نویسنده مسئول، نشانی پست الکترونیکی: salehi@ramin.ac.ir

مقدمه:
نور یکی از عوامل محدودکننده رشد و نمو گیاهی است که موقعیت گرم است و سایه‌دهی نشان می‌دهد در کشت برخی گیاهان دارویی دارد. نور از این پروژه بررسی اثرات سطح نور (0، 75، 100 و 150 درصد) به‌منظور تغییر شرایط بهینه گل‌دهی در شرایط آب و هوای ایزاس در کارکرد و اثرات مختلف از جمله کاهش نرخ گل‌دهی، افزایش نرخ برداشت (شیرت)، فسفات و پتاسین، کاهش تعداد و وزن گل و نیز تغییرات در شاخص‌های آنتی‌اکسیدان و گونه‌سازی در سطح نور می‌باشد.

چکیده:
نور یکی از عوامل محدودکننده رشد و نمو گیاهی است که موقعیت گرم است و سایه‌دهی نشان می‌دهد در کشت برخی گیاهان دارویی دارد. نور از این پروژه بررسی اثرات سطح نور (0، 75، 100 و 150 درصد) به‌منظور تغییر شرایط بهینه گل‌دهی در شرایط آب و هوای ایزاس در کارکرد و اثرات مختلف از جمله کاهش نرخ گل‌دهی، افزایش نرخ برداشت (شیرت)، فسفات و پتاسین، کاهش تعداد و وزن گل و نیز تغییرات در شاخص‌های آنتی‌اکسیدان و گونه‌سازی در سطح نور می‌باشد.

درباره نویسنده:
نویسنده مسئول، نشانی پست الکترونیکی: salehi@ramin.ac.ir

مطالعه‌ساز
نور یکی از عوامل محدودکننده رشد و نمو گیاهی است که موقعیت گرم است و سایه‌دهی نشان می‌دهد در کشت برخی گیاهان دارویی دارد. نور از این پروژه بررسی اثرات سطح نور (0، 75، 100 و 150 درصد) به‌منظور تغییر شرایط بهینه گل‌دهی در شرایط آب و هوای ایزاس در کارکرد و اثرات مختلف از جمله کاهش نرخ گل‌دهی، افزایش نرخ برداشت (شیرت)، فسفات و پتاسین، کاهش تعداد و وزن گل و نیز تغییرات در شاخص‌های آنتی‌اکسیدان و گونه‌سازی در سطح نور می‌باشد.

واژگان کلیدی: تغییرات نور، نسبت نور و غلظت نور
آسیب‌های اکسیدانی به مرکز و اکتش فتوسنتز گردید (Han et al., 2010). همچنین، شدت زیاد نور باعث آشفتگی عروق می‌شود. بطور غیرمستقیم، این امر می‌شود که بیت سولوی برگ کاهش یابد و پتانسیل آب آنها می‌فزاید. شود که که نویه خود ممکن است سبب کاهش فتوسنتز شود. نور بالا می‌تواند موجب خسارت شال سوختن سطحی، آفات سوشیک، یپری، برگ‌ها و شاخها گردد (Law and Crafts-Brander, 1999).

نشت نوری بلندمدت باعث کاهش محیط کار و کاهش و احداث کلوپلاست‌های برگ‌سازیگذار می‌شود که دارای ظرفیت تبدیل کانومون فتوسنتزی بیشتر، انعقاد الکترون و جذب CO2 بالاتری نسبت به کلوپلاست‌های سایه‌برده (Han et al., 1999). بالاترین درجه بازدارندگی نوری، در اواخر ظهر که شدت آفتاب خیلی زیاد است اتفاق می‌افتد. که البته این بازدارندگی نوری در گونه‌هایی که قادر به حفاظت نوری هستند در هنگام عصر جاری می‌شود و فتوسنتز به حال عادی بر می‌گردد (Han et al., 2006). گیاهی برای مقابله با عوارض ناشی از نش نوری و نش اکسبایی دارای سیستم‌های دفاعی پیشرفته‌های سایه‌برده که یکی از این سیستم‌ها، آنتی‌اکسیدان‌های شیمیایی شامل سیریکسیدن، دیسکوژاکسکوماتاز کاتالاز، پروکسیداز، اسکوربیتکورکسیدار، دی‌هیدروفیکسکورکسیدار و الکل‌استیونی‌اکسیداز، مکانیسم‌های مؤثر حمایه‌ی علیه نش اکسبایی سایه‌برده (Shoah et al., 2006).

بپوشش نیاز پرورش 해당گان گیاهان زینتی، افزایش سطح نوری در پرورش گل است. اما شدت نور بالا در طول ناسیون، به‌ویژه در منطقه‌های گرم‌سیری و نیمه گرم‌سیری، یک مشکل مهم در رشد و نمو گیاهان زینتی در بپوشش مناطق، از جمله شرایط هوای محسوس می‌شود. سطح نوری بالا ممکن است حتی به گونه‌های مقاوم به نور در نتیجه توقف رشد، زردی برگ‌ها و تکلمه نکردنی روزی برگ‌ها خسارت بررسی. بنابراین باید از روش‌های راه‌نوردی در تعیین شدت نور در پرورش گیاهان استفاده کرد. در روش راه ریز یکی که شدت نور در گل‌ساخته شامل پوشش‌های سایه‌برده و ترکیبات سایه‌برده است. پوشش‌های سایه‌برده مختلفی وجود دارد که

مورد و روش‌ها

به‌معنی‌پذیر بی‌سرعت اثر سطح مختلف نوری بر رشد و نمو گل محسوس در شرایط آب و هوای هوایی، از آمایش گل‌دانی از مهارها 1392 تا 1394 در مزرعه تحصیلاتی گروه علوم پایه‌بانی دانشگاه کشاورزی و منابع طبیعی رامین

Dole and Wilkins، 1999 استفاده از پوشش‌های سایه‌برده سبب کاهش شدت تابی بر روی رشدی به محصولات می‌شود. این کاهش به‌خصوص در گلخانه کمک کرده و گیاهان را به‌بینی طبیعی و دامی اضافی حفاظت می‌کند (McMahon et al., 1990, سایه‌برده، کاشت در جهت کاهش، دمای خارجی، کنتل حشرات و حیوان‌ها و ایجاد وضعیت برای دستیابی به حداکثر کیفیت گیاه است (Samartzidis et al., 2005) با توجه به بررسی‌های پیشین، بطور مکری در صورت ایجاد سایه‌برده بهینه می‌توان از نش نوری جلوگیری نمود و گیاه در شرایط مطلوب نوری به‌جایی بی‌زیانی را نشان ایجاد نمود. در شدت نور بالا آنفو هر خود به بهبود کیفیت و کمیت خود خواهر کرده که اولین هدف‌های تولید کننده گیاهان زینتی

از Rosa damascene Mill. است. این گیاه ابتدا بسیاری به‌صورت وحشی رودیده، بطورکه هنوز هم بسیاری خودروی در سوریه، مرکزی و استرالیا روش دارد و در عین حال از ایران نیز به‌عنوان خاستگاه آن پایه گرفته است (Devallier, 1996). گل محسوبی از مهم‌ترین گونه‌های معطر در است که براز تولید اساس، کمک و یقین در مناطق مختلف از ایران کشت می‌شود. یکی از مشکلات اصلی در فضای سبز شهرستان‌های تابی شدید نوری و در نتیجه بسیار دیگری برخی از گیاهان، مانند گل‌های می‌باشد. با توجه به محدودیت نوری در این شهرستان، پژوهش حاضر به محدودیت بسیاری از گیاهان مختلف بر پرورش و رشد گل محسوبی و در نتیجه بازیافت مناسب کاشت این گیاه در فضای سبز شهرستان اهواز انجام شد.
جدول 1- وزیگه‌های فیزیکی و شیمایی خاک مورد استفاده در گلدان

<table>
<thead>
<tr>
<th>شی</th>
<th>رطوبت مزرعه</th>
<th>رطوبت زمودگی</th>
<th>pH</th>
<th>هدایت الکتریکی (ds·m⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>باران</td>
<td>27/8</td>
<td>26/97</td>
<td>7/71</td>
<td>5/12</td>
</tr>
<tr>
<td>رس سیلی</td>
<td>14/7</td>
<td>20/29</td>
<td>5/28</td>
<td>3/18</td>
</tr>
</tbody>
</table>

جدول 2- میانگین دما و رطوبت نسبی ماه‌های هوا (سال 1394-1393)

<table>
<thead>
<tr>
<th>ماه</th>
<th>میانگین حداکثر دما (سال)</th>
<th>میانگین حداکثر رطوبت نسبی (%)</th>
<th>رطوبت نسبی (درجه سانتی‌گراد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مهر</td>
<td>41/7</td>
<td>21/7</td>
<td>18/4</td>
</tr>
<tr>
<td>آبان</td>
<td>34/1</td>
<td>18/4</td>
<td>8/7</td>
</tr>
<tr>
<td>آذر</td>
<td>27/6</td>
<td>8/7</td>
<td>6/7</td>
</tr>
<tr>
<td>دی</td>
<td>24/1</td>
<td>6/7</td>
<td>10/2</td>
</tr>
<tr>
<td>بهمن</td>
<td>23/1</td>
<td>10/2</td>
<td>12/6</td>
</tr>
<tr>
<td>آذر</td>
<td>24/3</td>
<td>12/6</td>
<td>15/9</td>
</tr>
<tr>
<td>استفاده</td>
<td>23/1</td>
<td>15/9</td>
<td>5/0/6</td>
</tr>
<tr>
<td>فروردین</td>
<td>26/1</td>
<td>5/0/6</td>
<td>29/8</td>
</tr>
<tr>
<td>اردیبهشت</td>
<td>44/1</td>
<td>29/8</td>
<td>40/2</td>
</tr>
</tbody>
</table>

سوئینگ نوری در سطح گلدان‌ها اندازه‌گیری گردیده و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. (جدول 2) درمان حداکثر و حداکثر همچنین حداکثر و حداکثر رطوبت نسبی از طریق سایت هواشناسی پهلوی حداکثر درمان به صورت روزانه برای هر ماه ثابت و در پایان هر ماه به صورت میانگین ثبت شد (جدول 3).

ceptor ترکیب، فسفر و پتاسیم (1961) محصول کروپول (Bradford, 1976) و محصول کروپول (Lichtenthaler and Wellburn, 1985) کربوهیدرات‌های محلول (Watanabe et al., 2000) گل‌ها و ترکیبی از ایجاد محصول کروپول (Chance and Maehly 1995) گل‌ها و ترکیبی از ایجاد محصول کروپول (Ben Hamed et al., 2007) بود. تجزیه و تحلیل داده‌ها توسط نرم‌افزار SAS و مقایسه میانگین‌ها با استفاده از آزمون چند دامنه‌ای دانکن در سطح احتمال خطای 5% انجام شد. شکل‌ها هم توسط نرم‌افزار Exel رسم گردید.
جدول 3- میانگین شدت تور (LUX) اندازه‌گیری شده ماهانه در هر سطح سایه‌دهی

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>نور کامل</td>
<td>75126</td>
<td>69582</td>
<td>69582</td>
<td>69582</td>
<td>69582</td>
</tr>
<tr>
<td>۵۰ درصد سایه</td>
<td>24526</td>
<td>24526</td>
<td>24526</td>
<td>24526</td>
<td>24526</td>
</tr>
<tr>
<td>۷۵ درصد سایه</td>
<td>11545</td>
<td>11545</td>
<td>11545</td>
<td>11545</td>
<td>11545</td>
</tr>
<tr>
<td>سایه مطلق</td>
<td>13500</td>
<td>13500</td>
<td>13500</td>
<td>13500</td>
<td>13500</td>
</tr>
</tbody>
</table>

نتایج و بحث

جدول تجزیه واریانس سطح متفاوت سایه‌دهی بر طول ساقه گل معمولی (جدول ۴) نشان داد اثر سطوح مختلف سایه‌دهی بر طول ساقه معنی‌داری دارد به طور کلی بیشترین و کمترین طول ساقه به ترتیب مربوط به سایه کامل (۷۵ درصد سایه) و نور کامل (۵۰ درصد سایه) بود (شکل ۱). ارتباط نتایگانگی بین انرژی (۷۵ دنیا) خورشید و انرژی وجود دارد (Rajapakse et al., 1992). منحنی مثبت از گازهای عمیق بر روی رشد و نمونه‌برداری های بالاتر سایه‌دهی، افزایش طول ساقه ممکن است با فراوانی انقباض شد که گیاهان رشد کردند (Mass and baksx, 1995). همچنین سایه‌دهی به‌عنوان تغییر در طول موج نوری می‌شود که این تغییر می‌تواند در رشد و رشد ناشی از گازهای آث بگذارد (Zieslin and Mor, 1990). در نتایج‌شناسی گیاه‌های باغی در داودی نسبت بالایی نور قرار به قرار در دست نور بالا گیاهانی با ارتقای کمتر و میانگین‌های کوتاهتر، تولید کرده (Zieslin and Mor, 1990) مشاهده گردید که به‌عنوان یکی از دلایل افزایش رشد طولی رشد و کاهش رشد شاخص‌های افزایشی نور، می‌تواند به کاهش میزان اکسین و در نتیجه تغییر نسبی اکسین به سیتوکین‌های می‌باشد (Stapleton, 1992). تولید این هورمون تحت تأثیر آسیاب‌های نوری گیرنده‌های نوری از جمله فتوتروپها یا کریبتروپها قرار می‌گیرد (Folta, 2003). این نتایج به‌دست آمده از نظر آزمایش با نتایج ریشه در تیمار سطح سایه‌دهی کامل (۷۵ درصد سایه) و نور کامل (۵۰ درصد سایه) یافته شده‌اند. کمترین میزان طول ساقه در سطح سایه‌دهی ۵۰ درصدی بوده و با توجه به مطالعات دیگر، سایه‌دهی به‌عنوان یکی از دلایل افزایش رشد طولی رشد و کاهش رشد شاخص‌های افزایشی نور، می‌تواند به کاهش میزان اکسین و در نتیجه تغییر نسبی اکسین به سیتوکین‌های می‌باشد (Stapleton, 1992). تولید این هورمون تحت تأثیر آسیاب‌های نوری گیرنده‌های نوری از جمله فتوتروپها یا کریبتروپها قرار می‌گیرد (Folta, 2003).
جدول ۴- نتایج تجاری واریانس اثر سطوح سایه‌دهی بر وزن گل

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>برداشت</th>
<th>تعداد گل</th>
<th>پراکندگی</th>
<th>تئوبدن</th>
<th>نشل بونی</th>
<th>نیتروزسان</th>
<th>فسفر</th>
<th>سطح سایه‌دهی</th>
<th>آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2/86</td>
<td>0/11</td>
<td>0/01</td>
<td>1/24</td>
<td>2/6</td>
<td>0/4</td>
<td>0/6</td>
<td>0/34</td>
<td>0/061</td>
</tr>
<tr>
<td>b</td>
<td>0/1</td>
<td>0/02</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
</tr>
<tr>
<td>b</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
</tr>
<tr>
<td>c</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
</tr>
</tbody>
</table>

، * به ترتیب معنی‌داری در سطح ۵ و ۱ درصد.

امادهٔ جدول ۴-

![جدول ۴](https://example.com/image.png)

شکل ۱- بررسی رشد طولی شاخ‌داره و رشد (سانتی‌متر) گل محصول تحت تیمار‌های مختلف سایه‌دهی. ستونهای با طرح مشابه، که دارای حروف مشترک هستند، در سطح احتمال خطای ۵٪ از مجموع جداول اندازه‌گیری کنندهٔ معنی‌داری ندارند.

۱. بررسی نتایج اثر سطوح سایه‌دهی بر وزن گل شاخ‌داره گل محصولی (شکل ۲) نشان داد، بیشترین وزن خشک شاخ‌داره در تیمار سطح سایه‌دهی ۱۰۰٪/۲۱/۵ گرم وجود داشت که با وزن خشک شاخ‌داره در تیمار نور کامل (۷۷/۵ گرم) وجوه داشت که با وزن خشک

گزارش شده در مورد کاهش رشد ریشه گیاهان بازه‌ریز و Lambers and (ذرت در اثر سایه‌دهی، همسوی داشتن) (Posthumus, 1980).

جدول تجاری واریانس اثر سطوح مختلف سایه‌دهی بر وزن

شاخ‌داره گل محصولی (جدول ۴) نشان داد، اثر سطح

مختلف سایه‌دهی در سطح احتمال خطای ۵٪ بر این ویژگی

می‌تواند...
شکل ۲- بررسی وزن خشک شاخساره و ریشه (گرم) گل محمدی تحت تیمارهای مختلف سایه‌دهی. ستون‌های بالا تا پایین ۴ بررسی بودند. بررسی نتایج نشان داد، بیشترین وزن خشک در تیمار گرده ضایع قرار گرفت.

سایه‌دهی و نور کامل: ۵۰ تفاوت معنی‌دار نداشت. بطورکلی هر چهار شرایط محیطی، از جمله نور، مناسب‌تر باشد. توان گیاه در تولید کربوهیدرات‌ها بیشتر و در نتیجه روي خصوصیات ظاهری از جمله رشد وزن و خشک شاخساره بیشتر می‌شود. توجه به نور و همیشه آن در تخصیص مواد فتوسنتزی به‌صورت بین‌گیرانه است که از دید غیرنظامی بیشترین هزینه شده در پخش‌های ساختمانی گیاه و وزن خشک ادامه‌ی روندی در عمل فتوسنتز.

نور کلیر توسط گازهای نسبی و زن خشک ادامه‌ی روندی طی عمل فتوسنتز و کارایی بهتر از نور امکان‌پذیر می‌شود (۷۵٪). بررسی نتایج حاصل از این آزمایش، کاهش وزن خشک‌گیری گل‌های محمدی که در معرض نور کامل بودند را نشان می‌دهد.

شاخساره در تیمار سطح سایه ۵۰٪ بیشتر بودند. به‌طورکلی هر چهار شرایط محیطی، از جمله نور، مناسب‌تر باشد.

خوشه‌ی گیاه و وزن خشک ادامه‌ی روندی طی عمل فتوسنتز و کارایی بهتر از نور امکان‌پذیر می‌شود.

نور کلیر توسط گازهای نسبی و زن خشک ادامه‌ی روندی طی عمل فتوسنتز و کارایی بهتر از نور امکان‌پذیر می‌شود.
جمله دلاپی که برای کاهش محیطی کلروفیل در شدت‌های بالای عنوان شده می‌توان به ترتیب غذای لایافونیدی‌های کلروفیل و اکسیدان‌های نوری کلروفیل در اثر افزایش فعالیت گونه‌های فعال اکسیژن و افزایش فعالیت آنزیم کلروفیل (Huffaker et al., 1970) اشاره کرد.

آزمایش‌های انجام شده در میزان کلروفیل برکه‌های رشد یافته در سابقه در واحد سطح بسته به جزئیات تعداد سلول‌ها و کلروفیلاست‌ها. کمتر می‌باشد در حالی که میزان کلروفیل در واحد وزن و حجم در سابقه مالیا افزایش می‌باید. (Winsted and Ward, 1974; Wherley et al., 2005)

همچنین به‌پیشنهاد شده است که افزایش میزان ساخت کلروفیل Dai et al. (2009) بسیاری از پژوهش‌ها نشان داده‌اند که کاهش شدت Beard. (1997) بررسی تأثیر تازه‌ای از این آزمایش نشان داد که میزان گیاهان در شرایط سایه 100/قرنی درد اینکه قادر به دریافت تشعشع مطلوب دو هم‌تیز نبوده با افزایش تراکم کلروفیل به فتوتکسی خود ادامه داده.

نتایج بدست‌آمده از این آزمایش نشان داد، با افزایش شدت میزان کلروفیل a کاهش یافته است. غیرفعال‌سازی فتوسیستم II از اجزای اثرات نور زیاد می‌باشد. غیرفعال بسته به‌پیشنهاد کلروفیل می‌تواند موجب کاهش آزادسازی اکسیژن و یا میزان کلروفیل قابل اندازه‌گیری شود (Jansen et al., 2001). در حالی که افزایش شدت میزان کلروفیل غیرفعال سازی کلروفیل می‌تواند بیشتر از یک‌مایه‌های مختلف سایه‌دار داشته.

نتایج نشان داد که سطح مختلف سایه‌دار و میزان کلروفیل یک با a کل تأثیر معنی‌داری داشت. بگونه‌ای که a افزایش شدت سایه، میزان کلروفیل a و b و در نتیجه کلروفیل یک افزایش بیشتر (شکل ۲) بین یک‌مایه‌های مختلف سایه‌دار داشته. (Termar and Briggs, 1996) بین دو میزان کلروفیل a و b (2/5 میلی‌گرم بر کرم) کلروفیل 100/قرنی درد کلروفیل (3 میلی‌گرم بر کرم) مربوط به سایه‌دار کامل کلروفیل (100/قرنی) بود. کمترین میزان کلروفیل a و b (2/5 میلی‌گرم بر کرم) کلروفیل 75/قرنی درد کلروفیل (3 میلی‌گرم بر کرم) مربوط به سایه‌دار کامل بود، با این وجود با سطح سایه‌دار ۵۰/قرنی درد کلروفیل ۷۵/قرنی درد کلروفیل (3 میلی‌گرم بر کرم) مربوط به سایه‌دار کامل بود، با این وجود با سطح سایه‌دار ۵۰/قرنی درد بیشتر بود.
شکل ۳- بررسی میزان کاروتئنی (میلی گرم بر گرم وزن تر) برگ گل مهدهی تحت تیمارهای مختلف سایه‌دهی. ستون‌های با طرح مشابه، که دارای حرف مشترک هستند، در سطح احتمال خطا ۵/۰ درصدی به هم نزدیک است.

پایه‌ها و خروجی‌های میدانی سلول‌های بنام‌پذیرافته و معنادار تردید (جدول ۴) نشان داده، اثر سطح مختلف سایه‌دهی بر میزان کاروتئنی‌های کل در سطح احتمال ۱/۰ معنادار بود. بررسی نتایج مقایسه اثر سطوح مختلف سایه‌دهی بر میزان کاروتئنی‌های برگ گل مهدهی (شکل ۴) نشان داد که با بیشترین میزان کاروتئنی‌های برگ در تیمارaN (۷/۸ میلی گرم بر گرم وزن تر برگ) وجود داشت که به‌طور معناداری بیشتر از میزان کاروتئنی‌های برگ در سایر تیمارها بود. کمترین میزان کاروتئنی‌های کل برگ در تیمار سطح سایه، ۱۰۰٪ (۵/۰ میلی گرم بر گرم وزن تر برگ) وجود داشت که با میزان کاروتئنی‌های برگ در تیمار سطح سایه ۷۵٪. نتایج معناداری نداشت. کاروتئنی‌های گروه بروزگی، رنگ‌های دور، همراه با کاروتئنی، در کلاس‌های سختند و همچنین در کمونوپلاست، به شکل‌های متنوع و محیط افزایش محیطی کاروتئنی بری‌ی، نسبت به کاروتئنی و تجمع پیش‌مدل‌های مستند جذب نور در محدوده ۳۵۰ تا ۴۰۰ نانومتر می‌شود (Merzlyak and Chivkunova, ۲۰۰۰).

برخی مطالعات نشان داده‌اند که کمبود نور از سنگ اجرای کاروتئنی ممکن است خواهد شد (Lioussane et al., ۲۰۰۹). این نتایج در هر دو سنگ کاروتئنی‌های نور سطح بهینه-۰ وجود دارد. این نتایج نشان‌دهنده این است که کمکی نور از سنگ اجرای کاروتئنی‌های خاص در حضور نور و بخشی دیگر در تاریکی منطقه می‌شود (Kay and Phinney, ۱۹۵۶).

یافته‌ها و خروجی‌های میدانی سلول‌های بنام‌پذیرافته و معنادار تردید (جدول ۴) نشان داده، اثر سطح مختلف سایه‌دهی بر میزان کاروتئنی‌های کل در سطح احتمال ۱/۰ معنادار بود. بررسی نتایج مقایسه اثر سطوح مختلف سایه‌دهی بر میزان کاروتئنی‌های برگ گل مهدهی (شکل ۴) نشان داد که با بیشترین میزان کاروتئنی‌های برگ در تیمارaN (۷/۸ میلی گرم بر گرم وزن تر برگ) وجود داشت که به‌طور معناداری بیشتر از میزان کاروتئنی‌های برگ در سایر تیمارها بود. کمترین میزان کاروتئنی‌های کل برگ در تیمار سطح سایه، ۱۰۰٪ (۵/۰ میلی گرم بر گرم وزن تر برگ) وجود داشت که با میزان کاروتئنی‌های برگ در تیمار سطح سایه ۷۵٪. نتایج معناداری نداشت. کاروتئنی‌های گروه بروزگی، رنگ‌های دور، همراه با کاروتئنی، در کلاس‌های سختند و همچنین در کمونوپلاست، به شکل‌های متنوع و محیط افزایش محیطی کاروتئنی بری‌ی، نسبت به کاروتئنی و تجمع پیش‌مدل‌های مستند جذب نور در محدوده ۳۵۰ تا ۴۰۰ نانومتر می‌شود (Merzlyak and Chivkunova, ۲۰۰۰).

برخی مطالعات نشان داده‌اند که کمبود نور از سنگ اجرای کاروتئنی ممکن است خواهد شد (Lioussane et al., ۲۰۰۹). این نتایج در هر دو سنگ کاروتئنی‌های نور سطح بهینه-۰ وجود دارد. این نتایج نشان‌دهنده این است که کمکی نور از سنگ اجرای کاروتئنی‌های خاص در حضور نور و بخشی دیگر در تاریکی منطقه می‌شود (Kay and Phinney, ۱۹۵۶).
شکل ۴ - بررسی میزان کارتونی‌های برگ (میله گرم وزن ترا پرگ گل محضی تحت تیمارهای مختلف سایه‌دهی). ستون‌های دارای حروف مشترک در سطح احتمال خطای ۵/۰ آزمون چندامتی‌ای دانکن تفاوت معنی‌داری ندارند.

شکل ۵ - بررسی میزان کربوهیدرات‌های برگ (میله گرم برگ وزن شکن) گل محضی تحت تیمارهای مختلف سایه‌دهی. ستون‌های دارای حروف مشترک در سطح احتمال خطای ۵/۰ آزمون چندامتی‌ای دانکن تفاوت معنی‌داری ندارند.

یافته‌های این پژوهش که در این پژوهش کاروتونی‌های برگ گل محضی با کاهش نور کم شد، این باعث که گل محضی دارای کاروتونی‌های خاصی است که به ندرت و در نور تحریک می‌شود. مقایسه کاروتونی‌های دانش‌های غذایی که در تاریکی و همچنین نور رشد بافت یافته بودند نشان داد که اجزای تشکیل دهنده کاروتونی‌های موجود در گیاهان موجود در نور مشابه همان گیاهان موجود در تاریکی بودند، به جز نتوانستن که فقط در گیاهان موجود در تاریکی وجود داشت (Wolf, ۱۹۶۳).

نتایج به دست آمده از اندازه‌گیری کربوهیدرات‌های محلول برگ نشان داد که سطوح مختلف سایه‌دهی بر آثر معنی‌داری داشت (جدول ۴)، به گونه‌ای که بهترین میزان کربوهیدرات‌های محلول مربوط به سطح سایه‌دهی ۵۰ درصد و کمترین میزان آن مربوط به گیاهان قرارگرفته در معرض مستقیم نور خورشید بود (شکل ۵). وقتی گیاه در شرایط نش نوری شدید قرار می‌گیرد، روزنه‌ها بسته و غلظت ذرت کسید کربن بین سلولی کاهش می‌یابد و در نتیجه سرعت فتوسنتز و تولید کربوهیدرات کاهش می‌یابد. همچنین نشان داد نور زیاد به‌صورت غیرمستقیم با افزایش درجه حرارت بر فتوسنتز اثر می‌گذارد. بر اساس تحقیقات انجام شده (Lovelock et al., ۱۹۹۶; Salucci and Crafts-Brandner, ۲۰۰۴; Pushpalatha et al., ۲۰۰۸) اظهار شده که در شرایط نش گرامی ملاکم، کاهش تعادلیات کاتیونی رایپسکوب، اولین مدل محدودیت ایجاد می‌شود در فتوسنتز است و خصوصاً فتوسنتز II اغلب در شرایط نش گرامی شدید رخ می‌دهد. همچنین نتایج نشان داد که در شرایط نور کم میزان کربوهیدرات‌های محلول کاهش یافته در کمربند نور، گاهی فتوسنتز به‌وسیله فسفات قابل دسترس در کاربردی‌ها به سیستم محوطه می‌شود. وقتی که تربر زمان، میزان کربوهیدرات‌های محلول و سایه‌دهی می‌تواند تغییر کند. با این حال، سایه‌دهی می‌تواند تاثیر مهمی در تغییر میزان کربوهیدرات‌های محلول داشته باشد.
شکل 6- بررسی میزان نشتن پویی (درصد) برگ گل محمودی تحت نیم‌رها مختلف سایه‌دهی. ستون‌های دارای حروف مشترک در سطح احتمال خطا 5/ آزمون جنگ‌دامت‌ها داشتند تفاوت معناداری ندارند.

نتیجه بررسی نیتروژن در شرایط مختلف نشتن داد که با افزایش نسبی سایه‌دهی میزان نیتروژن برگ افزایش یافته، به‌طوریکه بیشترین میزان نیتروژن برگ مربوط به گیاهان قرارگرفته در سایه، برای ساخت اکترفلی و رشد شاخه‌های جذب بیشتری از ازت داشته ولی گیاهان قرارگرفته در نور کامل، در اثر کاهش رشد شاخه‌های و تخریب اکترفلی تیاز کمری به نیتروژن بیشتر هر کارکرده‌اند. نتایج این پژوهش با بررسی Camellia و همکاران (2012) روی گیاه چای (sinensis L.) همبستگی داشت. اما بیان کردن که پیکی از مکانیسم کاهش رشد شاخه‌های در هنگام تنش کاهش جذب عنصر نیتروژن می‌باشد.

آن، فسفات غیرآلی، از طریق ناقل‌های غشا کلرولاست جذب می‌شود. اگر سرعت مصرف تروپوزنسها در سیستم کم شود، از انتقال فسفات به داخل کلرولاست ممکن است می‌شود و فنوسن در اثر کم‌رها فسفات محدود می‌شود (Wolf, 1963).

نشت نوری همچنین سبب تغییر در ساختار سگانه و چهارگانه پروتوپلاسم غشا می‌شود. این تغییرات موجب افزایش نفوذ پذیری غشا و افزایش نشتن الکترولیتها می‌گردد (Erdal et al., 2011). یکی از مکانیسم‌های مقاومت در بربر نشتن‌های محیطی همانند نوری، واپس‌های به دور از لیبيدی و سیده‌ها چرب غشاشان آن است که در طی تنش، پناردی H2O2 غشا را نشتن می‌کند. در طی نشتن نشتن‌های می‌شود (Erdal et al., 2011). نتایج جدید آزمایشی این افزایش معناداری را نشتن با دنیغ شیاه می‌شود (Karimi et al., 2013).
در تیمار سطح سایه 75 درصد (0.04 میکرومول بر دقیقه بر میلی گرم پروتئین) وجود داشت که با میزان فعالیت آنزیم پراکسیداز برم در تیمار سطح سایه کامل و 50 درصد تفاوت معنی‌داری نداشت ولی بطور معنی‌داری کمتر از میزان فعالیت آنزیم پراکسیداز برم در سایر تیمارها بود.

در شدت‌های بالایی نور به عمل می‌پرداخت بیشتر برابر با کاهش نسبی خاک، سرعت انتشار مواد غذایی از محیط خاک به سطح جذب کندنی ریشه کاهش می‌یابد. کارآیی سیستم ریشه گیاه نیز ممکن است در نتیجه رشد کمتر ریشه کاهش یابد (Alam, 1999). کاهش میزان سیستم و پاسیم، با افزایش سطح سایه‌دیری تابی به دست می‌آید. (Camas et al., 2009)

سپس نتایج اثر سطوح مختلف سایه‌دهی بر میزان فعالیت آنزیم پراکسیداز برم گل محمدی (شکل 9) نشان داد که تعداد میزان فعالیت آنزیم پراکسیداز برم در تیمار نوع کامل (0.04 میکرومول بر دقیقه بر میلی گرم پروتئین) وجود داشت که به طور معنی‌داری بیشتر از میزان فعالیت آنزیم پراکسیداز برم در سایر تیمارها بود. کمترین میزان فعالیت آنزیم پراکسیداز برم

![Diagram](https://via.placeholder.com/150)

الگوبرداری بررسی میزان فعالیت آنزیم پراکسیداز برم در تیمار نوع کامل (0.04 میکرومول بر دقیقه بر میلی گرم پروتئین) وجود داشت که به طور معنی‌داری بیشتر از میزان فعالیت آنزیم پراکسیداز برم در سایر تیمارها بود. کمترین میزان فعالیت آنزیم پراکسیداز برم

![Diagram](https://via.placeholder.com/150)

شکل 7- بررسی میزان فعالیت آنزیم پراکسیداز برم در تیمار نوع کامل (0.04 میکرومول بر دقیقه بر میلی گرم پروتئین) و وجود داشت که با میزان فعالیت آنزیم پراکسیداز برم در تیمار سطح سایه کامل و 50 درصد تفاوت معنی‌داری نداشت ولی بطور معنی‌داری کمتر از میزان فعالیت آنزیم پراکسیداز برم در سایر تیمارها بود.

![Diagram](https://via.placeholder.com/150)

شکل 8- بررسی میزان فعالیت آنزیم پراکسیداز برم در تیمار نوع کامل (0.04 میکرومول بر دقیقه بر میلی گرم پروتئین) و وجود داشت که با میزان فعالیت آنزیم پراکسیداز برم در تیمار سطح سایه کامل و 50 درصد تفاوت معنی‌داری نداشت ولی بطور معنی‌داری کمتر از میزان فعالیت آنزیم پراکسیداز برم در سایر تیمارها بود.

![Diagram](https://via.placeholder.com/150)

شکل 7- بررسی میزان فعالیت آنزیم پراکسیداز برم در تیمار نوع کامل (0.04 میکرومول بر دقیقه بر میلی گرم پروتئین) و وجود داشت که با میزان فعالیت آنزیم پراکسیداز برم در تیمار سطح سایه کامل و 50 درصد تفاوت معنی‌داری نداشت ولی بطور معنی‌داری کمتر از میزان فعالیت آنزیم پراکسیداز برم در سایر تیمارها بود.

![Diagram](https://via.placeholder.com/150)

شکل 8- بررسی میزان فعالیت آنزیم پراکسیداز برم در تیمار نوع کامل (0.04 میکرومول بر دقیقه بر میلی گرم پروتئین) و وجود داشت که با میزان فعالیت آنزیم پراکسیداز برم در تیمار سطح سایه کامل و 50 درصد تفاوت معنی‌داری نداشت ولی بطور معنی‌داری کمتر از میزان فعالیت آنزیم پراکسیداز برم در سایر تیمارها بود.

![Diagram](https://via.placeholder.com/150)
شکل ۹- بررسی فعالیت آنزیم پراکسیداز برگ گل محدود تحت تیمارهای مختلف سایه‌دهی. ستون‌های دارای جریان مشترک در سطح احتمال خطای ۵٪ آزمون چنددمتی‌ای دانکن نفاوت معنی‌داری ندارند.

شکل ۱۰- بررسی تعداد گل گل محدود تحت تیمارهای مختلف سایه‌دهی. ستون‌های دارای جریان مشترک در سطح احتمال خطای ۵٪ آزمون چنددمتی‌ای دانکن نفاوت معنی‌داری ندارند.

نقش مهم بروهخوری در تیمارها و جویانه‌های در حال تعادل می‌گذرد. دومین اینکه بر تعداد جوانه‌های در حال نحو اثر می‌گذرد. (Mastalerz and Langhans, ۱۹۶۹) کمیت و کیفیت نور ممکن است بر رشد و جویانه کل اثر بگذارد. (Rajapakse et al., ۱۹۹۲) ایجاد شدت نور در گل‌خانه گل را مبنایه پاپایا ضروری معلوم نولدیده‌اند. (Zieslin and Mor, ۱۹۹۰) نرخی در گیاهان ریزی دیگر نیز این موضوع صادق است. به طوری که اختلاف‌هایی در تعداد جوانه‌های کل و کل‌های شکوفا در سیکلان در پاسخ به کمیت نور مشاهده شد (Villegas et al., ۲۰۰۶) سیکلان‌هایی که در شرایط سایه‌دهی ۵۰٪ رشد یافتند، کمیت و کیفیت بهتری داشتند (Heo et al., ۲۰۰۳). وقیت گل‌های کمیم در سایه- آزمایش نشان می‌دهد بین فعالیت آنزیم پراکسیداز و نشته بین رابطه موجود دارد. (Mastalerz and Langhans, ۱۹۶۹) کرد که تولید بیشتر پراکسیداز به‌طور هدرزون در اثر نشته باعث پراکسیداسیون لیپیدهای غشاء سلولی و در نتیجه کاهش پایداری غشاء می‌گردد که در نتیجه آن فعالیت آنزیم پراکسیداز جهت تجزیه ریم‌هیدروژ افزایش می‌یابد. نتایج بررسی تعداد کل نشا داد اختلاف معنی‌داری بین تیمارها وجود داشت. (Mastalerz and Langhans, ۱۹۶۹) کرد که تولید بیشتر پراکسیداز به‌طور هدرزون در اثر نشته باعث پراکسیداسیون لیپیدهای غشاء سلولی و در نتیجه کاهش پایداری غشاء می‌گردد که در نتیجه آن فعالیت آنزیم پراکسیداز جهت تجزیه ریم‌هیدروژ افزایش می‌یابد. (Mastalerz and Langhans, ۱۹۶۹).
دهی نتایج نشان داد که در شرایط مصرف بیشتر، کاهش در اعداد جوانه‌ها گزارش شد.

(Heo et al., 2003) در آزمایش‌های بالاترین وزن در گیاهان با سایه‌دهی ۲۰٪ و یافتن این جوانه‌ها و زننده‌ها در گیاهان با Hlatshwayo and Wahome, 2010) تراکم فیبر گیاهی یادشده نتیجه کمیت و کیفیت گل برای کاهش می‌دهد.

نتیجه‌گیری

با وجود اینکه پیمان شده کل محمدهی یکی از گیاهان آفتابی

متابع

جلیلی مرندی، ۱۳۷۱. فیزیولوژی پی از برداشت (جیبایی و نگهداری میوه، سبزی، گیاهان زیبایی و گیاهان دارویی). انتشارات جهاد دانشگاهی اورومیه، ص ۵۴۹.

حاجیزادگان، م، عرب، م، روزبان، م و صالحی، ح، ۱۳۹۳، بررسی ویژگی‌های رشد و نموی در سطح‌های مختلف سایه-دهی، مجله علوم و فنون باغبانی ایران، ۶۳(۱): ۲۴۴-۳۳۱.

خزاعی، ک و کاشف، ۱۳۸۶، تأثیر نشانه‌گذاری بر رشد ریشه و توزیع ماده خشک بین ریشه و اندام هواپی از ارقام مقاوم و حساس گندم، پژوهش‌های زراعی ایران، ۳۱(۱): ۴۱۱-۴۱۲.

راد، م، مشکوک، م و سلطانی، م، ۱۳۸۶، تأثیر نشانه‌گذاری بر رشد خصوصیات مورفولوژیک گیاه ناغ، تحقیقات مرتع و بیابان ایران، ۵۴(۴): ۴۳-۵۴.

رهنموقهری، م، ۱۳۹۰، تأثیر سایه، مواد آلی و زمان کشت بر خصوصیات مورفولوژیک و فیزیولوژیک گل لیسیاتوس پی. پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی اصفهان، ص ۱۸۵.

سلاجق ورزی، ی، هوناکی فر، و گرچنگیان، ع، ۱۳۸۷، بررسی تغییرات فیزیومورفولوژیک سیزرخه‌های بومی و خارجی، در نشانه‌گذاری و آب‌داری دوباره، علوم و فنون باغبانی ایران، ۹: ۱۹۳-۲۰۴.

گرچنگیان، ع، خوش‌افق، ن، ملیپی، م و مجیدی، ا، ۱۳۸۸، بررسی اثر نشانه‌گذاری آب‌داری مجدد در مراحل اولیه رونی کرگره‌های دانه‌ی پی از استقرار. مجله متابای طبیعی ایران، ۵۸(۳): ۲۱۷-۲۲۳.

