تأثر کاربرد کودهای زیستی و روزی بر عملکرد، روند تغییرات عملکرد کوانتومی، هدایت روزنهای و در شرایط قطع آبیاری (Triticosecale)

یونس خیرزاده آورک و رفیع سیدژالی

گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی، اردبیل، ایران

(تاریخ دریافت: 23/4/1395، تاریخ پذیرش نهایی: 14/7/1395)

چکیده

به منظور مطالعه تأثیر کاربرد کودهای زیستی و روزی بر عملکرد، روند تغییرات عملکرد کوانتومی، هدایت روزنهای و در شرایط قطع آبیاری (Triticosecale) بر فیزیولوژیک ترتیب‌گذاری شد. نتایج نشان داد که در شرایط قطع آبیاری کاراگاهی فتوشیمیایی فتوسیستم II، شاخص کلروفیل، هدایت روزنهای حاصلهای آب و عملکرد دانه کاهش یافت. در حالی که هدایت الکتریکی و پروتن دانه افزایش یافت. مطابق با نتایج گزارش‌های دیگر، در این روش کوینهایی به کاهش عملکرد در صورت کاهش عملکرد در شرایط کاربرد تأمین کودهای زیستی حاوی تأمین آب و شاخص کلروفیل در حالی کاربرد تأمین یافتهای محرک رشد و فتوشیمیایی فتوسیستم II، هدایت روزنهای حاصلهای آب و شاخص کلروفیل در غربال کودهای زیستی و نانواکسید روزی به ترتیب 22 و 53 درصد از این کاهش عملکرد را جبران کرده.

واژه‌های کلیدی: باکتری‌های محرک رشد، شاخص کلروفیل، میکروژر، هدایت الکتریکی

مقدمه

چاودار حاصل شده است. این گیاه از عملکرد بالایی نسبت به نسبت آلیکانه‌های گیاهی از تأثیر گیاهش که از نظر دانه، عملکرد دانه را به ترتیب 22 و 53 درصد کاهش داد و استفاده تأمین کودهای زیستی و نانواکسید روزی به ترتیب 22 و 53 درصد از این کاهش عملکرد را جبران کرده.

راوی نویسندهی سیل: نشانگی پست الکترونیکی: raouf_sharifi@yahoo.com
مقایسه با چاودر بروخوردار است (2016). مصرف کوده‌های زیستی مانند رژه‌پاکتری‌های محکم (PGPR) در شرایط نش این محیط انباش‌گری و جنگی مایعی‌ها در شرایط نش موجب افزایش مقاومت گیاهان می‌شود بکه میکروارگانیسم‌هایی از نظر فکری و نیز جلب ایمنی می‌کنند. برخی از میکروارگانیسم‌های مرتبط با اثر مفید این باکتری‌ها به توانایی آنها در تولید ترکیبات مختلف (مثل فیتوهورمون‌ها، ویتامین‌ها و سیدروفورهای) تنبیه تبروز انسقفروی و انحلال فسفات معدنی و آلی را شامل می‌شود. با این حال برخی از میکروارگانیسم‌های ناشاگیر نیز ممکن است وجود داشته باشند و یکی از محتمل‌ترین میکروارگانیسم‌های عمل در بهبود رشد گیاه، می‌تواند تغییرات در سطوح درونی مواد نظیر نکته رشد گیاه Khalid et al., 2006.) ناشی از باکتری‌های محکم رشد باشند (2006). (کلیتی 1393) گزارش نمود که تلفیق بذر ثبوت‌گذاری با باکتری‌های محکم رشد بعث افزایش هدایت روزنهای و شاخص کاردیولی شد.

میکورزریک به معنی بین گروهی از قارچ‌های خاکی با گیاهان است. قارچ‌های میکورزریک ترکیبات کربوهیدراتی مورد نیاز خود را از گیاهان می‌گیرند. در حالی که باعث افزایش جذب مواد غذایی توسط گیاهان می‌شوند و این طریق باعث بهبود تجزیه گیاهان به تشخیص غیر زیستی مانند خشکی و شوری است. در بررسی قارچ‌های میکورزریک همچنین مایعی درگذشت مانند تغییرات اسمی تحت شرایط جهانی نسبت افزایش افزایش فتوستروی در دوران نشته Khalafallah and Abo Ghalia, (2008) و همکاران (1993) اظهار داشتند که هدایت روزنهای در شرایط مطابق آب و در شرایط نش رطوبتی تحت تأثیر میکورزریک افزایش می‌یابد. روی از عناصر کم‌ضروری برای سامانه‌های زیستی است و نقش مهمی در سنتز پروتئین و سایر متابولیسم‌ها ایفا می‌کند. علاوه بر این، به عنوان یک جزء ساختاری مهم در انرژی و پروتئین می‌باشد. روی همچنین در فرآیند فتوستروی، فعالیت هسته‌های آنزیمی و سنتز پروتئین نقش دارد (2014) گزارش کردن Liszkay و Roach, (Alloway, 2009).
تأثیر کاربرد کودهای زیستی و روش بر عملکرد روش‌های تغییرات عملکرد

فوتومیکرووگرام کودهای زیستی و فوتومیکرووگرام کودهای باکتری

روش‌های تغییرات عملکرد

از آن‌هایی که روش‌های تغییرات عملکرد و در نهایت به کاهش رشد سیستم‌های مالکوندو نیز منجر می‌شود. این روش‌ها به مدلی که از سیستم‌های مالکوندو و با توجه به اینکه روش‌های تغییرات عملکرد و در نهایت به کاهش رشد سیستم‌های مالکوندو نیز منجر می‌شود.

59

محلول پاشای باکتری‌های فوتومیکرووگرام کودهای زیستی و استفاده در روش‌های تغییرات عملکرد

۵۹

که روى موجب افزایش کارایی فوتومیکرووگرام کودهای زیستی... 59

فوتومیکرووگرام کودهای زیستی و فوتومیکرووگرام کودهای باکتری

به دلیل اهمیت تغییرات عملکرد در سیستم‌های مالکوندو و با توجه به اینکه روش‌های تغییرات عملکرد و در نهایت به کاهش رشد سیستم‌های مالکوندو نیز منجر می‌شود.

روش‌های تغییرات عملکرد

از آن‌هایی که روش‌های تغییرات عملکرد و در نهایت به کاهش رشد سیستم‌های مالکوندو نیز منجر می‌شود.

زبان: فارسی

محلول پاشای باکتری‌های فوتومیکرووگرام کودهای زیستی و استفاده در روش‌های تغییرات عملکرد

۵۹

که روى موجب افزایش کارایی فوتومیکرووگرام کودهای زیستی... 59

فوتومیکرووگرام کودهای زیستی و فوتومیکرووگرام کودهای باکتری

به دلیل اهمیت تغییرات عملکرد در سیستم‌های مالکوندو و با توجه به اینکه روش‌های تغییرات عملکرد و در نهایت به کاهش رشد سیستم‌های مالکوندو نیز منجر می‌شود.

روش‌های تغییرات عملکرد

از آن‌هایی که روش‌های تغییرات عملکرد و در نهایت به کاهش رشد سیستم‌های مالکوندو نیز منجر می‌شود.
جدول 1 - مشخصات فیزیکی‌سنجی خاک مزرعه آزمایش

<table>
<thead>
<tr>
<th>متغیر</th>
<th>pH</th>
<th>عصاره اشاعه آبک</th>
<th>رس (درصد)</th>
<th>سیلت</th>
<th>شن</th>
<th>میکرو آلی نیتروژن کل</th>
<th>فشار تناسب روی میلی کرم در کیلوگرم</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار لویس</td>
<td>۶/۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2 - میانگین دما و میزان بارندگی ماهانه منطقه مورد آزمایش

<table>
<thead>
<tr>
<th>ماه‌های سال</th>
<th>میانگین دما (سانتی‌گراد)</th>
<th>میانگین بارندگی دما (سانتی‌گراد)</th>
<th>بارندگی ماهانه (سانتی‌گراد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>اردیبهشت</td>
<td>۰/۵۴</td>
<td>۱۵/۳</td>
<td>۸/۱</td>
</tr>
<tr>
<td>خرداد</td>
<td>۰/۱۹۸</td>
<td>۱۰/۵</td>
<td>۲۵</td>
</tr>
<tr>
<td>تیر</td>
<td>۰/۱۲۴</td>
<td>۸/۴</td>
<td>۱۳/۲</td>
</tr>
<tr>
<td>مرداد</td>
<td>۰/۱۹۸</td>
<td>۱۲/۲</td>
<td>۲۶/۴</td>
</tr>
<tr>
<td>شهریور</td>
<td>۰/۱۸۸</td>
<td>۱۱/۸</td>
<td>۲۸/۸</td>
</tr>
</tbody>
</table>

جدول 3 - مشخصات نانو اکسید روی مورد استفاده

<table>
<thead>
<tr>
<th>رنگ پودر سفید</th>
<th>وزن (گرم)</th>
<th>خلوص</th>
<th>سطح ویژه ذرات</th>
<th>میانگین اندازه ذرات (nm)</th>
<th>Fm/Fv</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰ m²·g⁻¹</td>
<td>۹۹%</td>
<td>۱۰۰ g</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

برای اندازه‌گیری فلورسانس کلروفیل برق پرچم در مزرعه، از ۵۰ روز بعد از سبز شدن هر چهار روز یک بار توسط chlorophyll fluorometer; Optic Science-TOF استفاده می‌شود. (Seyed Sharifi et al., 2016)

از ۵۰ روز بعد از سبز شدن هر چهار روز یک بار توسط SPAD-502; Konica Minolta Sensing, Inc., (Japan) از هر تیمار به طور تصادفی ۴ پلاک پرچم و از ۳ پلاک پرچم در مزرعه، ۵۰ روز بعد از سبز شدن هر چهار روز یک بار نمونه‌های برق

RWC = (Fw - Dw)/(Tw - Dw) × 100

و در این رابطه RWC میانگین نسبی آب، Fw وزن آب، Dw وزن خشک و Tw وزن آب پایه و Dw وزن خشک است. (Cambridge, UK)
تأثیر کاربرد کودهای زیستی و روی بر عملکرد، روند تغییرات عملکرد... 61

در لیتر تناوکسید روی و کاربرد تاوا میکوری های محترک رشد و میکورایژ نسبت به سایر تیمارها دارای معنویت آب نسبت بهتری است (شکل 2). بنابراین درصد افزایش در رشد و تثبیت گیاه به‌طور کلی در شرایط آزمایشات نسبت به رشد و تثبیت نواحی کنار میکوریز ذره کربن و میزان هدایت روندهای ارتباط مستقیم وجود دارد، زیرا خریداری بهتری داشته و مالی از آن‌ها به عنوان تجزیه‌پذیری و تغییرات سطحی استفاده کرده است (Prakash and Ramachandran, 2000) (ظرفی رساندن ردیاب توم ریت و باکتری‌های محترک از میکوریز در طول فصل رشد نشان داد قطع آبی در مرحله آبیستی و سبب‌بودن باعث افزایش میزان تغییرات این دلیل است. همچنین افزایش داده می‌شود باکتری‌های محترک رشد و فاصله میکورایژ دارای اثر حرارتی بهبودی‌گر هستند که در نهایت منجر به بهبود پارامترهای فلوراسیون ترکیبات در شرایط محیط‌بندی آبی شده است.

فلوراسیون حداکثری(Fm) کارایی افت غیر فتوشیمیایی
فلوراسیون تیز به عوامل بیولوژی و درونی زیادی وابسته بوده و Maxwell در تغییرات فلوراسیون حداکثری معکوس می‌گردد (Johnson, 2000). نتایج امکان‌پذیری فلوراسیون حداکثری نشان داد که کافی جای توجهی در شرایط قطع آبی در مرحله آبیستی و سبب‌بودن باعث افزایش در دستگاه و تغییرات فتوشیمیایی مشاهده شده، در حالیکه در شرایط قطع آبی در مرحله آبیستی، اثرات تش آب بر سیستم فتوشیمیایی با کاهش قابل توجهی در فلوراسیون حداکثری نمایه‌زی است. این تغییرات را با اتصال در فتوشیمیایی II می‌توان نسبت داد (Osmond, 1994) (ترمیم نشان داد 70 روز پس از سبز شدن بیشترین فلوراسیون حداکثری (249) مربوط به محصولاتی 9 گرم در لیتر تناوکسید روی و کاربرد تاوا باکتری‌های محترک رشد و میکوریز در شرایط آبی است. یک میزان کنار میکورایژ به میزان مقدار مایعات‌پذیری تاوا میکورایژ فلوراسیون حداکثری نشان داد که نشانگری از تغییرات در محیط آبیستی کاربرد تاوا میکورایژ 9 گرم در لیتر تناوکسید روی و کاربرد تاوا باکتری‌های محترک رشد و میکورایژ در شرایط آبی است.
جریان بهتر الکترون از فتوسیستم II به فتوسیستم I می‌گردد (Prakash and Ramachandran, 2000).

عملکرد کوانتومی: روند تغییرات کارایی فتوشیمیایی فتوسیستم II در پایه به کاربرد کوهدهای زیستی و محلولی با نانوکسید روي در شرایط محدودیت آب و آب ای نما کامل از القوی نسبتاً یکسانی برای تمام تیمارها تعیین کرد (شکل 5). به نظر می‌رسد استفاده از نانوکسید روي و کمترین میزان آن (۳۲۳ میکرو روی کاربرد نانوکسید روی و فتوسیستم II در مرحله آبیستی بود (شکل 4). همانطور که قبل گفته شد تیمار محلول‌پاشی ۵/۹ گرم در لیتر نانوکسید روی و کاربرد توم باکتری‌هاي محرک رشد و میکورین به دلیل محیط آب نسبتاً بالاتر (شکل 2) نسبت به سایر تیمارها استفاده بهتری از رطوبت داشته و در دستگاه فتوسنتزی موجب
تأثیر کاربرد کودهای زیستی و روده بر عملکرد رونده نیترات عملکرد...

شکل 2- تأثیر فلورسنس از گیاهی محرک رشد و فتوشیمیایی فتوسنتزی از گیاهی محرک رشد و فتوشیمیایی فتوسنتزی از گیاهی محرک رشد و فتوشیمیایی فتوسنتزی

در ترکیب تیماری محلولپاشای 9 گرم در لیتر نانوکسید روده، تلقیح بذر با باکتری‌های محرک رشد و میکورز در شرایط ایبایی کامل و حداکثر آن (1/33) در ترکیب تیماری عدم محلولپاشای و عدم کاربرد کودهای زیستی در شرایط قطع ایبایی در مرحله آستانه به دست آمد (شکل 5). اندوزه‌گیری فلورسنس کلروفیل یک روش گسترده مورد استفاده برای مطالعه عملکرد استغلال فتوسنتزی و کی اثر در ترکیب برای مطالعه پاسخ گیاه به استرس‌های محیطی است.

[S] (1985) گزارش کردن که کارایی فتوشیمیایی Ma
تأثیر کاربرد کودهای زیستی و روان تغییرات عملکرد...
و کمترین نیروی سلول‌ها (Fv/Fm) نیز در همین تیمارها به دست آمد (شکل 5). در این بررسی به نظر می‌رسد علت کاهش نانی از وقوع آشته‌گی در کاروتئین باشد. کاهش عده کاروتئین در زمان تنش نیز موجب همین موضوع است. زیرا فلوئورسنس کاروتئین به طور مستقیم به فعالیت کاروتئین در مرکز واکنش فوتوسنتز آمیکتی و میزان این آمیکتی برای اندامه گیری کارایی فتوسترات استفاده نمود (2000). کاهش در میزان کاروتئین در اثر تنش خشنکی به علت افزایش تولید رادیکال‌های آزاد اکسیژن در سلول است که این رادیکال‌ها مرحله رسیدگی فیتوژولوژیکی و همچنین پیر شدن بروگیا روند نزولی داشت. نتایج نشان داد از مولتیپلاسی تناوکسید روی و کاربرد میکورز و پانکرکیه محرک رشد، روند تغییرات عدد کاروتئین تیمار نوسان کمتری نشان داد. به طوری که حداکثر شاخص کاروتئین برگ پرچم (2/3) در تیمار مولتیپلاسی 0/9 گرم در لیتر تناوکسید روي تلقیح بذر با پانکرکیه محرک رشد و میکورز در شرایط آبیاری کامل و حداقل آن (1/3) در ترکیب تیماری عمد مولتیپلاسی و عدم کاربرد کودهای زیستی در شرایط قطع آبیاری در مرحله آبیستی به دست آمد (شکل 6). این در حالی است که بیشترین
تأثیر کاربرد کودهای زستی و روی بر عملکرد، روند تغییرات عملکرد ... 67

شکل 6- تأثیر فلئ آبیاری، کودهای زستی و نانوکسید روی روند هدایت روندهای برگ پرچم تربیکاله

کردن تحت شرایط نش نخکی در مزرعه، تلفیق بدر با باکتری‌های محرک رشد میزان کاروپیل را افزایش داد. (Sannazzaro, 2005) گزارش کردن که گیاهان Glomus intraradices تلفیق کره نیست به گیاهان بدون تلفیق داشته و همکاران (1994) گزارش کردن که کاربرد روی باعث افزایش محیط کاروپیل و فعالیت فتوستری در برگ‌های کلم شد.

موجب پراکسیبیسیون و تجزیه این رنگدانه‌ها می‌شوند (Schutz and Fangmier, 2001). اثرات مفید تلفیق باکتری بر افزایش شاخص کاروپیل را می‌توان به دسترس بودن بازآفرین نبودن به واسطه ثبات نیتروژن توسط باکتری‌های محرک، رشد نسبت داد. همچنین افزایش سطوح این توسط نش شوری و نخکی می‌تواند منجر به پیشروی برگ گرده، و در حضور باکتری‌های محرک رشد حاوی ACC در آمیزه ساخت اینلی به طور معنی‌داری کاهش می‌یابد. بنابراین تجزیه کاروپیل کاهش می‌یابد. (Heidari, 2011) گزارش

هدایت الکتریکی (EC): بررسی روند تغییرات هدایت الکتریکی در پاسخ به محدودیت آب در طول فصل رشد نشان
دان که هدایت الکترونیکی برکه در اثر محولپاشی نانوکروما بر روی کاربرد میکوریز و باکتری های محرک رشد نسبت به شاهد کاهش یافته (شکل 7). طویل که روز پس از سربند، بیشترین هدایت الکترونیکی (249/8) میکروزمنت بر سانتی متر مرتبه به نیاز عدم محولپاشی با نانوکروما بر روی و عدم کاربرد کودهای زیستی در شرایط قطع بیشتری در مرحله آسیبی و کمترین آن (138/7) میکروزمنت بر سانتی متر) از تیمار محولپاشی 9 گرم در لیتر نانوکروما بر روی و کاربرد توم میکوریز و باکتری های محرک رشد در شرایط آبیاری کامل به دست آمد (شکل 7)
موجه ثبت غذای سلولی در گیاه ذرت شد. تلقیح با باکتری های محکم رشد موجب کاهش نسبت الکترولیت در مقایسه با
عدم تلقیح تحت نش خشکی گردد (2010). (Sandhya et al.,)

هدایت روند تغییرات هدایت نبات (در بین تیمارهای آزمایش نبات داده هدایت روندهای برگ پرچم در طول دوره رشد گیاه گذشته زمان از کاهش
برخوردار بود (شیکل 3.) بی طوری که ۷۸ روز پس از سیستمیح تحت تایب محصول پاشی ۹/۰ گرم در لیتر
نواکسید روی و کاردیور تأمیلی مکیلوژری با باکتیری های محکم
رشد در شرایط آبی کامل و کمترین آن (۴/۲ میلیو بر متر مربع بر ثانیه) از تیمار محصول پاشی با نواکسید رود
و عدم کاردیور کودهای زیستی در شرایط تقلیح آبی در مرحله
آبیستی به دست آمد (شیکل ۳،) دیده‌ای ما با اطلاعات به دست
آمده از رویکش هدایت روندهای در گیاهی که در معرض نش خشکی بودن مطالعه
داشت. تحت شرایط محدودیت آبی، بسیاری از گیاهان روندهای
های خود را می‌پندارد تا با کاهش نرخ نوری، موج محدود
کدی آب از دست رفته به محیط گیاه. این فرآیند به واسطه
اسب آبزی‌ها تولید شده در رشته انجام می‌شود (Ruiz et al., ۲۰۰۶)
و همکاران (۲۰۱۴). (Monneveux et al.,)

گزارش کردن که محدودیت آبی باعث کاهش هدایت روندهای
ای در تریکالگی می‌شود، بیش تیمار بدر با باکتیری موجه
کردن رشته زیستی و دسترسی به مه و مشابه آبی شده و این
طرفی موجب کاهش آبزی‌های اسید و افزایش هدایت نبات
ای شده است. کاهش هدایت روندهای، بیان کننده تغییر در
موقفیت اسیدی ریشه است که به سرعت روابط آبی داد
رودی گزارش کردن کم محدودیت روی (Wang et al.,
۲۰۰۵) گزارش کردن کم محدودیت روی از
طریق کاهش هدایت روندهای موجه کاهش طرفیت
فونستیوی می‌شود. روی روی نش خشکی که در حفظ پاسخ در سلول
های نگه‌دارن روندهای دانه کاهش بیان کوه‌های گیاهی می‌شود.

محتوای نسبی آب: تأثیر طقف آبی بر روید تغییرات
عملکرد دانه: مقایسه میانگین نشان داد که ۷۸ تریب
عملکرد دانه در آبیاری کامل، کاردیور تأمیلی مکیلوژری
رد و مکیلوژری و محصول پاشی ۹/۰ گرم در لیتر نواکسید
روی و کمترین آن در آبیاری تا ۹۰ درصد مرحله آبیستی، عدم
کاردیور کودهای زیستی و عدم محصول پاشی به دست آمد.
جدول ۴ - تجزیه و ارایه اثر نانوکسید روی کودهای زیستی و قطع آبیاری بر عملکرد و پروتئین دانه تریکاله

| میانگین محاسبه شده | درجه آزادی | سابعیت تغییرات
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>پروتئین دانه</td>
<td>عملکرد دانه</td>
<td></td>
</tr>
<tr>
<td>8/1 **</td>
<td>28/0/83 **</td>
<td>2</td>
</tr>
<tr>
<td>17/9/6 **</td>
<td>57/41/47 **</td>
<td>4</td>
</tr>
<tr>
<td>7/8 **</td>
<td>10/15/69 **</td>
<td>3</td>
</tr>
<tr>
<td>5/8 **</td>
<td>10/95/37 **</td>
<td>3</td>
</tr>
<tr>
<td>6/0 **</td>
<td>7/72/01 **</td>
<td>6</td>
</tr>
<tr>
<td>6/1 **</td>
<td>20/12/81 **</td>
<td>6</td>
</tr>
<tr>
<td>8/0 **</td>
<td>18/12/22 **</td>
<td>9</td>
</tr>
<tr>
<td>6/1 **</td>
<td>7/78/62 **</td>
<td>18</td>
</tr>
<tr>
<td>0/98</td>
<td>14/28/44</td>
<td>94</td>
</tr>
</tbody>
</table>

** ضریب تغییرات (٪)

میزان تغییرات (٪)

ملکورد دانه (گرم در متراحت)

جدول ۵ - مقایسه میانگین اثر ترکیبی نانوکسید روی، کودهای زیستی و قطع آبیاری بر عملکرد و پروتئین دانه تریکاله

<table>
<thead>
<tr>
<th>عملکرد دانه (گرم در متراحت)</th>
<th>سطح روی</th>
<th>قطع آبیاری کودهای زیستی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn1</td>
<td>Zn2</td>
<td>Zn3</td>
</tr>
<tr>
<td>11/1/2</td>
<td>11/8</td>
<td>11/7</td>
</tr>
<tr>
<td>11/2</td>
<td>11/8</td>
<td>11/7</td>
</tr>
</tbody>
</table>

میزان تغییرات (٪)

در سطح احتمال ۰/۰۵ درصد

LSD:

۳/۷

۱۷/۴

McAfee میانگین‌ها بر اساس آزمون LSD در سطح احتمال ۰/۰۵ درصد انجام شد.‌* لنزه دهنه انحراف می‌باشد

Roesty و همکاران (۲۰۰۶) معتقدند کودهای زیستی از طریق ایجاد چرخه مواد غذایی و قابل دسترس ساختن آنها افزایش حفظ سلامتی ریشه در طول دوره رشد در رقابت با پاتوژن‌های

کاربرد باکتری‌های محرک رشد و میکروژنی با میزان به برم

کش مثبتی که میان آنها وجود دارد نسبت داد. در این راستا (جدول ۵). بخش از افزایش عملکرد در شرایط آبیاری کامل و
تأثیر کاپربرد کودهای زیستی و روت برمکرد، روی نگهداری عملکرد... 71

خشکسی باعث افزایش محکومیت پروتئین دانه کند می‌شود.

با تحقیق بررسی باکتری‌های محکوم رشد میزان پروتئین دانه
افزایش یافت (Frankenberger و Nieto 1991) عمل این
افزایش را به توسیع سیستمی ریشه‌ای گیاه، تثبیت بیولوژیکی
نیتروژن، تولید استحصال اتمی ضروری در سنت پروتئین و
افزارهای سطح سیروزه می‌باشد. سودن. و همکاران (2001)
به‌دست آوردن پروتئین دانه‌ای در حالتی تحقیق به‌دست
باکتری‌ها با تثبیت بیولوژیکی نیتروژن و فراهم‌آن در زمان پر
شدن نسبت دادند. ساجری و رجاچ (1390) بیان داشتند که
کاربرد قارچ میکوریز و روت باعث افزایش مقدار پروتئین دانه
درت شد.

نتیجه‌گیری

با افزایش محدود‌سازی آبی عملکرد دانه، هیدرات روزنهای
عملکرد کاپرونی، باعث کاهش نسبی آبی کاپش و هیدرات کلروئی و پروتئین دانه افزایش یافته. کاربرد
کودهای زیستی (میکوریز و باکتری‌های محکوم رشد) و
محصول پاشای ناپاک‌ساده روی مقاوم به عدم کاربرد و عدم
محصول پاشای منجر به به‌دست آوردن عملکرد دانه، هیدرات روزنهای
عملکرد کاپرونی، باعث کاهش نسبی آبی، هیدرات کلروئی و پروتئین دانه گردید. نتایج نشان داد که قطع
آبی در مرحله سنبل‌دهی و آبیتی به ترتیب باعث کاپش
۲۲ و ۴۲ درصدی عملکرد شده و استفاده را توم از کودهای
زیستی و ناپاک‌ساده روی ۵۳ درصدی این
کاهش عملکرد را جیران کرده‌اند. به‌نظر می‌رسد کاربرد توم
میکوریز با باکتری‌های محکوم رشد و محصول‌پاشای ناپاک‌ساده
روی با تعیین اثرات محدود‌سازی آبی می‌توانند به‌دست
عملکرد دانه موثر واقع شوند.

رهیه و افزایش جذب عناصر غذایی موجب رشد گیاه شده و
Okuyama (1990) بیان داشت که کاهش نسبی عملکرد تریتیکاله‌ای ۲۳
درصد کاپش داد. Wright و همکاران (1998) اظهار داشتند
که گیاه‌ها از تثبیت شده توسط گیاهان‌کپربرد چند درصدی
فیگورهای میکوریز تخصیص می‌یابد و آن‌ها با این فاصله
نیترزون بی‌ربط با افزایش عملکرد به‌وجود می‌آیند.
کاپش در راه‌های تحقیق کودهای زیستی دانه کند می‌شود و
عملکرد را با استفاده از مستلزم‌های، تحقیق تریتیکاله‌ای
کاپش افزایش داد که کم‌وکمی افزایش عملکرد به‌وجود می‌آید.

درصد پروتئین: بیش‌ترین درصد پروتئین در ابزاری تا ۵۰
درصد مرحله آبیتی، کاپش توم باکتری‌های محکوم رشد و
میکوریز و محلول با حجم ۰۹ گرم در رنت ناپاک‌ساده روی و
کم‌ترین درصد پروتئین در ابزاری کامل، عدم کاربرد کودهای
زیستی و عدم محلول پاشای به دست آمده (جدول ۵). در
شیارات خشکسی چند و ثبیت یک بسی شدن نسبی
روزنهای با کاپش درجه گشودگی آنها کاهش می‌یابد.

نیترزون کل مواد پرورده برای پر شدن دانه کاپش برای
یابد، ولی نشان خشکسی انتقال مجدد نیتروژن از برگ‌ها به دانه
را کاهش می‌دهد و این امر از افزایش پروتئین دانه می‌شود
(جوادالاسلامی و همکاران، ۱۳۸۴، Pierre و همکاران، ۲۰۰۸).
گزارش کودهای کاپش در مرحله

متابع

جوادالاسلامی، م.، کافی، م.، مجیدی هرودان، ا.، نورمحمدی، ق.، دروشش، ف. و فاضل‌زاده، ع. (۱۳۸۴) اثر نشان خشکسی در مراحل

