تأثیر کاربرد کودهای زیستی و روی بر عملکرد، روند تغییرات عملکرد کوانوئی، هدایت روزنامه و برخی صفات فیزیولوژیک تریتیکاله در شرایط قطع آب‌یاری (Triticosecale)

یوسف خیرزاده آرکو و رضوان سیدرختی.

گروه زراعت و اصلاح نباتات، دانشگاه مهندسی اردبیل، اردبیل، ایران.

(تاریخ دریافت: 33/04/1395، تاریخ پذیرش نهایی: 14/07/1395)

چکیده

به منظور مطالعه تأثیر کاربرد کودهای زیستی و روی بر عملکرد، روند تغییرات عملکرد کوانوئی، هدایت روزنامه و برخی صفات فیزیولوژیک تریتیکاله در شرایط قطع آب‌یاری، آزمایشی به صورت فاکتوریال در قالب طرح یک‌پایه بلکهای کامل تصادفی در سه تکرار در مزرعه یزد ساداتکی، شاخص ویژه دانشگاه مهندسی اردبیلی در سال 1393 اجرا شد. نتایج آن نشان داد که در شرایط قطع آب‌یاری کاربرد فتوشیمیایی فتوسیستم II (Fv/Fm)، شاخص کلروفیل، هدایت روزنامه، محواش نسبی آب و عملکرد دانه کاهش یافت. در حالی که هدایت الکتریکی و پروتین دانه افزایش یافت. مقایسه میانگین‌ها نشان داد بالاترین عملکرد کاربرد فتوشیمیایی فتوسیستم II، تحت نگهداری مرن و رنگ آبی و شاخص کلروفیل در حالت کاربرد توان باکتری‌های محمر رشد و میکروب به این صورت: در ۵۰ درصد مرن آبی و ۵۰ درصد مرن تام آبی کاهش عملکرد دانه (۰/۷۹ درصد مرن تام آبی) به دقت ۰/۰۵ و درصد مرن آبی به دقت ۰/۰۱

مقدمه

چاودار حاشیه انست. این گیاه از عملکرد بالایی نسبت به گندم و از مقاومت بالایی به نتایج زیستی و غیر زیستی در

نویسنده مسئول، نشانه پست الکترونیکی: Raouf_ssharifi@yahoo.com
مقایسه با چاودار برخوردار است (Cantale et al., 2016). نتش خشکی یکی از موثری‌ترین عوامل تأثیرگذار بر رشد و تولید گیاهان است. این تنش وجوه افزایش فعالیت آزمایه آنتی کسی‌بندی، کاهش فتوستیتوس، محتوا کلورفیل، پایداری غشا و عملکرد گیاه می‌گردد (2002). وакنش گیاهان به کمیاب آب در اساس ویرگی-زنتیکی بیوشیمیایی و مورفولوژیولوژیکی مورد ارزیابی قرار می‌گیرد. در این راستا هدایت روننده، محتوا کلورفیل و کارایی فتوستیتوس با عنوان شاخص‌های برای ارزیابی به شرایط محدود‌تر آب در بروزاتی مختلف مورد استفاده قرار گرفته است (Maccaferri et al., 2011). سببی‌ای که این گزارش توسط داده‌های کاهش میزان کلورفیل و هدایت روننده و در گیاه وجوه کاهش فتوستیتوس شده که در نهایت به (Liang et al., 2014)، کاهش عملکرد دانه منجر می‌گردد (2002) مطالاعات انجام شده توسط Miyashita و همکاران (2005) نشان داد که فلوروسان کلورفیل، سرعت تعرق و هدایت روننده با افزایش تشخیص در لوبیا کاهش یافته، تنش خشکی باعث تولید هایکسی اکسیژنی فعال می‌شود که باعث آسیب به پرورش‌ها، شاهد و رشته‌های DNA می‌شود (El-Tayeb, 2006). در این گزارش، یکی از عوامل تأثیرگذار تنش خشکی بر فتوستیتوس کاهش میزان کارایی فتوستیتوس از طریق افزایش فلوروسان کلورفیل است. اندازه‌گیری مقدار فلوروسان کلورفیل می‌تواند ارزیابی مناسبی از عملکرد کلوتوکسی و جریان الکترون در فتوستیتوس دو را نشان دهد (Ruiz et al., 2004) و همکاران (2014) غضش کردن که محدود‌تر آب باعث کاهش عملکرد و اجزای عملکرد، هدایت روننده، سطح برس و ارتفاع بونه در گیاه ترتیب‌گذاری می‌شود.

در میان میکروگالسپسم‌های متعدد در ریزوفرس، برخی از آنها اثرات مثبتی از ارتفاع رشد و گیاهان دارند. این میکروگالسپس‌ها که کوده‌ی زیستی نامیده می‌شوند ریزوفرس و ریزوفرس به‌سیاار از گیاهان کارایی‌ها را کاهش می‌دهند و اثرات مفیدی بر رشد و نمو گیاهان دارند (Liszewski and Roach, 2014).
تأثیر کاربرد کودهای زمست و روز بر عملکرد، روند تغییرات عملکرد... 59

که روى موجب افزایش کارایی فتوشیمیایی فتوسیستم II
فوتونسیستم و محتواي کارولفی می‌شود. به دلیل اهمیت برخی‌العملکرد استفاده در منظوره آن و کاهش رشد این گیاه به واسطه محدودیت آبی در بستر مناطق خشک و نیمه خشک کشور و همچنین نشش کودهای زمست و روي در تعیین از بین‌جوي از ارات ناشی از محدودیت آبی روي در محدودیت ترکیب‌های روز و نائومیکسی روز، کارایی فتوشیمیایی فتوسیستم II، می‌تواند تغییرات هدایت روزنایی، کارایی فتوشیمیایی فتوسیستم II.. هدایت الکتریکی، شاخص کارولفی، محتواي آب و عملکرد ترکیب‌های در شرایط فضای آبیاری مورد مطالعه قرار گیرد.

مواد و روش‌ها
آزمایش سال زراعی 1393 در مزرعه تحفیقات دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی با محصولات چندپذیرایی 88 و 80 دقیقه طول شری و 38 و 15 دقیقه عرض شمایلی با ارتفاع 1350 مت از سطح دریا اجرای گردید. کیفیت محل اجرای آزمایش از نوع نیمه خشک سرد می‌باشد. خصوصیات پیشکارسی‌های خاک مزرعه آزمایشی در جدول 1 و مشخصات آزمایشی در طی فصل رشد از جدول 2 آورده شده است.

آزمایش به صورت فاکتوریل در قالب طرح پایه یک‌فاکتوری به دو گروه انجام گرفت. گروه آزمایشی شامل جفت‌های اول در طول این بارکر 20 انجام گردید. کیفیت بالای تراکم نسبت به گروه (ب) در طول دوره رشد بالا به عنوان ناهید، بایگانی تا 50٪ مرحله سبزیجه و آبیاری تا 50٪ مرحله آبسته به عنوان محدودیت مالی و شدن آبی، عملکرد دوم شامل کودهای زمست در چهار سطح (عده کاربرد کود زمست، کاربرد میکروبیز، کاربرد تاپن‌کریمی کودهای زمست، کاربرد سودوموناس پودائی استرین 186 و ازنتیکور کروکوم استرین 5، کاربرد توأم میکروبیز و باکتری‌های مرکب رشد) و عملکرد سوم محلول پاشی با نانوکسید روز در چهار سطح (عده مصرف، مصرف،0.6،0.9 و 1.0 گرم در لیتر) بودند. فاصله میکروبیز استفاده شده از کوده به 186 باکتری

Seyed Sharifi
جدول ۱- مشخصات فیزیک‌شیمیایی خاک مزرعه آزمایش

<table>
<thead>
<tr>
<th>مقدار</th>
<th>pH</th>
<th>لومو</th>
<th>نرخ</th>
<th>تاریخ</th>
<th>رنگ</th>
<th>میکرو‌کیلوگرم در هر کیلوگرم</th>
<th>عبل ۱۳۹۷</th>
<th>کربن آبی</th>
<th>نیتروژن کل</th>
<th>فسفات نیتروژن</th>
<th>سیلیک</th>
<th>شیمی‌سالنگی</th>
<th>رنگ چهار</th>
<th>خورد (درصد)</th>
<th>علف</th>
</tr>
</thead>
<tbody>
<tr>
<td>ف وزارة</td>
<td>۶۴</td>
<td>۴/۷</td>
<td>۶۰</td>
<td>۶۰/۸</td>
<td>۶۰</td>
<td>۶/۰</td>
<td>۶۰/۴</td>
<td>۶۰/۲</td>
<td>۶۰/۰</td>
<td>۶۰/۶</td>
<td>۶۰/۲</td>
<td>۶۰/۶</td>
<td>۶۰/۸</td>
<td>۶۰/۸</td>
<td></td>
</tr>
</tbody>
</table>

تنها درجه - ارتباط:
- pH:
- لومو:
- رنگ:
- تاریخ:
- نرخ:
- عبل:
- کربن آبی:
- نیتروژن کل:
- فسفات نیتروژن:
- سیلیک:
- شیمی‌سالنگی:
- رنگ چهار:
- خورد (درصد):
- علف:

جدول ۲- میانگین دما و میزان بارندگی ماهانه منطقه مورد آزمایش الطُی فصل رشد در سال ۱۳۹۳

<table>
<thead>
<tr>
<th>ماهه‌ی سال</th>
<th>اردیبهشت</th>
<th>خرداد</th>
<th>تیر</th>
<th>مرداد</th>
<th>شهریور</th>
</tr>
</thead>
<tbody>
<tr>
<td>دمای (سانتی‌گراد)</td>
<td>۲۴/۴</td>
<td>۸/۱</td>
<td>۲۵</td>
<td>۲۷/۴</td>
<td>۲۰/۸</td>
</tr>
<tr>
<td>بارندگی (سانتی‌گراد)</td>
<td>۰/۶</td>
<td>۱۲/۸</td>
<td>۱۳/۵</td>
<td>۱۲/۲</td>
<td>۱۱/۸</td>
</tr>
</tbody>
</table>

جدول ۳- مشخصات تناو اکسید روي مورد استفاده

<table>
<thead>
<tr>
<th>نسبي آب</th>
<th>۹۹%</th>
<th>وزن</th>
<th>۱۰۰ g</th>
</tr>
</thead>
<tbody>
<tr>
<td>پودری سفید</td>
<td>۶ < ٣۰ nm</td>
<td>Fm / Fm'</td>
<td>۴۲</td>
</tr>
</tbody>
</table>

برای اندازه‌گیری فلوراسنس گرو بی‌صفح در مزرعه، ۶۰ روز بعد از سبز شدن هر چهار روز یک بار توسط پلما (Cambridge, UK) دستگاه (SPAD-502؛ Konica Minolta Sensing, Inc., Japan) از هر تیمار به طور تصادفی ۴ بگ یک تیمار مشخص گردید. برای اندازه‌گیری شاخص کلروفیل بگ بی‌صفح در مزرعه، ۶۰ روز بعد از سبز شدن هر چهار روز یک بار توسط پلما (SPAD-502؛ Konica Minolta Sensing, Inc., Japan) دستگاه (Cambridge, UK) از هر تیمار به طور تصادفی ۴ بگ یک تیمار مشخص گردید.
تأثیر کاربرد کودهای زیستی و روی بر عملکرد، روند تغییرات عملکرد... 61

دریافت و بررسی ۲۵ میلیلتر آب تقطیع شده به مدت ۲۴ ساعت در دمای اتاق قرار گرفته و سپس میزان هداپت الکتروکیوت استخوانی متر (مدل Mi 180 Bench Meter) بر حسب میکروژین متر سانتیمتر از اندازه‌گیری شد.

برای تعیین محتوای پروتئین دهان از روش سه مرحله‌ای کجدال (هضم، تغییرات پروتئین) استفاده شد. با ضرب دصرد نتیجه‌گیری داده در عدد ۲۵/۰ درصد پروتئین دهان به دست آمد (کمرب، ۱۹۹۳). عملکرد دهان از سطحی معادل یک متر مربع از خطوط اصلی هر کرت بعد از حذف اثر حاشیه‌پذیر ازآورد. برای تعیین محتواهای ترم ازآورد (کمرب، ۱۹۹۳) در Excel استفاده شد و منابع فنی آزمون در سطح احتمال پنبه درصد مقایسه شدند.

نتایج و بحث

فلورسانس حداکثر (Fₚ) بررسی روند تغییرات فلوئورسیانس حداکثر (Fₚ) در پاک و محلول‌پذیر نانوکسید روی و کاردراکتیویهای محرک رشد و میکوزی در طول فصل رشد نشان داد قطع آبیاری در مرحله آبیست و سنبله‌های باعث افزایش میزان Fₚ شده است. به علاوه میزان فلورسانس حداکثر (Fₚ) در شرایط آبیاری کامل و قطع آبیاری در مرحله سنبله‌های کمتر از شرایط قطع آبیاری در مرحله آبیست و سنبله‌های در نشان دهده افزایش فلورسانس حداکثر و از بین رفتن یا خرابی مراکز واکنش فلوئورسیانس II با اختلال در انتقال انتزاعی الکترون جهت برانگیختن مراکز واکنش می‌باشد. اغلب در منابع دیده می‌شود که این تکنیک به همراه روش دیگری مثل محواوی کاریوئل، محواوی رطوبت نسبی و پایداری غشا استفاده می‌شود که ممکن است متقابل با خشکی را نشان دهد (Lu et al., 2002). به طوری که ۷۰ روز پس از سیز شدن بیشترین فلورسانس حداکثر (۲۵) از تغییرات تیماری عدم محلول‌پذیر نانوکسید روی و عدم کاربرد کودهای زیستی در شرایط قطع آبیاری در مرحله آبیست و کمتریم آن (۱۲۰) از محلول‌پذیر ۰/۹ گرم در لیتر نانوکسید روی و کاردراکتیویهای محرک رشد و میکوزی در شرایط آبیاری کامل به
جریان پهلو الکترون از فتوسیستم II به فتوسیستم I می‌گردد (Prakash and Ramachandran, 2000). عملکرد کوانتمی: روند تغییرات کارایی فتوشیمیایی فتوسیستم II در پاسخ به کاربرد کوده‌های بی‌سیستمی و محلول‌پاشی با نانوکسید روی در شرایط محدودیت آب و آبیاری کامل از کاهش نسبتاً یکسانی برای تمام نیم‌سیم‌ها تعبیه کرده (شکل 5). به نظر می‌رسد استفاده از نانوکسید روی و کمترین میزان ان (233) مربوط به عدم محلول‌پاشی نانوکسید روی و عدم کاربرد کوده‌های بی‌سیستمی در شرایط قطع آبیاری در مرحله آبستن بود (شکل 4). همانطور که قبل گفت شد تیمار محلولپاشی 0.9 گرم در لیتر نانوکسید روی و کاربرد توم‌باکتری‌های محورک رشد و میکوریز به دلیل محتوای آب نسبی بالاتر (شکل 2) نسبت به سایر تیمارها استفاده بهتری از رطوبت داشته و در دستگاه فتوسیستی موجب...
باکتری‌های محکم رشد و میکوریز در شرایط محدودیت و آبیاری کامل باعث بستندگی فتوسنتزی گیاه شده است. در واقع این تیمارها نوسانات حداکثر کارایی فتوشیمیایی حجمی Fv/Fm را تا نگه دارند. ولی تفاوت بین نسخه‌های مختلف آبیاری در مرحله آبیاری کامل به خصوص در سه مرحله آخر اندوزگیری بسیار مختصری دارد. کارایی فتوسنتزی در شرایط فلورسانس کلروفیل (Fv/Fm) افزایش می‌یابد و این پس از شدت روند کاهشی داشته به طوری که در تمامی تیمارهای مورد آزمایش Fv/Fm روز پس از سیزش (Fv/Fm) 78 برگ پرچم
شکل ۳- تأثیر قطع آبیاری، کودهای زستی و نانوکسید روی بر روند عملکرد کوانتومی بر یوگر پرچم تریکاله

فتوسیستم II نش معمول در محیط غلیظی در گیاهان دارد. در طی مطالعه، گزارش‌هایی در مورد اثر محدودیت آب بر عملکرد منافقت با نش و مکان دقیق و مکانیسم‌های پایدار تخریب هستند و مواردی مانند کاهش برخی از عوامل کاهشی PSII (Sperdouli and Moustakas, 2012) و ساختار است. استفاده از فتوسیستم II نش معمول در محیط غلیظی در گیاهان دارد. در طی مطالعه، گزارش‌هایی در مورد اثر محدودیت آب بر عملکرد منافقت با نش و مکان دقیق و مکانیسم‌های پایدار تخریب هستند و مواردی مانند کاهش برخی از عوامل کاهشی PSII (Sperdouli and Moustakas, 2012) و ساختار است. استفاده از فتوسیستم II نش معمول در محیط غلیظی در گیاهان دارد. در طی مطالعه، گزارش‌هایی در مورد اثر محدودیت آب بر عملکرد منافقت با نش و مکان دقیق و مکانیسم‌های پایدار تخریب هستند و مواردی مانند کاهش برخی از عوامل کاهشی PSII (Sperdouli and Moustakas, 2012) و ساختار است. استفاده از فتوسیستم II نش معمول در محیط غلیظی در گیاهان دارد. در طی مطالعه، گزارش‌هایی در مورد اثر محدودیت آب بر عملکرد منافقت با نش و مکان دقیق و مکانیسم‌های پایدار تخریب هستند و مواردی مانند کاهش برخی از عوامل کاهشی PSII (Sperdouli and Moustakas, 2012) و ساختار است. استفاده از فتوسیستم II نش معمول در محیط غلیظی در گیاهان دارد. در طی مطالعه، گزارش‌هایی در مورد اثر محدودیت آب بر عملکرد منافقت با نش و مکان دقیق و مکانیسم‌های پایدار تخریب H
تأثیر کاربرد کودهای زیستی و روند تغییرات عملکرد

شکل 4- تأثیر قطع آبیاری، کودهای زیستی و تناؤکسید روی روند شاخص کارولیل برگ پرچم تربیکاکه

عملکرد کواتونوی فتوسیستم II می‌شود.

شاخص کارولیل: نتایج بررسی روند تغییرات شاخص کارولیل برگ پرچم در شکل 6 نشان می‌دهد که این تغییرات در تمامی تیمارها روند نزولی نسبتاً مشاهده داشت. به طوری که شاخص کارولیل در مراحل اول نمونه بردایو با بوده است و مسیس تا انتهای فصل رشد به دلیل تندیک شدن به گیاه را با از بین بردن میکروگانیشیسم‌های بیماری‌زا، حل فسفات ناحیه و توپریک تنظیم کننده‌های رشد گیاهی بهبود بخشید. بنابراین، Fv/Fm با بهبود وضعیت تغذیه‌ای گیاه به ویژه فسفر که عنصر مهمی برای بهبود فتوسنت است افزایش می‌دهد (Kloeper et al., 1989) و Balakrishnan (2000) گزارش کرده که کمیابی روند باعث کاهش
و کمبود میزان فلورسانس کاروپول (Fv/Fm) نیز در همین مرحله رشدگی فیزیولوژیک و همچنین پیر شدن برگها روند نزولی داشت. نتایج نشان داد اثر محلولی با دو تیمار کارآنکسید روی و کاربرد میکورازی و بانکری های محکم رشد و روند تغییرات عدد کاروپولیتری نماسان کمتری نشان داد. به طوری که حداکثر شاخص کاروپول برگ پرچم (2/2) در تیمار تیماری محلولی با 9 گرم در لیتر نانوکسید روی، تلقیح یک بار با کاراکتری میکورازی و بانکری در شرایط آبیاری کامل و حداکثر آن (1/2) در ترکیب تیماری آب و کاربرد کودهای آستین در شرایط قطع آبیاری در مرحله آبیستی به دست امید (شکل 6) این در حالت است که پیشینه
تأثیر کاربرد کودهای زیستی و روي بر عملکرد، روند تغییرات عملکرد...

شرایط نش نش خشکی در مزرعه، تلقیح بدخ با باکتری‌های محترم رشد میزان کاروئلف ری افزایش داد. (Sannazzaro و همکاران، 2005) گزارش کردند که گیاهان Glomus intraradices تلقیح ساخت را یاری می‌کنند. تلقیح داشتن کاروئلف بالاتری نسبت به گیاهان بدن تلقیح داشتن کاروئلف بالاتری Nematicides 1994) گزارش کردند کاربرد روز باعث افزایش محتوی کاروئلف و فعالیت فتوستاتی در برگ‌های کلم شد.

موجب پراپراتاپی و تنجزیه این روز ها می‌شوند. (Schutz and Fangmier، 2001) اثرات مفید تلقیح باکتری بر افزایش شاخص کاروئلف را می‌توان به در دسترس بودن بالاتر نتیج نیست. که نتیج نتایج نتایج نتایج نتایج نتایج نتایج نتایج نتایج Nematicides 1994) گزارش کردند کاربرد روز باعث افزایش محتوی کاروئلف و فعالیت فتوستاتی در برگ‌های کلم شد.

حمایت الکتریکی (EC) بررسی روند تغییرات هدایت الکتریکی در پاسخ به محیطی آب در طول فصل رشد نشان می‌دهد که افزایش کاروئلف بالاتری نسبت به گیاهان بدن تلقیح داشتن کاروئلف بالاتری Nematicides 1994) گزارش کردند کاربرد روز باعث افزایش محتوی کاروئلف و فعالیت فتوستاتی در برگ‌های کلم شد.

ساخت شرایط نش نش خشکی در مزرعه، تلقیح بدخ با باکتری‌های محترم رشد میزان کاروئلف ری افزایش داد. (Sannazzaro و همکاران، 2005) گزارش کردند که گیاهان Glomus intraradices تلقیح ساخت را یاری می‌کنند. تلقیح داشتن کاروئلف بالاتری نسبت به گیاهان بدن تلقیح داشتن کاروئلف بالاتری Nematicides 1994) گزارش کردند کاربرد روز باعث افزایش محتوی کاروئلف و فعالیت فتوستاتی در برگ‌های کلم شد.

موجب پراپراتاپی و تنجزیه این روز ها می‌شوند. (Schutz and Fangmier، 2001) اثرات مفید تلقیح باکتری بر افزایش شاخص کاروئلف را می‌توان به در دسترس بودن بالاتر نتیج نیست. که نتیج نتایج نتایج Nematicides 1994) گزارش کردند کاربرد روز باعث افزایش محتوی کاروئلف و فعالیت فتوستاتی در برگ‌های کلم شد.

حمایت الکتریکی (EC) بررسی روند تغییرات هدایت الکتریکی در پاسخ به محیطی آب در طول فصل رشد نشان می‌دهد که افزایش کاروئلف بالاتری نسبت به گیاهان بدن تلقیح داشتن کاروئلف بالاتری Nematicides 1994) گزارش کردند کاربرد روز باعث افزایش محتوی کاروئلف و فعالیت فتوستاتی در برگ‌های کلم شد.

ساخت شرایط نش نش خشکی در مزرعه، تلقیح بدخ با باکتری‌های محترم رشد میزان کاروئلف ری افزایش داد. (Sannazzaro و همکاران، 2005) گزارش کردند که گیاهان Glomus intraradices تلقیح ساخت را یاری می‌کنند. تلقیح داشتن کاروئلف بالاتری Nematicides 1994) گزارش کردند کاربرد روز باعث افزایش محتوی کاروئلف و فعالیت فتوستاتی در برگ‌های کلم شد.

حمایت الکتریکی (EC) بررسی روند تغییرات هدایت الکتریکی در پاسخ به محیطی آب در طول فصل رشد نشان می‌دهد که افزایش کاروئلف بالاتری Nematicides 1994) گزارش کردند کاربرد روز باعث افزایش محتوی کاروئلف و فعالیت فتوستاتی در برگ‌های کلم شد.

ساخت شرایط نش نش خشکی در مزرعه، تلقیح بدخ با باکتری‌های محترم رشد میزان کاروئلف ری افزایش داد. (Sannazzaro و همکاران، 2005) گزارش کردند که گیاهان Glomus intraradices تلقیح ساخت را یاری می‌کنند. تلقیح داشتن کاروئلف بالاتری Nematicides 1994) گزارش کردند کاربرد روز باعث افزایش محتوی کاروئلف و فعالیت فتوستاتی در برگ‌های کلم شد.

حمایت الکتریکی (EC) بررسی روند تغییرات هدایت الکتریکی در پاسخ به محیطی آب در طول فصل رشد نشان می‌دهد که افزایش کاروئلف بالاتری Nematicides 1994) گزارش کردند کاربرد Ryzozomi یک گرد پرچم تریکاله‌...

ساخت شرایط نش نش خشکی در مزرعه، تلقیح بدخ با باکتری‌های محترم رشد میزان کاروئلف ری افزایش داد. (Sannazzaro و همکاران، 2005) گزارش کردند که گیاهان Glomus intraradices تلقیح ساخت را یاری می‌کنند. تلقیح داشتن کاروئلف بالاتری Nematicides 1994) گزارش کردند کاربرد روز باعث افزایش محتوی کاروئلف و فعالیت فتوستاتی در برگ‌های کلم شد.

حمایت الکتریکی (EC) بررسی Ryzozomi یک گرد پرچم تریکاله‌...

ساخت شرایط نش نش خشکی در مزرعه، تلقیح بدخ با باکتری‌های محترم Ryzozomi یک گرد پرچم تریکاله‌...

ساخت شرایط نش نش خشکی در مزرعه، تلقیح بدخ با باکتری‌های محترم Ryzozomi یک گرد پرچم تریکاله‌...

ساخت شرایط Nematicides 1994) گزارش کردند کاربرد روز باعث افزایش Mecobenzim...
داد که هدایت الکترونی در شرایط محدودیت آبی به دلیل تولید گونه‌های
فعال اکسیدن و القای چسب اکسیداتیو بیشتر از شرایط طبیعی
بود. گونه‌های فعل اکسیدن منجر به پراکسیداسیون لیپیدهاي
غشا و تغییر در نفوذپذیری غشا (نشت یونی) و خسارت به
سول می‌گردد که در نتیجه آن غشا سولولی پایه پیده و
یک همکاری نشست با پیوند به پیوند از سولول می‌شود
Naghashzadheh (Mohammadkhani and Heidari, 2007) (2014)
(2014) یک یک از کاربرد فارم میکروبری با افزایش جذب مواد
غذایی توسعه سیستم رشد و بهبود وضعیت آبی گیاهان

Downloaded from jispp.iut.ac.ir at 5:43 IRDT on Sunday May 26th 2019
توجه کاربرد کوه‌های زیستی و روي بر عملکرد روند تغییرات عملکرد...

موجب ثبات غشای سولولی در گیاه درخت شد. تلقیح با باکتری های محرم رشد و موجب کاهش نشته اکتروپلت در مقایسه با...

(Sandhya et al., 2010)

هدایت روند خوارجی بررسی روند تغییرات هدایت روتوشی در بین تیمارهای آزمایش نشان داد که هدایت روتوشی برگ پرچم در طول دوره رشد گیاه گذشته زمان از رشد کاهشی برخوردار بود (شکل 3). به طوری که ۷۸ روز پس از بسی شدن، بیشترین هدایت روتوشی (۲۱۲ میلی مول بر متری مربع) در راه طبیعت به تیمار محلول پاشی‌پذیر گرم در لیتر تواناکسید روی و کاربرد تومآمیکورتکسیزبی و متیکورسیز در شرایط آب‌پر می‌باشد و کمترین آن (۲۹/۴ درصد) در تیمار عدم محلول باشی و عدم کاربرد کوه‌های زیستی در شرایط فطق آب‌پر در مرحله آب‌پری نشته است. (شکل ۲) و Silva و همکاران (۲۰۱۰) گزارش کردند که مبتکر دوم نسبت به گیاهان در شرایط محلول باشی در اثر کلینیکی‌های کاهش باعث بهبود جذب آب و مواد غذایی از خاک می‌شود.

دانر و همکاران (۲۰۱۰) گزارش کردند که روش‌های کلینیکی‌های شته با قرار میکوریزی موانع در حجم و بیو از خاک پراکنده شدن و این فاصله با کمک هیف‌های خود باعث بهبود جذب آب و مواد غذایی از خاک می‌شود. پیشین و وضعیت آب مناسب گیاه در حالت کاربرد میکوریزی می‌تواند در تیجهِ فعال‌سازی گیاهان کلینیکی‌های شته با میکوریزی باشد. Sharraownera و همکاران (۲۰۰۶) گزارش کردند که تلقیح با باکتری‌های محرم رشد باعث افزایش ۱۲-۱۶ درصدی محتوای آب در شرایط انرژی چاو و ۲۹-۲۹ درصدی در شرایط محلول باشی گیاه به عهده داشته شد.

بر اساس نتایج جدول نتیجه‌گیری و ارجاع‌های اثر فطق آب‌پر، کوه‌های زیستی، تواناکسید روی اثر ترکیب تیماری این سه عمل سبب کاهش داده و پروتئین‌های انرژی در سطح اثباتی یک درصد معنی‌دار گردید (جدول ۱).

عملکرد دانه: مقایسه میانگین‌های نشان داد که بیشترین عملکرد دانه در آب‌پری کامل، کاربرد تومآمیکورتکسیزبی و گرم در لیتر تواناکسید روی و کمترین آن در آب‌پری تا ۹۰ درصد مرحله آبی ری، عدم کاربرد کوه‌های زیستی و عدم محلول باشی به دست آمد.

اکنون کاربرد کوه‌های زیستی و روي بر عملکرد روند تغییرات عملکرد...

Downloaded from jispp.iut.ac.ir at 5:43 IRDT on Sunday May 26th 2019
جدول ۴ - تجزیه و ارتباط اثر نانوکسید روی کودهای زیستی و قطع آبیاری بر عملکرد و پروتئین دانه تریتکاله

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>عملکرد دانه</th>
<th>پروتئین دانه</th>
<th>درجه آزادی</th>
<th>تعداد تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸/۱ **</td>
<td>۲۸/۰۶/۳۹ **</td>
<td>۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸/۱ **</td>
<td>۲۵/۰۷/۰۶ **</td>
<td>۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۵/۶ **</td>
<td>۱۰/۱۹/۶۹ **</td>
<td>۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳/۲ **</td>
<td>۱۰/۹۳/۶۸ **</td>
<td>۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶/۲ **</td>
<td>۶/۲۲/۱۰ **</td>
<td>۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴/۲ **</td>
<td>۱۰/۱۲/۸۱ **</td>
<td>۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹/۰ **</td>
<td>۱۸/۱۲/۲۵ **</td>
<td>۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶/۸ **</td>
<td>۷/۸/۶۶ **</td>
<td>۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷/۰ **</td>
<td>۱۴/۲۸/۵۴ **</td>
<td>۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷/۰ **</td>
<td>۷/۰/۰۰ **</td>
<td>۲</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ضریب تغییرات (٪)

معنی دارد در سطح احتمال ۰/۰۵ درصد

جدول ۵ - مقایسه میانگین اثر ترکیب نانوکسید روی، کودهای زیستی و قطع آبیاری بر عملکرد و پروتئین دانه تریتکاله

<table>
<thead>
<tr>
<th>عملکرد دانه (گرم در مترمربع)</th>
<th>سطح روی</th>
<th>قطع آبیاری کودهای زیستی</th>
<th>Zn1</th>
<th>Zn2</th>
<th>Zn3</th>
<th>Zn4</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱/۷/۱۲/۱۰/۶۵</td>
<td>۱۱/۷/۱۲/۱۰/۶۵</td>
<td>F0</td>
<td>F0</td>
<td>I1</td>
<td>I1</td>
<td></td>
</tr>
<tr>
<td>۱۱/۷/۱۲/۱۰/۶۵</td>
<td>۱۱/۷/۱۲/۱۰/۶۵</td>
<td>F0</td>
<td>F0</td>
<td>I2</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>۱۱/۷/۱۲/۱۰/۶۵</td>
<td>۱۱/۷/۱۲/۱۰/۶۵</td>
<td>F0</td>
<td>F0</td>
<td>I3</td>
<td>I3</td>
<td></td>
</tr>
<tr>
<td>۱۱/۷/۱۲/۱۰/۶۵</td>
<td>۱۱/۷/۱۲/۱۰/۶۵</td>
<td>F0</td>
<td>F0</td>
<td>F0</td>
<td>F0</td>
<td></td>
</tr>
<tr>
<td>۱۱/۷/۱۲/۱۰/۶۵</td>
<td>۱۱/۷/۱۲/۱۰/۶۵</td>
<td>F0</td>
<td>F0</td>
<td>F0</td>
<td>F0</td>
<td></td>
</tr>
</tbody>
</table>

LSDمن

مراجعه میانگین‌ها بر اساس آزمون LSD در سطح احتمال ۰/۰۵ درصد انجام شد. نشان دهنده انحراف معیار می‌باشد

Roesty و همکاران (۲۰۰۶) معتقدند کودهای زیستی از طریق ایجاد چرخه مواد غذایی و قابل دسترس ساختن اینها، افزایش حفظ سلامتی ریشه در طول دوره رشد در رقابت با بانوان‌های کاربرد باکتری‌های محکم رشد و میکروبی را می‌توان به پرم

(جدول ۵). بخشی از افزایش عملکرد در شرایط آبیاری کاملاً و

کش مثبتی که میان آنها وجود دارد نسبت داده در این راستا
خشکی باعث افزایش محصولات پرتوبنیت دانه کنند می‌شود. با تلقیح بذر با باکتری‌های محترش رشد میزان پرتوبنیت دانه افزایش یافته (Frankenberger و Nieto 1991). افزایش را به توعیه رسی روی گیاه تثبیت بیولوژیکی نیتروژن، تولید اسیدهای آمینه ضروری در سنت پرتوبنیت و سیلور و همکاران (2001) بهبود درصد پرتوبنیت دانه را در حال تلقیح بذر با باکتری‌ها تثبیت بیولوژیکی نیتروژن و فراهم آن در زمان پرویز داشتند. سامبرز و جنگل (1990) بیان داشتند که کاربرد قارچ میکوروز و روی باعث افزایش مقدار پرتوبنیت دانه درت شد.

نتیجه‌گیری

با افزایش محصولات آبی عملکرد دانه، هدایت روزنهای عملکرد کانوئومی شاخص کاروافلیمحوا نسبی آب کاهش و هدایت الکتریکی و پرتوبنیت دانه افزایش یافته. کاربرد کوهدهای زیستی (میکوروز و باکتری‌های محترش) و محلول پاشای ناتوکسیک روی مقایسه با عدم کاربرد و عدم محلول پاشای منجر به بهبود عملکرد دانه، هدایت روزنهای عملکرد کانوئومی، شاخص کاروافلی محوا نسبی آب، هدایت الکتریکی و پرتوبنیت دانه گردید. نتایج نشان داد که قطع آب‌پری در مرحله سنبل‌دهی و آسیبی به ترتیب باعث کاهش 22 و درصدی عملکرد دانه و افزایش توام از کوهدهای زیستی و ناتوکسیک روی ترتیب 25 و درصدی از این کاهش عملکرد را جبران کرده‌اند. به نظر می‌رسد کاربرد توم میکوروز با باکتری‌های محترش رشد و محلولپاشای ناتوکسیک روی با تعییدی اثرات محصولات آبی می‌تواند در بهبود عملکرد دانه مؤثر واقع شود.

درصد پرتوبنیت: بیشترین درصد پرتوبنیت در آبیاری ۵۰ درصد مرحله آسیبی، کاربرد توأم با باکتری‌های محترش و میکوروزی و محلول پاشای ۱/۰ گرم در لیتر ناتوکسیک روی و کمترین درصد پرتوبنیت در آبیاری کامل، عدم کاربرد کوهدهای زیستی و عدم محلول پاشای به سطح آب (جدول ۵). در شرایط خشکی جنگل و شیب پیزی، با استفاده از CO2 بر اثر بسته شدن نسبی روزنه‌ها و یا کاهش درجه گشودگی آنها کاهش می‌یابد. بنابراین میزان کل مواد پرورده برای پر دانه کاهش می‌یابد، ولی تنش خشکی نتنگ مجددی تیتهن(next) از برگ‌ها به دانه را کاهش نمی‌دهد و این سبب افزایش پرتوبنیت دانه می‌شود (جوادالاسلامی و همکاران، ۱۳۸۴). Pierre و همکاران (2008) گرشار کردن که تنش متأخذ جوازه (Panicum miliaceum L.)

