اثر سایهدهی بر رشد، نمو و میزان برخی از عناصر معدنی گل محمدی (Rosa damascene Mill.)

زنیب کیهانپور، محمدرضا صالحی، حبیب‌الله نادیان قمی و علیرضا ابادلی مشهدی

یکی از عوامل محوری که به رشد و نمایش در مناطق گرم، است و سایدهی نقش مهمی در کشت برخی گیاهان دارویی دارد. هدف از این پژوهش بررسی اثرات سطوح سایه‌ی (0، 25، 50 و 100 درصد) به‌منظور یافتن شرایط بهتر کشت گل محمدی در شرایط آب و هوایی اتراس پژوهش، پاس از 8 ماه و پژوهش‌های منفورالوژی، عناصر معدنی (نیترات، فسفر، ناسیم)، میزان کلروفیل و کاروتئن، فعالیت آنزیم آنتی‌کسیدانت‌ها برای تعداد گل اندازه‌گیری شد. نتایج نشان داد نور کامل خورشیدی (بدون سایدهی) بیشتر نش در گیاهان گردنده و پژوهش‌های ارتفاع شاخه‌ها، وزن نه و خشک شاخه‌ها، میزان کلروفیل، نیترات، کروماهرات‌ها محدود و تعداد گل نسبت به سطح سایدهی کاهش یافت. همچنین پژوهش‌های طول ریشه نش در فاکتورهای تاثیرگذار. بررسی نتایج آزمایش پراکسیداز در نور کامل پس از 8 ماه افزایش یافت. بررسی نتایج تعادل گل مریب به گیاهان خارج گرفته در سطح سایدهی 50 درصد بود و به‌طورکلی گل محمدی برای رشد بهبودی در مناطق گرم، مانند اتراس، نباید به محیط نیمه سایده دارد.

وازگان کلیدی: تعداد گل، سایده، شدت نور، رنگ‌گیر

چندین مناطق مختلف، که میزان تابش آفتاب به‌شیوه از مقدار
مورد نیاز برای فتوسنتز است، نش نوری باعث ایجاد نش
پراکسیداز در گیاهان می‌شود (Shohael et al., 2006; Zhang et al., 2009)، که این نش اکسیژنی باعث سری صدای را در
گیاه به‌دنیال دارد.

غلب گیاهان در برخی از روشهای سال پیش از مقدار مورد
تیاز فتوسنتز نور دریافت می‌کنند. درصوصتی که نور اضافی
یک شده به‌سیله برک، به‌سعت دفع نمود می‌کند است
باعث کاهش کارایی فتوسنتز و پاژارنگی نوری و حتی باعث
نورکش مسئول، نشانی پست الکترونیکی:
salehi@ramin.ac.ir
Dole and Wilkins, 1999. نور را از 25 تا 98 درصد کاهش می‌دهد.

Han et al., 2010. می‌تواند شدت زیاد نور باعث افزایش تهیه می‌شود. به‌طور غیرمستقیم این امر سبب می‌شود که آب سولول در بگ کاهش یابد و پتنسال آب آنها منفی تر شود، که به نوبه خود منفی سبب کاهش فتوسنتز شود.

Law and Crafts-Brandner, 1999. تنش نوری بلندمدت باعث کاهش محیط کربونات و ایجاد کرباناکسیل های برون‌گیتنتی می‌شود که دارای تغییر‌های معنی‌داری در اثر CO2 تبلیغ کولونوم فتوسنتزی، انقلاً الکتریکی و جذب

Hartmut et al., 1999. (الا،) در جهت بازدارندگی نوری، در اولی ظهر که شدت آفتاب خیلی زیاد است انتقال می‌افتد، که این امر بازدارندگی نوری در گونه‌هایی که قادر به حفاظت از تهدید در هنگام عصر جوان می‌شود و فتوسنتز به حالت عادی بر می‌گردد (Hanelt et al., 2006). گیاهان برای مقابله با

Shoahel et al., 2006. در نتیجه در نشان دهنده علمی، افزایش دمای تنش نوری در پتروش گل است، اما شدت نور بالا در طول ثانیان به‌وجود آمده در هرگونه گیاهی یا هم به‌وجود آمده در هر گونه گیاهی به‌وجود آمده در هرگونه گیاهی

روش‌ها

به‌منظور بررسی اثر سطح مختلف نوری بر رشد و نمو گل مهوره در شرایط آب و هواهای اهواز، آزمایش گلدانی از مهوره 1393 تا 1394 در مزرعه تحت قاب‌گیری گروه علمی طبیعی دانشگاه کشاورزی و معاون طبیعی رامی

مواد و روش‌ها
جدول 1- ویژگی‌های فیزیکی و شیمیایی خاک مورد استفاده در گلدان

<table>
<thead>
<tr>
<th>نام شیمیایی</th>
<th>pH (دهسیمت)</th>
<th>رطوبت یارم‌گیر (درصد)</th>
<th>رطوبت مزرعه</th>
<th>سیلی (سیل)</th>
<th>سیلی (کم‌سیلی)</th>
<th>شیمیایی</th>
<th>خاک</th>
<th>شیمیایی</th>
<th>خاک</th>
<th>شیمیایی</th>
<th>خاک</th>
<th>شیمیایی</th>
<th>خاک</th>
<th>شیمیایی</th>
<th>خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب‌انگیز</td>
<td>7.1</td>
<td>38/4</td>
<td>21/7</td>
<td>18/4</td>
<td>87</td>
<td>تیمکی</td>
<td>پهلو</td>
<td>21/7</td>
<td>18/4</td>
<td>87</td>
<td>21/7</td>
<td>18/4</td>
<td>87</td>
<td>21/7</td>
<td>18/4</td>
</tr>
<tr>
<td>برنج</td>
<td>7.1</td>
<td>38/4</td>
<td>21/7</td>
<td>18/4</td>
<td>87</td>
<td>تیمکی</td>
<td>پهلو</td>
<td>21/7</td>
<td>18/4</td>
<td>87</td>
<td>21/7</td>
<td>18/4</td>
<td>87</td>
<td>21/7</td>
<td>18/4</td>
</tr>
<tr>
<td>گل‌ها</td>
<td>7.1</td>
<td>38/4</td>
<td>21/7</td>
<td>18/4</td>
<td>87</td>
<td>تیمکی</td>
<td>پهلو</td>
<td>21/7</td>
<td>18/4</td>
<td>87</td>
<td>21/7</td>
<td>18/4</td>
<td>87</td>
<td>21/7</td>
<td>18/4</td>
</tr>
<tr>
<td>بذرستان</td>
<td>7.1</td>
<td>38/4</td>
<td>21/7</td>
<td>18/4</td>
<td>87</td>
<td>تیمکی</td>
<td>پهلو</td>
<td>21/7</td>
<td>18/4</td>
<td>87</td>
<td>21/7</td>
<td>18/4</td>
<td>87</td>
<td>21/7</td>
<td>18/4</td>
</tr>
</tbody>
</table>

سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت نور (LUX) ثبت گردید. استفاده نمونه شد. سپرده نوری در سطح گلدان‌ها انداره‌گیری گردد و در پایان هر ماه به صورت میانگین شدت N=
جدول ۳- میانگین شدت نور (LUX) اندماهگیری شده ماهیان در سطح سایه‌دهی

<table>
<thead>
<tr>
<th>سطح سایه‌دهی</th>
<th>آبان</th>
<th>دی</th>
<th>بهمن</th>
<th>دیبان</th>
<th>ژانویه</th>
<th>فوروردین</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 نور کامل</td>
<td>۷۵۲۱۴</td>
<td>۱۳۸۵</td>
<td>۱۸۴۷</td>
<td>۲۱۹۶</td>
<td>۲۳۸۴</td>
<td>۳۶۵۴</td>
</tr>
<tr>
<td>0.۵ درصد سایه</td>
<td>۴۳۲۱۴</td>
<td>۶۷۲۱</td>
<td>۹۶۲۱</td>
<td>۱۰۵۲</td>
<td>۱۲۰۵</td>
<td>۱۸۰۵</td>
</tr>
<tr>
<td>۱ درصد سایه</td>
<td>۲۱۰۵</td>
<td>۳۹۴۵</td>
<td>۴۸۴۵</td>
<td>۶۹۸۵</td>
<td>۸۱۴۵</td>
<td>۷۵۱۴</td>
</tr>
<tr>
<td>۳ درصد سایه</td>
<td>۲۳۸۴</td>
<td>۶۷۲۱</td>
<td>۹۶۲۱</td>
<td>۱۰۵۲</td>
<td>۱۲۰۵</td>
<td>۱۸۰۵</td>
</tr>
<tr>
<td>۷۵ درصد سایه</td>
<td>۳۶۵۴</td>
<td>۲۳۸۴</td>
<td>۱۳۸۵</td>
<td>۱۸۴۷</td>
<td>۲۱۹۶</td>
<td>۷۵۲۱۴</td>
</tr>
<tr>
<td>۱۰۰ درصد سایه</td>
<td>۵۶۱۴</td>
<td>۸۱۴۵</td>
<td>۹۶۲۱</td>
<td>۱۰۵۲</td>
<td>۱۲۰۵</td>
<td>۱۸۰۵</td>
</tr>
<tr>
<td>سایه مطلق</td>
<td>۱۲۵۱۴</td>
<td>۱۳۸۵</td>
<td>۱۸۴۷</td>
<td>۲۱۹۶</td>
<td>۲۳۸۴</td>
<td>۳۶۵۴</td>
</tr>
</tbody>
</table>

نتایج و بحث

جدول تجزیه و پارایانس سطح مختلف سایه‌دهی بر طول ساقه

۱۳۹۷ ۱۲۷ فرآیند و کارکرد گیاهی، جلد ۷، شماره ۲۶، سال ۱۳۹۷

نجات، ریشه در تیمار سطح سایه کامل (۱۰۰/۳۵/۷۵۵۵۵۵ سانتی متر) دست آمده که با طول ریشه در تیمار سطح سایه‌دهی ۷۵/۸۵/۷۵۵ سانتی متر) تفاوت معنی‌داری نداشت. اصلی ترین نشانه فعالیت‌های نگهداری گیاهی رشد است و اولین نشان حاصل از این تغییر کمی و کیفی در رشد می‌باشد. شاخانه و بررسی شاخانه‌ای رشد، در تعیین تحلیل عوامل مؤثر بر عملکرد از اهمیت زیادی برخوردار بوده و میزان مشارکت هر یک از این شاخانه‌ها عملکرد مهمی را مشخص می‌کند. این اساس بر نحوه و تحلیل کمی رشد، روی توجه و تفسیر واکنش‌های گیاه به شرایط محیطی مختلف می‌باشد که گیاه در طول دوران حیات خود بآنها مواجه می‌گردد. (Troare et al., ۲۰۰۳)

مراجع

۱. Rajapakse et al., ۱۹۹۲. تاثیر نوری از عامل مؤثر بر رشد و نمونه‌برداری سیلیک. افشاگر، افزایش طول عمق معمول است با فرآیند انبوه‌ی گیاهان مرتبط باشد (Mass and bakh, ۱۹۹۵). همچنین سیلیکه‌ای باعث تغییر در طول موج نوره می‌شود که این تغییر می‌تواند بر رشد و ریخت‌شناختی‌گیاهان اثر بگذارد (Zieslin and Mor, ۱۹۹۰). در داوید نسبت بالایی نور به قرار دوم در نشان داده که گیاهان با ارتقاء کمتر و میانگین‌های کوتامه‌تر، تولید کرد (Zieslin and Mor, ۱۹۹۰) معنی‌داری در گیاهان رشد داشته در سطح‌دهی ۱۰۰ در مقایسه با سایه‌دهی ۱۰۰/۴۰ و ۸۰/۴۰ بیشتر بوده. همچنین در پژوهشی دیگر، سایه‌دهی باعث کاهش ارتقاء گیاه در سیکلام شد (Wilcox, ۲۰۰۶).

جدول تجزیه و پارایانس (جدول ۴) نشان داد که اثر سطح مختلف سایه‌دهی بر طول ریشه در تیمار احتمال خطای ۰/۱ معنی‌دار بود. بررسی نتایج مقایسه میانگین طول ریشه گل محمدی (جدول ۲) نشان داد بررسی طول ریشه در تیمار نور کامل (۷۵۵۵ سانتی متر) وجود داشت که با طول ریشه در تیمار سطح سایه‌دهی ۰/۳۵ تفاوت معنی‌داری نداشت. کمترین میزان طول
جدول ۴- نتایج تجربه و ارتباط اثر سطوح سایه‌دهی بر ویژگی‌های گل محمدی

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>سطح سایه‌دهی</th>
<th>آزادي</th>
<th>تعداد گل</th>
<th>پراکندگی</th>
<th>نسبت بینی</th>
<th>نتیجه‌بندی</th>
<th>ضریب تغییرات (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول گل</td>
<td>0.01</td>
<td>۲۷/۲۶</td>
<td>$75%$</td>
<td>1.11</td>
<td>$75%$</td>
<td>ضریب تغییرات (درصد)</td>
<td>$12/55$</td>
</tr>
<tr>
<td>وزن گل</td>
<td>0.01</td>
<td>۱۱/۲۸</td>
<td>$75%$</td>
<td>1.11</td>
<td>$75%$</td>
<td>ضریب تغییرات (درصد)</td>
<td>$12/55$</td>
</tr>
<tr>
<td>شاخ‌دار</td>
<td>0.01</td>
<td>۱۱/۲۸</td>
<td>$75%$</td>
<td>1.11</td>
<td>$75%$</td>
<td>ضریب تغییرات (درصد)</td>
<td>$12/55$</td>
</tr>
</tbody>
</table>

شکل ۱- بررسی رشد طولی شاخ‌دار و ریشه (سانتی‌متر) گل محمدی تحت تیمارهای مختلف سایه‌دهی. ستون‌های با طرح مشابه، که دارای حروف مشترک هستند، در سطح احتمال خطای ۵/آزمون چندان‌نیمادنی دانست نتایج متقابل معنی‌داری ندارند.

می‌توانید بوسیله بررسی نتایج اثر سطوح سایه‌دهی بر وزن خشک، نتایج در جدول سایه‌دهی (شکل ۲) نشان داد، بیشترین وزن خشک شاخ‌دار در تیمار سطح سایه‌دهی ۱۰۰/۵۰/۵۰/۵۰/۵۰ و بزرگترین سطح داشت که با وزن خشک شاخ‌دار در تیمار سطح سایه‌دهی ۲۷/۵۰/۵۰/۵۰/۵۰ و بزرگترین سطح داشت که با وزن خشک

در مقاله جامعه دیگر. لوبرزس سایه‌دهی (Lambers و همکاران، ۱۹۸۰) به در دیدر سایه‌دهی (شکل ۴) نشان داد، اثر سطوح مختلف سایه‌دهی گل محمدی در نمره بستگی به اندازه (۵/۵۰/۵۰/۵۰/۵۰) وجود داشت که با وزن خشک شاخ‌دار در تیمار سطح سایه‌دهی (۲۷/۵۰/۵۰/۵۰/۵۰) وجود داشت که با وزن خشک

در مقاله جامعه دیگر. لوبرزس سایه‌دهی (Lambers و همکاران، ۱۹۸۰) به در دیدر سایه‌دهی (شکل ۴) نشان داد، اثر سطوح مختلف سایه‌دهی گل محمدی در نمره بستگی به اندازه (۵/۵۰/۵۰/۵۰/۵۰) وجود داشت که با وزن خشک شاخ‌دار در تیمار سطح سایه‌دهی (۲۷/۵۰/۵۰/۵۰/۵۰) وجود داشت که با وزن خشک

در مقاله جامعه دیگر. لوبرزس سایه‌دهی (Lambers و همکاران، ۱۹۸۰) به در دیدر سایه‌دهی (شکل ۴) نشان داد، اثر سطوح مختلف سایه‌دهی گل محمدی در نمره بستگی به اندازه (۵/۵۰/۵۰/۵۰/۵۰) وجود داشت که با وزن خشک شاخ‌دار در تیمار سطح سایه‌دهی (۲۷/۵۰/۵۰/۵۰/۵۰) وجود داشت که با وزن خشک
شکل ۲- پرستان وزن شاخه شاخصه و رنگه (گرم) گل محمی تحت تیمارهای مختلف سایه‌دهی ستون‌های مavar، سال ۱۳۹۷

خواص شاخه در تیمار سطح سایه ۵۰٪ نتایج معنی‌داری نداشت. به‌طورکلی هرچه شرایط محسوب باشد، توان گیاه در تولید کربوهیدرات‌ها بیشتر و در نتیجه روند خصوصیات ظاهراً از جمله سرعت وزن‌توده و شکل شاخصه بیشتر می‌شود. توجه به بهبود وزن و اهمیت آن در تخصص مواد فتوستراژی بیش‌تری به‌ویژه است که از طریق ذخیره شده در پنج‌های سخت‌مانی‌گاه و وزن شاخه ادامه‌گاه روانی طی عمل فتوستراژی کاپاری بهتر از نور امکان‌پذیر می‌شد (Alrdich et al., 1975).

بررسی نتایج حاصل از این آزمایش، کاهش در وزن شاخصه غل‌گاه محمی در معنی فوراکامپ هدایت به سطوح دیگر سایه‌دهی نشان داد دلیل این امر می‌تواند در ارتباط با کاهش مواد فتوستراژی باشد. در شرایط نور زاید، فیکوس پنج‌هایه سایه‌دهی نیاز مناسبی که می‌تواند سبب سوخت کربوهیدرات‌ها و در نتیجه میزان کم‌تری از مواد کربوهیدراتی از اختیار شاخصه‌اره پذیری به‌ویژه سایه‌دهی در طول زمان می‌تواند، تولید ماده روزن‌های کاپاری هدایت (Ganelevin and Zieslin, 2001) را نتیجه دهد. این نتیجه با تابع پژوهش- های دریگر نیز محسوسی داشت. به‌طورکلی که در گر روز دهگه رقم مرسکه، با افزایش سطح سایه‌دهی نا ۷۰٪ وزن خشک و تحت تیمارهای مختلف غل‌گاه در گیاه افزایش یافت (Ficus benjamina L.) و همچنین گیاهان علف‌سازی کربوهیدرات‌ها کوچکتر و در شرایط (Codiaeum variegatum (L.) Blume) سطح نوری کمتر (۵۰٪ سایه‌دهی) از بهبود تیمارها (۵۰٪ و ۳۰٪).
Dai et al. (2002) reported that the nematode, *Dactylogyra natans*, is a potential indicator of freshwater pollution. The presence of this species can be used as an indicator of environmental quality in aquatic ecosystems. The study also showed that the abundance and distribution of *Dactylogyra natans* were influenced by various environmental factors such as water temperature, dissolved oxygen, and pH. These results highlight the importance of considering a wide range of environmental factors when monitoring and managing aquatic ecosystems.

Jahromi et al. (2008) investigated the population dynamics of *Dactylogyra natans* in a polluted river in Iran. They found that the population of this species increased significantly in response to decreased water flow and increased pollution levels. These findings suggest that *Dactylogyra natans* can be used as a sensitive indicator of water quality and pollution in river systems.

Overall, the studies by *Dai et al.* (2002) and *Jahromi et al.* (2008) demonstrate the potential of *Dactylogyra natans* as an indicator of water quality and pollution in aquatic ecosystems. These results can be used to inform management strategies and policy decisions aimed at protecting and conserving freshwater resources.
شکل ۳- بررسی میزان کاروتئئید (میلی‌گرم بر گرم وزن تراز) برج گل محمدهای تحت تیمارهای مختلف سایه‌دهی. سطح‌هایی با طرح مشابه که دارای حروف مشترک هستند، در سطح احتمال خطا ۵٪ آزمون جنده‌اندازی دانه تفاوت معنی‌داری ندارند.

پایه‌ها و پایه‌های باد در نواحی سلول برای جمع آوری منابعی- مرندر (۱۳۹۱). جدول تجزیه و تحلیل اثر سطح سایه بر میزان کاروتئئیدهای برج گل محمدهای (جدول ۴) نشان داد. اثر

سطح مختلف سایه‌دهی بر میزان کاروتئئیدهای کل در سطح

احتمال ۱٪ معنی‌دار بود. بررسی نتایج مقایسه اثر سطوح مختلف سایه‌دهی بر میزان کاروتئئیدهای برج گل محمدهای

(شکل ۴) نشان داد بیشترین میزان کاروتئئیدهای برج در تیمار

نور کامل (۶/۸ میلی‌گرم بر گرم وزن تراز) وجود داشت که

به‌طور معنی‌داری بیشتر از میزان کاروتئئیدهای برج در سایر

تیمارها بود. بیشترین میزان کاروتئئیدهای کل برج در تیمار

سطح سایه‌ی ۱۰۰٪ (۶/۵ میلی‌گرم بر گرم وزن تراز) وجود

دادش که با میزان کاروتئئیدهای برج در تیمار سطح سایه‌ی ۷۵٪

تفاوت معنی‌داری نداشت. کاروتئئیدهای گروه B از

رنگ‌های زرد با کاروتئئید در کاروتئئیدهای سبز و همچنین

در کروموپلاست هستند و همچنین در افزاش محیطی کاروتئئید بیشتری نسبت به کاروتئئید و

تجمع پیش‌ماتهای مستند جذب نور در محدوده ۳۵۰ تا

۴۰۰ نانومتر می‌شود (Merzlyak و Chivkunova, ۲۰۰۰). برخی مطالعات نشان داده‌اند که کم‌بود نور از سن‌تر اجرای

کاروتئئید ممکن است خاوهای کرد (Lioussane et al., ۲۰۰۹) برای این امر نشان می‌دهد که برای سن‌تر کاروتئئید به یک بینه‌ی

ای از نور لازم است. کاک‌لیه که برای سن‌تر کاروتئئید

خاصی در حضور نور و غیر در تاریکی سن‌تر می‌شود.

(Kay and Phinney, ۱۹۵۶). به‌نظر می‌رسد عمده‌ترین دلیل

همانکن، (۱۳۹۳).
سایه‌دهی بر رشد، نمرو میزان پریشی از عناصر معنی‌گذار

شکل 4- پروسی ایزان کاروتئینید (میلی‌گرم بر گرم وزن نر) پرگ گل محصول تحت تبیئری مختلف سایه‌دهی. ستون‌های دارای حروف مشترک در سطح احتمال خطای ۵/آزمون چندامتایی دانک تفاوت معنی‌داری دارند.

شکل 5- پروسی استیزان کربوهیدرات‌های پرگ (میلی‌گرم بر گرم وزن شکم) گل محصول تحت تبیئری مختلف سایه‌دهی. ستون‌های دارای حروف مشترک در سطح احتمال خطای ۵/آزمون چندامتایی دانک تفاوت معنی‌داری دارند.

قرار می‌گیرد، روزنه‌ها بسته و غلظت دی‌کسید کربن بین سلولی کاهش می‌یابد و در نتیجه سرعت فتوسنتز و تولید کربوهیدرات کاهش می‌یابد. همچنین نشان نور زیاد بهسوزت غیرمستقیم با افزایش درجه حرارت بر فتوسنتز اثر می‌گذارد. بر اساس تحقیقات انجام شده (Lovelock et al., 1996; Salvucci and Crafts-Brandner, 2004; Pushpalatha et al., 2008) اظهار شده که در شرایط نشگر گرما ملایم، کاهش دما، کاهش میزان کالوراتوری رابیسکو اولین دیل محورودین ایجادشده در فتوسنتز است و خسارت به فتوسنتز II اغلب در شرایط نشگر گرمای شدید رخ می‌دهد. همچنین تحقیق نشان داد که در شرایط نور کم میزان کربوهیدرات‌های محصول کاهش یافته. در کمبود نور، یکی فتوسنتز بوسیله فسفات قابل دسترس در کلروفلاست به سیستم محدود می‌شود. وقتی که ترکیب فسفات از کلروفلاست به سیستم متقابل می‌شود، معادل مولی که در این پژوهش، کاروتئینیدهای پرگ گل محصولی با کاهش نور کم شد، این باعث که گل محصولی دارای کاروتئینیدهای خاصی است که متداول در نور تحریک می‌شود. مقایسه کاروتئینیدهای دانه‌های گندم که در تاریکی و همچنین نور رشد یافته بودند نشان داد که اجزای تشکیل دهنده کاروتئینید در گیاهان موجود در نور، مشابه همان گیاهان موجود در تاریکی بودند. بنابراین میزان موجود در تاریکی وجود داشت (Wolf, 1963) نتایج به دست آمده از اندوزه‌گیری کربوهیدرات‌های محلول بروز نشان داد که در گل محصول با اختلاف کیفیت بین آزمون‌های داشت (جدول 4)، به گونه‌ای که بهترین میزان کربوهیدرات‌های محلول مربوط به بسیار معنی‌داری داشت. ۵/آزمون چندامتایی دانک تفاوت معنی‌داری میان آن مربوط به گیاهان ترارک خورشیدی بود (شکل 5) و تنها گیاه در شرایط نشگر نوری شدید.
آن، فسفات غیر آلی، از طریق ناقل‌های غاشی کلرولاست جذب می‌شود. اگر سرعت مصرف تریوزفسفات در سیتوسول کم شود، از انتقال فسفات به داخل کلرولاست ممنوع می‌شود و فنومی در اثر کمبود فسفات محدود می‌شود.

(Wolf, 1963) تنش نوری همچنین سبب تغییر در ساختار سگانه و چهارگانه برخی‌ها غشاء می‌شود. این تغییرات موجب افزایش نفوذ پذیری غشا و افزایش نشان اکسیدیت‌ها می‌گردد (Erdal et al., 2011). یکی از مکانیسم‌های مقاومت در برابر تنش‌های محیطی نوری، وابسته به دو لایه لبیسی، و اسیدهای چرب غیر اشباع که در ضخامت زنگی نشان داده شدند. انتقال آنتی‌واید H2O2 غشاء را تضاد می‌کند. در این نتیجه در نظر گرفته می‌شود. (Erdal et al., 2011). نتایج به‌دست آمده از این آزمایش نشان داد که انتقال غشاء غشاء یک مکانیسم توزین محاسبه در هنگام تنش کاهش جذب عنصر نیتروژن می‌باشد.

درصد) بنا برحنجایی به دست آمده از ورزش خاص و میزان کلرولاست این گونه می‌توان تناهی‌گری کرد که گیاهان قرار بررسی در نور کامل، در اثر کاهش رشد خاص و تعریف کلرولاست نیاز کمتری که نیتروژن بی‌کردند. نتایج این پژوهش با بررسی Camellia و همکاران (2012) روی گیاه چای (sinensis L.) مسمی داشت، آنها نیز کردن که یکی از مکانیسم‌های دهش شاخه در هنگام تنش کاهش جذب عنصر نیتروژن می‌باشد.

نتایج بررسی نیتروژن در شاخه‌های مختلف نور داد که با افزایش شاخه‌های سبب کاهش میزان بود (درصد) برگ گردید. به‌گونه‌ای که کمترین میزان پاسیم (80 درصد) موثر بیشترین گیاهان قرار بررسی در سایه کامل بود. تنش کمبود نور، اغلب جذب عنصر غشا توسط گیاه را محدود می‌سازد. جذب مواد غذایی به وسیله گیاهان به دلیل کاهش تغییرات نسلی در سیستم انقلاب غشا و تغییرات غشا و در نتیجه کاهش نیروی جذب کننده ریشه، کاهش

شکل 6- بررسی میزان نشان پذیری (درصد) برگ گل محدود تحت نیتروژن مختلف سایه‌دهی. سنوی‌های دارای حروف مشترک در سطح اختلال خطا 5% از مقدار نشان داده‌است.

Karimi et al., 2013)
در تیمار سطح سایه ۷۵ درصد (۹/۰۰۴ میکرومول بر دقیقه بر میلی گرم پوسته) وجود داشت که با میزان فعالیت آنزیم پراکسیداز برك در تیمار سطح سایه کاملاً و ۵۰ درصد تفاوت معنی‌داری نداشت ولی بعثور معنی‌داری کمتری از میزان فعالیت آنزیم پراکسیداز برك در سایر تیمارها بود.

در شدت‌های بالای نور به منتهی برهم کوردن تعادل بین واکنش‌های نوری فتوسنتز و مرحله تنشی دی‌اکسیدکنین تولید گونه‌های اکسیژن عامل افزایش یافته و نتش اکسیداتیو افزایش می‌افتد. اکثریت نشان‌دهنده ردیابی اکسیداتیوی گیاه عامل شده و با افزایش فعالیت آنزیم پراکسیداز برخی از آنها افزایش یافته و با افزایش فعالیت آنزیم پراکسیداز به عنوان اولین سد دفاعی در مقابل حمله رادیکال‌های اکسیژن در مقابل خسارت ناشی از نتش نوری مکانیزم معنی‌داری. نتایج به‌دست آمده از این می‌پایید (۱۹۸۰). همچنین با کاهش رطوبت خاک، سرعت انتشار مواد غذایی از محیط خاک به سطح جذب گنددع ریشه کاهش می‌یابد. کارآمیت سیستم رشد گیاه نیز ممکن است در نتیجه رشد کمتر ریشه کاهش یابد (۱۹۹۹). کاهش میزان سیستم و پتاسیم، با افزایش سطح سایه‌دهی با نتایج به‌دست آمده روی گیاه را محسوس می‌کند (۲۰۰۹). Camas et al.,

بررسی نتایج اثر سطوح مختلف سایه‌دهی بر میزان فعالیت آنزیم پراکسیداز برک گل محمدی (شکل ۸) نشان داد بیشترین میزان فعالیت آنزیم پراکسیداز برک در تیمار سطح سایه کامل (۹/۰۰۴ میکرومول بر دقیقه بر میلی گرم پوسته) وجود داشت که به‌طور معنی‌داری بیشتر از میزان فعالیت آنزیم پراکسیداز برك در سایر تیمارها بود. کمترین میزان فعالیت آنزیم پراکسیداز برك
نقش مهم بر تولید گل دارد. اول اینکه بر تعداد جوانه‌های در حال افزایش تعداد گل کاغذ، دوم اینکه بر تعداد نیز مؤثر است (Mastalerz and Langhans, 1969). کمیت و کیفیت نور ممکن است بر رشد و جودیت گل اثر پذیرد (Rajapakse et al., 1992). ایجاد شدت نور بهینه در گل‌های کاغذ، کمیت و نوع نور که رفرانژی پاسخ مطلوبی در شدت (Zieslin and Mor, 1990) و در گل‌های زیستی دیگر نیز این موضوع صادق است. به طوری که اخلاق‌هایی در تعداد جوانه‌های گل و کل‌های شکوفا در سیکلان در پاسخ به کمیت نور مشاهده شد (Villegas et al., 2006). سیکلان‌هایی که در شرایط سایه‌دهی 50% رشد یافتند، کمیت و کیفیت بهتری داشتند (Heo et al., 2003). وقتی که گل‌های میمون در سایه- آزمایش نشان می‌دهد بین فعالیت آنزیم پراکسیداز و نشتمه رابطه مستقیم وجود دارد. بنابراین می‌توان چنین برداشت کرد که تولید بیشتر پراکسیداز هیدروژن در اثر تنش باعث پراکسیداسیون لیپیدهای غشاء ملولی و در نتیجه کاهش پایداری غشاء می‌گردد که در نتیجه آن فعالیت آنزیم پراکسیداز جهت تجزیه پراکسیداز الکتروش یافته می‌باشد. نتایج بررسی تعداد گل نشان داد اختلاف معنی‌داری بین تیمارها وجود داشته که بیشترین تعداد گل در تیمار سایه‌دهی 50 درصد (43.4 عدد) و کمترین تعداد گل (16 عدد) در گیاهان قرارگیری در سایه مشاهده گردید (شکل 10). شدت نور یکی از عوامل مؤثر بر گلدهی چسب رز می‌باشد. (Villegas et al., 2006)
نتیجه‌گیری
با وجود اینکه بین شده گل محدود یکی از گیاهان آفت‌افزار می‌باشد، جایگزینی آن‌ها برای سایر گیاه‌ها باعث کاهش آفت‌افزار می‌شود.

مباحث
جلیلی مرکی، ۱۳۹۱. فیزیولوژی پی از برداشت (جایی‌باین و نگهداری مبو، سبزی گیاهان زمینی و گیاهان دارویی). انتشارات جهاد دانشگاهی ارومیه.

دانمان، م. عرب، م. روزنیان، ر. ه. صالحی، خ. ۱۳۹۳. بررسی ویژگی‌های رشد و نموی در سطح‌های مختلف سایه.

دهم. مجله علوم و فنون باغبانی ایران، ۱۵(۳)۱۳۷۵: ۲۴۴-۲۶۲.

خزاعی، ک. و کاپی، خ. ۱۳۸۲. تأثیر نشانه‌های بر رشد ریشه و توزیع ماده خشک بین ریشه و اندازه‌های در ارتفاع مقاوم و حساس کند، ژوهش‌های زراعی ایران، ۱: ۴۱-۴۱.

راد، م. ه. مشکوی، م. و سلطانی، م. ۱۳۸۲. تأثیر نشانه‌های بر ریشه خصوصیات مورفولوژیک گل‌نامگی ناخالصی در ایران.

اریان، ۱۳۸۴: ۴۳-۵۴.

رهنمورفر. م. ۱۳۹۰. تأثیر سایه، مواد آلی و زمان کاشت بر خصوصیات مورفولوژیک و فیزیولوژیک گل لیسیانتوس. پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی اصفهان.

سلاجچی، م. و تولیدنی، ف. و دانشوران، ر. ۱۳۸۷. بررسی تغییرات فیزیومورفولوژیک سیزفرش‌های بومی و خارجی، در تنش خشکی و آب‌پرا دوباره، علمی و فنون باغبانی ایران، ۹: ۱۹۳-۲۰۴.

گریزی، ع. و خورشیدی، ن. ملی‌پری، م. و مجیدی، ع. ۱۳۸۴. بررسی تأثیر نشانه‌های آب‌پرا آب‌پری مجدد در مراحل اولیه رویشی گراس‌های دانه‌ای پیس از استقرار. مجله متاب می‌بین، ۶: ۲۱۷-۲۱۷.

