تأثير اسید سالیسیلیک و اسید ایندول استیک بر اسانس و مواد مؤثره نعناع فلفلی (Melissa officinalis L.) و بادرنگیوه (Mentha piperita L.)

سمه احمدی، مهربان پادگاری و بهزاد حامدی
گروه زراعت و گیاهان دارویی، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران
(تاریخ دریافت: 23/05/95، تاریخ پذیرش نهایی: 31/12/96)

چکیده
تنظيم کننده‌هایی رشته نش یا نش جهانی در طی مراحل رشد و نمو گیاهان ایفا می کنند و کاربرد آن‌ها می تواند باعث بهبود و افزایش عملکرد گیاهان شود. در این تحقیق اثرات کاربرد مخلوط‌پاشی دو هورمون اسید سالیسیلیک و اسید ایندول استیک بر عملکرد کمی و کیفی اساس گیاهان استم در خانواده فلفلی (Lamiaceae) با استفاده از اسید سالیسیلیک (Melissa officinalis L.) و بادرنگیوه (Mentha piperita L.) گردید. برای به‌وسیله‌ی سوزن‌دردن و بادرنگیوه، به ترتیب 18 و 42 ترکیب انتخابی استفاده گردید. در ساختار هواپیمایی نعناع فلفلی و بادرنگیوه به ترتیب 43 و 23 ترکیب انتخابی است. سالیسیلیک 10 میلی‌مولار و اسید ایندول استیک 1/5 میلی‌مولار در لایه در بالابردن منیزان کمی و کیفی اساس گیاهان تحت تدریس پیشینی تیمار و به نظر می‌رسد که هورمون‌های مورد استفاده در این تحقیق منجر به افزایش عملکرد و به نفع آن منیزان از ایجاد سازندگی اساس‌های دیگر است. هر گیاه شامل کلید و ازدحام گیاهان دارویی، منیزان، تراز، مازن و محور گیاهی.

مقدمه
نعناع فلفلی (Peppermint) یکی از مهم‌ترین گیاهان دارویی متعلق به خانواده Lamiaceae است که بومی مناطق معتدله دنیا به ویژه اروپا، آمریکای شمالی و شمال آفریقاست. اما اروزه در سراسر دنیا کشا کشته می‌شود (Leung and Foster, 1996). این گیاه در هر چند که طلایی در گونه Mentha aquatica است، منیزان، تراز، لیمون و Mentha spicata از نظر ترکیبات عطره این گیاه هستند که دارای خواص

mehrabyadegari@gmail.com

نویسنده‌من، نشانی پست الکترونیکی:
روتين، کوتورستین و فلورونیدها در بنفشه (Viola cornuta L.) (Ghorbani et al., 2013) افزایش محتمل کربونیل و کارنتین درت (Khodary, 2004) (Zea mays L.)، کاهش رشد انحلالی گوجهفرنگی (Lycopersicum esculentum Mill.) و تولید مواد فنولی و کاهش تجمع (Shahba et al., 2010) کنترویلیتیون (Kantev) (Thymus pereimb L.)، آویشن (et al., 2008) Mentha piperita و نعناع فلفلی (Perez et al., 2012) می‌شود (Figureria et al., 2014).

از دیگر هورمون‌های گیاهی اکسین است که تحقیقات انجام شده در گیاهان کشف شد. فراوانی ترین شکل طبیعی، این است که این گونه‌ها از منظومه‌ای نقض‌کننده اکسین در گیاهان فعالیت نشان دهنده سازی‌ها در آن‌ها و کلیویتی‌ها جوان است (Hayward et al., 2009).

این‌اندیش است که تأثیر اکسین‌ها بر عملکرد پان‌آلوده‌ها می‌تواند در این‌ها بوده باشد (Hozzoumi et al., 2014) (Ocimum gratissimum L.) و در مورد پژوهش‌های این گونه‌ها در سنجش تغییرات سیستمیکی (Krishnamoorthy) (Bari and Kerim, 2013) و فیتوکیمیایی در پادربیتی آزمون (and Kerim, 2013) Nourafkan) (Lippia citriodora L.)، و بادیمویو (Jones, 2009) (Figure 1) می‌شود.

پایه‌گذاری‌های مختلف اسید سالیسیلیک و اسید اینازیالیک (گیاهی) با میزان عامل‌های نشان‌دهنده خصوصیات فیتوکیمیایی گیاهان دارویی بارداری‌جوی و نعناع فلفلی انجام نشده است. لذا هدف این تحقیق بررسی سطوح مختلف این دو هورمون بر ترکیبات اساسی و خاصه‌ترین نعناع فلفلی می‌باشد.

مواد و روش‌ها

این پژوهش به صورت طرح کاملاً تصادفی در قالب فاکتوریل و دو عامل با ۳ کمکر ره صورت گل‌دانی در فصل بهار و تابستان سال ۱۳۹۴ در دانشگاه آزاد اسلامی واحد شهرکرد انجام شد.

از جمله درمان‌های غربال‌های عادات، رفع فولیک، تغییر دهی بازی و آنزیم‌های بارت بوده در بیماری‌های ماء مؤثره می‌شود. در بسیاری موارد، این ترکیبات به عنوان فراوان دفاعی گیاه برای همکاری می‌کنند. محورهای ویژه، نوروز، درمان نگهداری و نوروزی معیار مایه‌سنگی گیاهان می‌شود و برخی دیگر مثل کوتورستین، هورمون‌های گیاهی را بیشتر می‌آورد. برخی از این ترکیبات گیاهی، که در تحقیقات باری و جونز (Bari and Jones, 2009) مورد بررسی قرار گرفتند، به صورت هورمون غیرماهی‌ست محسوب می‌شوند. این ترکیبات به صورت اکسین برای اجرای مکرورگانیسم یافته، حشرات و گیاه خواراها پیان می‌شوند. برخی نظری ترکیب‌های می‌باشد که تا به حال گیاهان می‌شود و برخی دیگر مثل کوتورستین‌ها از نام‌های گیاهی می‌شود (Valladares, 2007; Agata et al., 2003) باراک‌های اکسین از این ترکیبات هم مسئول می‌شوند. هورمون‌های اکسین است که در گیاهان کشف شد. در این تحقیق، بررسی این اکسین‌ها در ریحان (Hozzoumi et al., 2014) (Ocimum gratissimum L.) تحقیق تولید هورمون‌های آوریلیک اسید، نشان‌دهنده اسید Hakan و اسید جیریک و در نتیجه تغییرات مورفولوژیکی (Bari and Kerim, 2013) و فیتوکیمیایی در پادربیتی آزمون (and Kerim, 2013) Nourafkan) (Lippia citriodora L.)، و بادیمویو (Jones, 2009) (Figure 1) می‌شود.

پایه‌گذاری‌های مختلف اسید سالیسیلیک و اسید اینازیالیک (گیاهی) با میزان عامل‌های نشان‌دهنده خصوصیات فیتوکیمیایی گیاهان دارویی بارداری‌جوی و نعناع فلفلی انجام نشده است. لذا هدف این تحقیق بررسی سطوح مختلف این دو هورمون بر ترکیبات اساسی و خاصه‌ترین نعناع فلفلی می‌باشد.

مواد و روش‌ها

این پژوهش به صورت طرح کاملاً تصادفی در قالب فاکتوریل و دو عامل با ۳ کمکر ره صورت گل‌دانی در فصل بهار و تابستان سال ۱۳۹۴ در دانشگاه آزاد اسلامی واحد شهرکرد انجام شد.

از جمله درمان‌های غربال‌های عادات، رفع فولیک، تغییر دهی بازی و آنزیم‌های بارت بوده در بیماری‌های ماء مؤثره می‌شود. در بسیاری موارد، این ترکیبات به عنوان فراوان دفاعی گیاه برای همکاری می‌کنند. محورهای ویژه، نوروز، درمان نگهداری و نوروزی معیار مایه‌سنگی گیاهان می‌شود و برخی دیگر مثل کوتورستین، هورمون‌های گیاهی را بیشتر می‌آورد. برخی از این ترکیبات گیاهی، که در تحقیقات باری و جونز (Bari and Jones, 2009) مورد بررسی قرار گرفتند، به صورت هورمون غیرماهی‌ست محسوب می‌شوند. این ترکیبات به صورت هورمون غیرماهی‌ست محسن
جدول 1- مشخصات الگی و خاک‌سنجی، منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>میلی‌گرم بر لیتر</th>
<th>متر</th>
<th>میلی‌متر</th>
<th>درصد</th>
<th>dS/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27</td>
<td>86</td>
<td>8</td>
<td>31</td>
</tr>
</tbody>
</table>

میکرویت جغرافیایی منطقه، 50 درجه و ۶۹ دقیقه شرقی و ۲۲ درجه و ۱۸ دقیقه شمالی بود. مشخصات خاک و اقلیم منطقه در جدول 1 مشاهده شد. نشان‌های گیاهان نعناع فلزی و ای‌کیوی نشان‌دهنده اثرات آذرین می‌باشد. در گلدان‌ها به ابعاد (ارتفاع ۲۰ و شعاع ۲۵ سانتی‌متر) کشت شدند. خاک محتوی گلدان‌ها به نسبت خاک مرزه (۸) کود (۱) و ماسه (۱) استفاده شد. ویژگی‌های خاک مورد استفاده در جدول ۱ آمده است. در مرحله ۶ و ۸ گرمی اقدام به محول پاک‌سازی تیمارهای اسید سالیسیلیک و اسید ایندیول استیک، در صبح‌های شد (رحمج ملک و یادگاری، ۱۳۷۵) تیمارهای مورد آزمایش در این پژوهش شامل سالیسیلیک (SA) در ۴ سطح ۷، ۱۰، ۲۰ و ۴۰ میلی‌گرم و اسید ایندیول استیک (IAA) دارای ۴ سطح ۲، ۵، ۱۰ و ۲۰ میلی‌گرم در لیتر بود. بعد از ۳ هفته از تیمار دوم و پس از رسیدن گیاه به مرحله ۱۶-۲۰ برگی، اقدام به برداشت گردید. نمونه‌ها در سایه به تهویه مناسب و دمای معتمد اتفاق (۳۰-۴۰ درجه سانتی‌گراد) بطور کامل خشک شدند. بعد از برآورداری نسبت گیاهان، تیمارهای مورد نظر پس از آبادن مورد گرفت. اساس گیاهان مورد نظر پس از آبادن سازی، جهت شناسایی تیمارهای بی‌دستگاه مجهز به Agilent 5975 C (GC/MS) و Agilent 7890 A سنتر مولتی‌پنام‌های HP-5MS به طول ۳۰ متر و قطر داخلی ۲۵ میکرون به یک درجه سانتی‌گراد تغییر گردید. شناسایی خاک‌سنجی و منطقه آن با شناخت خاک‌سنجی موجود در کتاب مرجع و مقالات و با استفاده از فیلدهای جامع اس تایک انجام شد. (Adams, 2001) در نهایت میزان اسیم و
جدول ۲- دست‌بندی میانگین‌های اساسی (میلی‌لیتر) و ترکیبات عمدی اساس (درصد) تناعف فلزی تحت تأثیر هورمون‌های مختلف.

| تیمار | آلفاپاکتوئین | اورهپاتون | وی‌بی‌پاکتوئین | متوسط | اس‌بی‌اچ | اس‌بی‌اچ
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SA0mM×IAA0mg/l</td>
<td>536 ± 10/c</td>
<td>148 ± 6 /d</td>
<td>576 ± 11/c</td>
<td>331 ± 12/b</td>
<td>0.037 ± 0.004/a</td>
<td>0.07 ± 0.001/b</td>
</tr>
<tr>
<td>SA0mM×IAA1mg/l</td>
<td>523 ± 11/c</td>
<td>139 ± 6 /d</td>
<td>562 ± 10/c</td>
<td>322 ± 11/b</td>
<td>0.036 ± 0.004/a</td>
<td>0.06 ± 0.001/b</td>
</tr>
<tr>
<td>SA0mM×IAA2mg/l</td>
<td>511 ± 12/c</td>
<td>130 ± 6 /d</td>
<td>550 ± 10/c</td>
<td>313 ± 11/b</td>
<td>0.035 ± 0.004/a</td>
<td>0.05 ± 0.001/b</td>
</tr>
<tr>
<td>SA0mM×IAA4mg/l</td>
<td>500 ± 13/c</td>
<td>120 ± 6 /d</td>
<td>538 ± 10/c</td>
<td>304 ± 11/b</td>
<td>0.034 ± 0.004/a</td>
<td>0.04 ± 0.001/b</td>
</tr>
<tr>
<td>SA1mM×IAA1.5mg/l</td>
<td>497 ± 13/c</td>
<td>110 ± 6 /d</td>
<td>526 ± 10/c</td>
<td>295 ± 11/b</td>
<td>0.033 ± 0.004/a</td>
<td>0.03 ± 0.001/b</td>
</tr>
<tr>
<td>SA1mM×IAA2mg/l</td>
<td>494 ± 13/c</td>
<td>109 ± 6 /d</td>
<td>522 ± 10/c</td>
<td>292 ± 11/b</td>
<td>0.033 ± 0.004/a</td>
<td>0.03 ± 0.001/b</td>
</tr>
<tr>
<td>SA1mM×IAA4mg/l</td>
<td>491 ± 13/c</td>
<td>108 ± 6 /d</td>
<td>518 ± 10/c</td>
<td>289 ± 11/b</td>
<td>0.032 ± 0.004/a</td>
<td>0.03 ± 0.001/b</td>
</tr>
<tr>
<td>SA1mM×IAA5mg/l</td>
<td>488 ± 13/c</td>
<td>107 ± 6 /d</td>
<td>514 ± 10/c</td>
<td>286 ± 11/b</td>
<td>0.032 ± 0.004/a</td>
<td>0.03 ± 0.001/b</td>
</tr>
<tr>
<td>SA1mM×IAA7mg/l</td>
<td>485 ± 13/c</td>
<td>106 ± 6 /d</td>
<td>510 ± 10/c</td>
<td>283 ± 11/b</td>
<td>0.031 ± 0.004/a</td>
<td>0.03 ± 0.001/b</td>
</tr>
<tr>
<td>SA1mM×IAA10mg/l</td>
<td>482 ± 13/c</td>
<td>105 ± 6 /d</td>
<td>506 ± 10/c</td>
<td>280 ± 11/b</td>
<td>0.031 ± 0.004/a</td>
<td>0.03 ± 0.001/b</td>
</tr>
<tr>
<td>SA1mM×IAA15mg/l</td>
<td>479 ± 13/c</td>
<td>104 ± 6 /d</td>
<td>502 ± 10/c</td>
<td>277 ± 11/b</td>
<td>0.030 ± 0.004/a</td>
<td>0.03 ± 0.001/b</td>
</tr>
<tr>
<td>SA1mM×IAA20mg/l</td>
<td>476 ± 13/c</td>
<td>103 ± 6 /d</td>
<td>498 ± 10/c</td>
<td>274 ± 11/b</td>
<td>0.030 ± 0.004/a</td>
<td>0.03 ± 0.001/b</td>
</tr>
<tr>
<td>SA1mM×IAA30mg/l</td>
<td>473 ± 13/c</td>
<td>102 ± 6 /d</td>
<td>494 ± 10/c</td>
<td>271 ± 11/b</td>
<td>0.029 ± 0.004/a</td>
<td>0.03 ± 0.001/b</td>
</tr>
<tr>
<td>SA1mM×IAA40mg/l</td>
<td>470 ± 13/c</td>
<td>101 ± 6 /d</td>
<td>490 ± 10/c</td>
<td>268 ± 11/b</td>
<td>0.029 ± 0.004/a</td>
<td>0.03 ± 0.001/b</td>
</tr>
<tr>
<td>SA1mM×IAA50mg/l</td>
<td>467 ± 13/c</td>
<td>100 ± 6 /d</td>
<td>486 ± 10/c</td>
<td>265 ± 11/b</td>
<td>0.028 ± 0.004/a</td>
<td>0.03 ± 0.001/b</td>
</tr>
</tbody>
</table>

در هر ستون خروج مشابه با یک‌گانه عدم اختلاف معنی‌دار در سطح ۵ درصد آزمون (LSD) می‌باشد.
جدول 2 - همبستگی بین تركیبات مؤثره اساس غاهان نعشع قلقل تحت تیمارهای اسید سالیسلیک و اسید ایندول استیک

<table>
<thead>
<tr>
<th>ترکیبات مؤثره</th>
<th>آلفا پنی</th>
<th>سبیلین</th>
<th>مونو-پنی</th>
<th>۱</th>
<th>نتیجه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>آلفا پنی</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>سبیلین</td>
<td></td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مونو-پنی</td>
<td></td>
<td></td>
<td>۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کلاسیپین</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰-سیتون</td>
<td></td>
<td></td>
<td></td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>لیمونن</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** به ترتیب عدم معنی داری، معنی دار در سطح احتمال ۵% و ۱%.
<table>
<thead>
<tr>
<th>ترکیبات مؤثره سیس سایین</th>
<th>لینول</th>
<th>با توزن</th>
<th>منتو</th>
<th>ازومتیون</th>
<th>متوال</th>
<th>نتواره متون</th>
<th>تریپن-4-اژ</th>
<th>پوکوون</th>
<th>دیتیپتول</th>
<th>پونتول</th>
<th>پولًکون</th>
<th>لیپش</th>
<th>پان ترنی</th>
<th>(\text{ns})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

کیفیت آسات در هر دو گیاه افراشی می‌باشد. بیشترین میزان در گیاهان نفع ظرفی و باداتنجیه در ترکیب اسید سالمیلیک 10 میلی‌مومل‌اسید اسیدنا است. کم‌تر از گر می‌باشد. اسید سالمیلیک 10 میلی‌مومل‌اسید اسیدنا است. بیشترین میزان در لیبر بدست آمده. از افراشی غلظت استفاده از اسید سالمیلیک (Salvia officinalis L.) میزان عملکرد در گیاهان مربی‌گرم (Nazar) (Mung bean) (الرحیم ملک و بادکاری، 1391) (ربی) Esfeiny (Carum carvi L.), Zehe سهنا (et et al., 2011) (Cucumis sativus L. (farahani et al., 2011) (Calendula officinalis) (Mardani et al., 2012) (Bayat et al., 2012) (Ziziphus spina) (Shakirova et al., 2003) (Galal, 2012) (کاشف می‌باشد که نتایج این تحقیق را تأیید می‌نماید. از افراشی میزان وزن خشک و میزان اسات، اجزای اسات شامل منتو، پولًکون، دیتیپتول.
جدول ۴- همبستگی بین ترکیبات مؤثره اساس گیاهان بادنرجبوهی تحت تیمارهای اسید سالسیلیک و اسید ایندول استیک.

<table>
<thead>
<tr>
<th>ترکیبات مؤثره</th>
<th>سیستم</th>
<th>کانال</th>
<th>لیولون</th>
<th>پولکون</th>
<th>آلقوتاتیتر</th>
<th>نرال</th>
<th>متون</th>
<th>ایزو</th>
<th>سبیور</th>
<th>متتون</th>
<th>پولکون</th>
<th>لیولون</th>
<th>آلقوتاتیتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>ادوستینول</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>کانترین</td>
<td>-</td>
</tr>
<tr>
<td>لیولون</td>
<td>-</td>
</tr>
<tr>
<td>ایزوپولکون</td>
<td>-</td>
</tr>
<tr>
<td>سبیورنلا</td>
<td>-</td>
</tr>
<tr>
<td>نرال</td>
<td>-</td>
</tr>
<tr>
<td>متتون</td>
<td>-</td>
</tr>
<tr>
<td>ایزو متتون</td>
<td>-</td>
</tr>
<tr>
<td>متتون</td>
<td>-</td>
</tr>
<tr>
<td>تریپین-4</td>
<td>-</td>
</tr>
<tr>
<td>پولکون</td>
<td>-</td>
</tr>
<tr>
<td>ایزوپولکون</td>
<td>-</td>
</tr>
<tr>
<td>نرال</td>
<td>-</td>
</tr>
<tr>
<td>بیپرنون</td>
<td>-</td>
</tr>
<tr>
<td>انیلارانتیولات</td>
<td>-</td>
</tr>
<tr>
<td>زئنابا</td>
<td>-</td>
</tr>
<tr>
<td>کان</td>
<td>-</td>
</tr>
<tr>
<td>انیلارانتیولات</td>
<td>-</td>
</tr>
<tr>
<td>زئنابا استات</td>
<td>-</td>
</tr>
<tr>
<td>بیکین</td>
<td>-</td>
</tr>
<tr>
<td>کاروپتین-کلاسی</td>
<td>-</td>
</tr>
<tr>
<td>رودیفیلولن</td>
<td>-</td>
</tr>
<tr>
<td>رو زن خشک</td>
<td>-</td>
</tr>
<tr>
<td>تیمارهای</td>
<td>-</td>
</tr>
</tbody>
</table>

ماده مؤثره بیتکاروپتیولن، در تیمارهای ترکیبی اسید سالسیلیک و اسید ایندول استیک، سطح بیشتری از اساس را تشکیل داد اما در مورد زئنابا استات، تیمارهای منفرد و ترکیبی به کم میزان باعث بالا رفتن سطح اساس گردیدند. هر چند ماده مؤثره زئنابا و نرال تحت تأثیر تیمارهای منفرد و ترکیبی دو هرمون مذکور، باعث بالا رفتن میزان اساس شد (جدول ۴). در مورد نتایج فلسفه‌ای همبستگی بین ترکیبات مؤثره نشان داد که ترکیب آلقوتاتیتر در سطح ۱/۵ با ترکیبات سایرین، بیتکاروپتیولن، یو-پیسین، او-سیستول، لیولون، بیتکاروپتیولن، ایزوپولکون، بیتکاروپتیولن، یو-پیسین، و با ترکیبات منقرار، پولکون، پیپرنون، کان، مثل استات، و ریحان (Origanum majorana L.) (Gharib, 2006) (Ocimum basilicum L.) (Coriandrum sativum L.) (Figuera et al., 2014) (Showid, 2018) (Hozzoumi et al., 2014) (Rahimi et al., 2009) مرمگ (Radevari, 2018) نیز با استفاده از افزایش صفات مورفولوژیکی و در نهایت وزن خشک، میزان مواد مؤثره افزایش یافت. در بررسی جدول ۲، دو ترکیب منقرار و منقرار غالب تحت تأثیر اسید سالسیلیک، ۱ میلی‌مولار و اسید ایندول استیک ۱/۵ میلی‌گرم در لیتر بودند. این نشان دهنده رشد بر میزان مواد مؤثره منقرار، نرال، زئنابا استات و بیتکاروپتیولن در سطح ۱ درصد معنی‌دار شدند. میزان
آمار جدول ۴- همبستگی بین ترکیبات مؤثر اساس گیاهان با داروهای تحت تیمارهای اسید سالیسیلیک و اسید ایندول استیک

<table>
<thead>
<tr>
<th>به نظر می‌رسد</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیرپتیپون</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
</tr>
<tr>
<td>ملیت زیستوئید</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
</tr>
<tr>
<td>مالراز</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
</tr>
<tr>
<td>کاران</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
</tr>
<tr>
<td>سیس سالیسیلیک</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
</tr>
<tr>
<td>مالراز</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
</tr>
<tr>
<td>ایها اپوریپنل</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
</tr>
<tr>
<td>پا کارکویپنل</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
</tr>
<tr>
<td>اپوریپنل</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
</tr>
<tr>
<td>وردیپرفورول</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
</tr>
<tr>
<td>روشن حکم</td>
<td>حجم اساسی</td>
<td>1-</td>
<td>0</td>
<td>1-</td>
<td>0</td>
</tr>
</tbody>
</table>

** به ترتیب عدم معنی داری، معنی دار در سطح احتمال 5% و 1%}

ترکیبات کارکویپنل، وردیپرفورول، و بیپکوین همبستگی معنی‌دار و معنی دار نداشته‌اند. ترکیبات سالیسیلیک در سطح 1% معنی‌دار بودند. ترکیبات آلترابین، ترکیبات بیپسیمین، پیپسیمین، آپوریپنل، ولکویپنل، سالیسیلیک، و بیپکوین همبستگی معنی‌دار و مثبت و ترکیبات کارکویپنل، بیپکوین، پکوین، پا کارکویپنل، و بیپکوین همبستگی معنی‌دار و مثبت داشتند. ترکیبات میکرو‌پتیپون، سالیسیلیک، و بیپکوین همبستگی معنی‌دار و مثبت و ترکیبات کارکویپنل، بیپکوین، پکوین، پا کارکویپنل، و بیپکوین همبستگی معنی‌دار و مثبت داشتند.}

منابع:
آیدین، ایزومئان، میلیت، کا. ۲۰۱۷-۱، آلترابین، پکوین، و پکوین همبستگی معنی‌دار و معنی دار نداشتند. ترکیبات سالیسیلیک در سطح 1% معنی‌دار بودند. ترکیبات آلترابین، بیپسیمین، پیپسیمین، آپوریپنل، ولکویپنل، سالیسیلیک، و بیپکوین همبستگی معنی‌دار و مثبت داشتند.

Meher et al., 2011; Nazar et al., 2011.

Hakan and Kerim, 2013; Bar and Hakan.
مطالعه ای از کاهش سیتوکین، افزایش اننکال آسیمیلاتها و در نهایت بالافتن کارایی فتوسنتز می‌گردد (2003). (Shakirova et al., ...)

تیجی‌گری

در مجموع نتایج این پژوهش نشان داد که استفاده از تیمارهای ترکیبی اسید سالیسیلیک ۱۰ میلی‌مول و اسید ایندیل اسیدیک کمک کننده بود.

منابع

اسدی‌آقدم، ا.، باغی‌سربو، ش. و علی‌زاده اسکویی، ب. (۱۳۹۲) تأثیر محلول‌پذیر ایندول اسید و تیول‌بلور آمونیوم بر درصد تکیه، عملکرد و کیفیت میوه سبب یابی به دو کیفیت تولید و فروآوری محصولات زراعی و باغی (۱۳۹۲): ۱۳۹-۱۴۵.

خونوشیری، م.، تیموری، م.، مهندس زاده، م. و نجفی‌نیک، ا. (۱۳۹۱) تأثیر تیمارهای نوری، هورمونی و دانه‌بندی یک کاشت بر ریشه‌زایی قلم‌های گونه Juniperus obovata مجله جنگل ایران (۲): ۱۳۵-۱۴۲.

رحب ریماک، م. و یادگاری، م. (۱۳۹۱) اثرات جاموسی‌پنک و سالیسیلیک اسید بر خاصیت فیتوشیمیایی برگ مروم‌گل، داروهای گیاهی. (۳): ۹۴–۱۰۱.

رازی‌ی، ل.، غربی‌ی، م.، زیارت‌نیام، بانی، ع. و نعمتی، ح. (۱۳۹۳) تأثیر ترکیبی هورمونی بر الفا کالس گیاه دارویی کرسوی. کوهی (Kelussia odoratissima Moazz.) و بررسی رشد آن در محیط کشت مایه دو ماه‌های علمی پژوهشی تحت‌ضایت گیاهان دارویی و معتزل ایران (۲): ۹۴۳-۹۵۳.

زاهدی، ب. و صحراری، ا. (۱۳۹۴) ارزیابی زیاده‌یادی گیاه دارویی مزرعه خونشسانی (Satureja khuzistanica)، علم باغی‌ی ایران (۱۳۹۴): ۱۹۱-۲۹۶.

