آماس سلولی در خدمت می‌گیرند، نظیره‌بندی ارتفاع محیطی از طریق تجمع فنگیا و اسیدهای آمینه نظیر پرولین است. به نظر می‌رسد در گیاه شنبه‌لیه در تیمار تنش شدید، مکانیسم‌های دفاعی گیاه در دوره کمبود آب منجر به افزایش پرولین با میانگین ۱۷/۷۴ میلی‌گرم در گرم نسبت به

به دسترسی به کروم با افزایش اثر در آرایش‌های کشت مخلوط گیاهان شنبه‌لیه و سیاه‌دانه شده است و همین امر موجب برتری وضعیت رطوبتی تیمار‌های مخلوط در مقایسه با کشت خالص شده است.

پرولین: اثر تنش خشکی و آرایش کشت بر میزان پرولین گیاه شنبه‌لیه و سیاه‌دانه در سطح احتمال ۱ درصد معنی‌دار شد، ولی اثر متقابل اثر صاف باید شده معنی‌دار نبود (جدول ۳).

در گیاه شنبه‌لیه، تیمار شنبه‌لیه: سیاه‌دانه (۱:۱) و کشت خالص به ترتیب با میانگین ۱۰/۵۱ و ۱۱/۵ میلی‌گرم در گرم بیشترین مقدار پرولین و تیمار شنبه‌لیه: سیاه‌دانه (۱:۱) با میانگین ۹/۷۵ میلی‌گرم در گرم کمرین مقدار پرولین را دارا ۸/۳۷ بودند. در گیاه سیاه‌دانه، کشت خالص با میانگین
شکل 7- اثر شکلی بر میزان پرولین شبلیه (a) و سیاهدانه (b). میانگین‌های دارای حروف مشابه فاقد اختلاف آماری معنادار بر اساس آزمون LSD در سطح احتمال 5 درصد می‌باشند.

گیاه سیاهدانه با میانگین 9.78 میلی کرم در گرم به دست آمد. از سوی دیگر، در شرایط که نشان خشکی شدبود نیاز متناسب شبلیه، سیاهدانه (6) نسبت به کشت خاصل سیاهدانه در شرایط نشان می‌لایم. از میزان قند محلول کمری برخوردار بود. در طی بروز نشان خشکی گیاهان با ذخیره مواد تنظیم کندن، مانند قندهای محلول به حفظ کننده توزانس سلولی عمل می‌کنند. در گیاهان که قندهای محلول در پاسخ به نشان خشکی تجمع می‌باید تنظیم اساسی بیشتر صورت می‌گیرد (2007). در هنگامی که رطوبت خاک کاهش یابد، سطح سازاری و فرهنگ در گیاهان به عنوان افزایش می‌یابد و وجود قند محلول در گیاهان به عنوان تنظیم کننده اساسی برای کاهش میزان خسارت ناشی از نشان خشکی می‌باشد. همان طوری که در شکل 8 مشاهده می‌شود در کشت خاصل شبلیه می‌باید کشت ارزشمند میزان رطوبت خاک میزان قند محلول در گیاه به جهت افزایش غلظت افزایش زیاد شده است که این عمل برای کاهش فیزیولوژیک برای کاهش میزان خسارت ناشی از نشان خشکی مؤثر بود. نتایج آزمایش در مورد گیاه سیاهدانه حاکی از آن است که با افزایش نشان خشکی میزان قند محلول در کشت خاصل افزایش می‌یابد ولی با نزول کشت خاصل این روند در تیمارهای کشت مالکوت به چین سرعتی افزایش پیدا نمی‌کند (شکل 9). با توجه به مطالب فوق ذکر احتمالاً می‌توان نتیجه گرفت که افزایش میزان قند محلول در کشت خاصل ناشی از شرایط نشان رطوبتی در این تیمارها باشد.

فقط محلول: بر اساس نتایج تجربی واریانس مشاهده شد که در گیاه شبلیه، فقط محلول فقط تحت تأثیر اثر نشان خشکی و آرایش کشت قرار گرفت. در گیاه سیاهدانه اثرات اصلی و متکل نشان خشکی و آرایش کشت قند محلول معنی‌دار شد (جدول 3). در گیاه شبلیه بیشترین میزان قند محلول در تیمار نشان شدید حاصل بود. علاوه بر این در کشت خاصل شبلیه و تیمار شبلیه، سیاهدانه (6) به ترتیب با 5/100 میلی کرم در گرم بیشترین مقدار قند محلول مشاهده شد (شکل 8). برای گیاه سیاهدانه مشاهده شد که بیشترین میزان قند محلول در شرایط نشان شدید و کشت خاصل با میانگین 5/8 میلی کرم در گرم حاصل شد. این در حالی بود که کمترین میزان قند محلول تحت شرایط بدون نشان و تیمار شبلیه سیاهدانه (6) و (2) با میانگین 5/4/2 میلی کرم در گرم حاصل شد.
شکل 6- اثر تنش خشکی (a) و آرایش کشت (b) بر قند محلول شیلیه. میانگین‌های حروف مشابه فاقد اختلاف آماری معنادار بر اساس آزمون LSD در سطح احتمال 5 درصد می‌باشند.

شکل 9- اثر مقیاس تنش خشکی و آرایش کشت بر میزان قند محلول (a) و اساس (b) سیاهدان در شرایط تنش خشکی، میانگین‌های دارای حروف مشابه فاقد اختلاف آماری معنادار بر اساس آزمون LSD در سطح احتمال 5 درصد می‌باشند.

اساس: نتایج تجزیه واریانس برای گیاه شیلیه حاکی از آن است که میزان اساس در تیمارهای تنش خشکی و آرایش کشت در سطح احتمال 1 درصد معنی‌دار بود (جدول 3). طبق مقایسه‌های میانگین‌ها در شکل 10 می‌توان بیان کرد که سیاهدانه نیز مشابه شد که اثرات اصلی و اثر متقابل تنش خشکی و آرایش کشت در سطح احتمال 1 درصد معنی‌دار بود (جدول 3).
نمود که در گیاه شنبه‌یی‌بی‌شترین میزان اساس در تیمار تنش شکل می‌شود. با میزان کلیولویس، شدت عامل محیطی مانند نشت‌های رطوبتی تحت تأثیر قرار می‌گیرد (Sinh et al., 2003) از آنچه که گوشی شنبه‌یی‌بی‌سیابدانه و سیابدانه تحت تأثیر تنش رطوبتی قرار گرفته‌اند. به نظر می‌رسد که به دلیل کمیابی آب در دسترس گیاه میزان متابولیت‌های تانه‌یی افزایش یافته است و این روند در تیمار تنش شدت به صورت افزایش اساس مشاهده است (شکل 10). از طرفی در گیاه سیابدانه شدت بیشتر تنش شکل موجب افزایش اختلاف اساس کشت خالص با تیمار‌های کشت مخلوط شده است. این موضوع می‌تواند میزان تأثیرپذیری گیاهان از تنش و نقش کشت مخلوط در تعیید تنش را نشان دهد (شکل 9).

سیاست‌گرایی:
بدون‌پناهی از مساعدت مالی دانشگاه شهرکرد از اجرای این پژوهش قدردانی می‌گردد.
منابع:

۱. بهارلویی، س. (۱۳۹۲) اثر رقابت گیاهی بر نیاز نیتروژن کشت مخلوط نخودفرنگی و کلزا، پایان‌نامه کارشناسی ارشد آگروکولولوژی، دانشگاه شهید رجایی، ایران.
۲. ترجمه، گ.؛ لاوهی، م.؛ و عباسی، ف. (۱۳۸۹) بررسی اثرات ناشی از نشانه حساسیت بر روی تغییرات فند محلول میزان کلروفیل و پنتاسام بر روی نوروزک (Salvia terifolia)، علوم زیستی دانشگاه آزاد اسلامی، ۳–۷.
۳. حسنزاده اولف، ف.؛ کوچکی، ع.؛ و تصریحی، م. و (۱۳۸۹) اثر تراکم بر روی خصوصیات زراعی و عملکرد مرده در کشت مخلوط، نشره پژوهش‌های زراعی ایران، ۷: (Trifolium resupinatum L.) و شیپر ایرانی (Satureja hortensis L.)
۴. هیدری، م. و رضایی، ع. (۱۳۹۰) اثر نشانه حساسیت و کود گرده بر عملکرد دانه، کلونیفل و فضاهای عنصر معدنی در گیاه دارویی، سیاه‌آباده (۱۳۹۲) تاثیر کاربرد جداسازی و تولید کننده‌های شبیه‌ای و مغز بر جنبه‌های مختلف تولید شیلیه و سیاه‌آباده در کشت مخلوط، پایان‌نامه کارشناسی ارشد آگروکولولوژی، دانشگاه شهید رجایی، ایران.
۵. شرکت مدیریت منابع آب ایران (۱۳۹۴) سامانه چکسکالی هوشمند ایران. DroughtinIran.htm
۶. علی‌نژاد، ر. (۱۳۸۷) رابطه آب و خاک و گیاه، انتشارات آستان قدس رضوی، مشهد.
۷. مظاهری، د. (۱۳۷۷) زراعت مخلوط. انتشارات دانشگاه تهران، جنوب.
۸. موحیدی‌دهنوی، م.؛ مدرس، ن. و غلامی، ع. (۱۳۸۹) تغییرات میزان پرولین، فند محلول کل، کلونیفل و فلورسنس کلونیفل در ارقام گل‌کارگی پانزده تا نشان حساسیت و محلول پانزده روزی و مگنیک. پایان‌نامه: (SPAD)
۹. میرزاهمی، س.؛ کوچکی، ع.؛ پارسا. م. و نسیبی، محلاانی، م. (۱۳۸۹) بررسی میزان کشت مخلوط زنبیل و شیلیه در سطح مختلف کود دامی و آراشی کاشت. مجله پژوهش‌های زراعی، ۷: (۱۳۸۹) ۱۳۹۷–۳۳.

