تغییرات فصلی برخی از ترکیبات شیمیایی در چهار کلون چای (Camallia sinensis L.)

منصور افشازحمدیان*، ساره ابراهیمی نوکندی، و مریم مسیبی

گروه زیست شناسی، دانشکده علوم پایه، دانشگاه گیلان، رشت

(تاریخ دریافت: 17/10/1395، تاریخ پذیرش نهایی: 1396/3/21)

چکیده:
چای یکی از قدیمی ترین نوشیدنی‌های جهان محسوب می‌شود و ترکیبات موجود در شاخ‌های چای با توجه به شرایط آب و هوا، فصل، تنوّع زینیکی و سن شاخ‌های متافوت هستند. در این تحقیق، شاخ‌های چای شامل یک جوانه راسی و دو برج مجاور از کلون‌های عالی و پایین از مرکز تحقیقات چای کشور (لاهیجان) جمع‌آوری شدند. پس از عصاره گیری نمونه‌ها، میزان تغییرات فصلی، قدرت هشدار کندگی رادیکال آزاد (DPPH) ترکیبات کافئین، کلروزین‌ها و گلسوژن‌ها تعیین شد. ترتیب تغییرات فصلی با گروه‌بندی شده بودند که در سه گروه مورد بررسی قرار می‌گرفتند. در این تحقیق، میزان پروتئین‌های روی هزکش در کلون‌های 100 و 278 و DNA در کلون‌های 100 و 278 دریافت گردید. تأثیر تغییرات فصلی در عکس‌های خشک، عکس‌های تغییرات فصلی، خشک نشان داد. این ترتیب، تأثیر تغییرات فصلی را در روشی که اشاره کرد.
چای از منابع اصلی کافیتیون طبیعی است و به طور معمول، هر گرم برگ خشک چای 20-50 میلی گرم کافیتین است (Yamauchi et al., 2008). کافیتین از نظر داروشناسی یک ماده فعال محصول می‌شود و به میزان مصرف، اثرات را مثل افزایش عضلانی مركزی، افزایش هوموستاتیک و تمرکز و کاهش خستگی (با مصرف متوسط و نه زیاد)، گشادکننده مجاری نفیسی، افزایش جریان خون کلیوی، افزایش ورود کلسترول به ماهیچه‌های قلبی و سایر بافت‌ها و عوامل در بدن عملکرد می‌کند (معری 1388). بروتونیک‌ها از جمله مهم‌ترین مواد برگ سبز چای می‌باشند که در فرانسه تولید شده‌اند و به اسیدیاتیمی آنتی دیپلیومانیا، از نظر بیوشیمی، هرگاه مقدار بروتونیک در گیاه از حد معینی تجاوز نماید، موجب کاهش میزان کافیتین در نتیجه تندی کاهش و در نتیجه، کاهش در کل مقدار بروتونیک در برگ سبز چای پخش صورت فیزیولوژیک در زیر درختان سایه‌کشی، به مقدار قابل ملاحظه‌ای افزایش یافته در زیر درختان سایه‌کشی، انتخابی این گونه برگ‌ها چای که مقدار بروتونیک بالایی از پرتودن‌های سخت، در تولید چای سبز موجب کاهش رنگ و طعم می‌شود. در حالی که در تولید چای سبز برگ در تمام پرتودن‌های برگ سبز چای بیشتر باشد، چای تولید شده از مربوطات و کیفیت بیشتر خوراکی‌تر است.

مطالعات در رابطه با تغییرات فصلی تعادل یک دوره مواد مختلف برداشت در کشورهای مختلف انجام شده است. اما تاکنون تحقیقات کمی در این رابطه در ایران صورت گرفته است. گزارش‌هایی وجود دارد که نشان داده‌اند میزان ترکیبات آنتی‌اکسیدان برگ چای با تغییرات آب و هوا، نوع کوهنی و سس برگ‌ها تغییر می‌پذیرد. تغییرات رنگ و همکاران 1387 (مطابع میزان تغییرات فصلی در چای سبز (رغم هیرید چینی) جمع اوری شده در فصول مختلف برداشت برداشت و مشاهده کرده‌اند گیاهان چای برداشت شده در فصل بهار و تابستان، در میان سطح بالاتری از یک برای نسبت به یک گیاهان چای حاصل از برداشت پایین بوده. آنها دهای هوا و میزان دریافت نور خورشید را عامل مهمی در مقدار بالای پلی فنل‌های گیاهان چای فصول بهار و تابستان معرفی کرده‌اند. Wei et al., 2013; Miura et al., 2001; Alexandre Ya, 2015)

از جمله مواد بروز رونده برگ سبز چای آنتی اوکالوتیدها هستند که حدود 2 تا 4 درصد وزن مواد جامد برگ سبز چای را تشکیل می‌دهند. در برگ چای، سه ماده آنتی اوکالوتیدی موموس به کافیتین، نوروبرمین و نتویلین وجود دارد (معری 1388).
نیتروژن مایع انتقال داده شده و پس از یک هفته و نیم، در ۲۰ درجه نگهداری شده، در ۱۸ درجه و ۴۶ سانتی‌گراد در فاصله ۳۰ دقیقه بسته شدند. سپس در ۱۰/۵ گرم از نمونه پبر خشک شده، در همان سیالیته شد و به میکروویو، به شرح زیر به میکروپوپ های مشخص انتقال داده شد. پس از آن، به هریک از نمونه‌ها ۱۵۰۰ میکروورتر خلاصه داده گردید (۲۰۱۱).}

و همکاران (۲۰۱۱) که برخی از ترکیبات موجود در پبر چای را باعث می‌شود، که خاصیت میلی‌تپیتی تاثیر عوامل محیطی افزایش یا کاهش یابد. و همکاران (۲۰۱۱) در پژوهشی که بر روی دانشگاه پزشکی تهران، نشان دادند که بین متوسط دمای روزانه و مقدار پیل‌ها همبستگی شدید وجود دارد و تا حدی میزان پیل‌ها قابل بهبود در میزان هر کدام از انواع فلاونوئد به تهیه، تولیدگران پاپسی بارگه‌های چای، ترور و شادابی که از بیوهای چای چیده می‌شوند، به نظر می‌رسد که مورد استفاده این گیاه برای چای‌سازی هستند. ترکیبات مهم ایجاد کننده رنگ و طعم در چای، در بخش سیستم جراحی شامل بوده است. برداشت برگ سبز چای از طریق آماری و مکانیزم سیستم جراحی نشان داد که انواع چای مشابه با یکدیگر بوده و با هم چهار چای در این ارتباط با چیزی استفاده می‌گردد.}

رقم کلونی DN کسی از ارقام مقاوم به خشکسال و ۱۵ تحقیقات چای کشور واقع در شهر لاهیجان انجام شد. این شهر در ناحیه کوه‌هایی، با ۶۰ درجه و صفر دهی‌گردیده است و در ۳۷ درجه و ۱۲ دهی‌گردیده شماک غرب جغرافیایی قرار دارد. در تابستان اقلیم لاهیجان گرم و مرطوب است. در زمستان این سیالیته می‌تواند در حدود ۲۷ درجه بوده و در کل مجموعت در چهار مرحله می‌باشد.}

معنی‌پذیری و بی‌پیش‌بینی‌نامه‌هایی: نمونه‌برداری از مركب استخراج عصاره: به منظور نقیض عصاره، از روش عصاره‌گیری بخشی و آراکنا (۲۰۰۹) استفاده شد. به این ترتیب که مقداری از نمونه تازه هریک از کلون‌ها در فریزور ۷۰-۷۲ درجه به تا ۸٨ سانتی‌گراد در فاصله ۴۰ دقیقه بسته شدند. سپس ۱۰/۵ گرم از نمونه پبر خشک شده در همان سیالیته شد و به میکروپوپ های مشخص انتقال داده شد. پس از آن، به هریک از میکروپوپ‌ها ۱۵۰۰ میکروورتر خلاصه داده گردید (۲۰۱۱).}

مواد و روش‌ها
نمونه‌برداری: شاخاره‌های چای شامل یک جوانه، راس و دو بگ مجاور، از کلون‌ها ۴۵۱، ۴۳۸ و ۴۰۷ از دانشگاه پزشکی تهران و از بخش تحقیقات چای کشور (لاهیجان) در سه فصل روزی بهار، تابستان و پاییز ارائه شد.}

معنی مزان ترکیبات فنی: ابتدا عصاره‌های تهیه شده به مدت 10 دقیقه در دور (rpm) 1000 سانتیفیوز شدند. پس از حدود 200 میکرولتر از یک خش و روشان بر داشته شدند و از فیلتر سرسنجی یکبار مصرف با قطر منافذ 50 میکروپریود داده شد. برای تعیین مخلوط استاندارد، به 1 میلی‌گرم از هر استاندارد مقدار 1 میلی‌لیتر از حلال استخراج مورد استفاده برای استخراج ترکیبات فنی (مخلوط‌سازی) با نسبت (85:15) اضافه شد. سپس محلول‌ها با استفاده از فیلتر سرسنجی فیلتر شدند.

تعیین اجزای تشکیل‌دهنده مواد فنلی عصاره‌ها با استفاده از سیستم (Waters, Waters Dual λ Absorbance 2487) UV-Visible و (Waters Dual λ, Visible 2973) HPLC Symmetry انجم شد. جداسازی ترکیبات فنی در یک ستون Waters, C18 (4.6×150 میلی‌متر، با قطر منافذ 5 میکروپریود) در صامبی استاندارد، با نسبت 5 میکرولتر A (دلوند ایرلند) و 95 میکرولتر B (HPLC grade) در صامبی استاندارد، با نسبت pH 6 و pH 95 میکرولتر با استخراج کسب‌سازی استاندارد شد. حلال قریب از استاندارد با استفاده از فیلتر سرسنجی فیلتر شدند. سپس محلول‌ها در دمای (Sartorios) مدل سرعت جریان فاز محور در داخل ستون یک میلی‌لیتر در طول دیگه بود.

در این مطالعه ترکیبات فنی اندازه‌گیری شده شامل کاروئینیکااسید، کاتنین، اپیگالوتانین، کوئرنسین-3، گالاكتوزید و کافین بود. برای اندازه‌گیری ترکیبات فنی، فیلتر سرسنجی به ترتیب در طول موج‌های 260، 280، 350 و 360 نانومتر تنظیم شد. ابتدا 50 میکرولتر از محلول استاندارد آماده شدند و در طول موج‌های مربوط به تریک شدند. پس از 100 میکروشکی در محلول 50 میکرولتر و یک میلی‌لیتر مربوط به استاندارد به دست آمد. برای جداسازی و اندازه‌گیری مقدار این ترکیبات در عصاره‌های تهیه شده از برگ که به دقت 5 میکرولتر از تهیه شده به دست آمده تریک شدند. از نمونه در هر یک از طول موج‌ها به دست گاه تریک شدند.

مانل- استیک اسید (نسبت 85 به 15) اضافه شد و به مدت 24 ساعت در یک خنجر نگهداری شد. سپس میکروتیوب‌های حاوی نمونه، در سانتریفاژ قرار گرفته و مدت ه دفیق با سرعت (rpm) 1000 سانتیفیوز شد. محلول روانه که حاوی عصاره گیاه بود، به دقت توسط سیمی نیو سیو که میکروتیوب‌های یک ذکر مشخصات جهت ارزیابی انتقال داده شد. میکروتیوب‌ها در دمای 20 درجه سانتی‌گراد برای استفاده در مراحل بعدی آزمایش قرار داده شدند. این عمل برای نمونه‌های از یک از طرف به‌های، نابیان و پایه به صورت جداگانه در سه تکرار انجام شد (نمونه‌های جمع آوری شده به‌بار عصاره گیاهی شده). میکروتیوب‌های حاوی عصاره در دمای 20 درجه سانتی‌گراد برای استفاده در مراحل بعدی نقص داشتند.

تعیین فعالیت آنتی‌اکسیدانی (DPPH) استفاده از سنجش پاکساید رادیکال آزاد (DPPH) (ديفیل-1-پیرولیه‌دارازیل) ارزیابی شد (Kontogiorgis, and Hadjipavlou-Litina 2005). برای این منظور، با استفاده از سیمبل (H2O2) 50 میکرولتر از عصاره 300 برای هر رقیق شده، داخل میکروتیوب ریخته شد. سپس 950 میکرولتر محلول 100/1 دی‌بی‌سی سس یک میلی‌لیتر محلول 100 نمودران در محلول و 1 میلی‌لیتر حلال استخراج آماده شد. سپس میکروتیوب‌های به خوبی تکان داده اتاق قرار داده شد. پس از گذشت این زمان، جدول کنترل و نمونه در طول موج 517 نانومتر خوانده شد. برای دادن جذب مربوط به کنترل و نمونه در رابطه زیر دصد حدود آوری رادیکال آزاد بدست آمد. حجم نمونه‌های برای آزمایش بلکه و استاندارد یک میلی‌لیتر بود. این آزمایش برای نمونه‌های هر کلون در هر فصل به طور جداگانه در 3 تکرار انجام شد. طرفیت آنتی‌اکسیدانی عصاره‌ها به صورت درصد بازارندگی با استفاده از رابطه 1 محاسبه شد.

\[
\text{DPPH}_c = \left(A_{cont} - A_{amp} \right) / A_{cont} \times 100
\]
تغییرات فصلی برخی از ترکیبات شیمیایی در چهار کلون چای... 49

تغییرات: EFFOL

با رسم نمودارها از نرم افزار Excel استفاده شد.

نتایج و بحث:

ظرفیت خشک کندکنگ کربنات آزید بر تغییرات فعالیت آتیکسیدانی عصاره گیاهی چای در چهار کلون تحت مطالعه و تغییرات برابری به فعالیت اکسیداز رادیکال از کانال داده دارای ۱۰۰ بهاره، دارای کمترین میزان فعالیت آتیکسیدانی بود و در برابر فعالیت دیگر یک نشانه‌گذاری شد (شکل ۱).

به‌طور مشابه با کلون ۱۰۰ فعالیت آتیکسیدانی کلون ۵۱۲ نیز از برندهای اول تا برندهای سوم افزایش پیدا کرد و بر خلاف این دو کلون، از میزان فعالیت آتیکسیدانی کلون ۵۱۲ از اولین برندهای تا سومین برندهای کاسته شد. همانطور که در شکل ۱ نشان داده شده است، کلون ۵۱۲ هم در برندهای بهاره و هم در برندهای نیازمندی درصد بالایی از فعالیت آتیکسیدانی خود را حفظ کرد. بود.

همانطور که مشخص است، میزان پلاسای در از فعالیت آتیکسیدانی در چهار کلون بررسی چنین چاپ مشاهده شد. به طوری که کلون ۱۰۰ و ۵۱۲ بهاره، ۷۸ نسبت نیز و ۴۵۱ پایه مقادیر بالایی ۹۹/ر نشان دادند. در کلون ۱۰۰ و ۵۱۲، میزان فعالیت آتیکسیدانی از اولین برندهای تا سومین برندهای روند افزایشی نشان داد. در حالیکه در کلون های ۱۷۸ و ۲۵۰ کن عکس فضای مشاهده شد. گزارش‌هایی وجود دارد که نشان داده این ترکیبات آتیکسیدانی برک سبب چیا با تغییرات آبی‌ها، تغییر گونه‌ای و سن برگ‌ها Tegulka (1996) نشان داد که نتایج حاصل از Leung و foster (1996) برای برخی از تغییرات آسیبهایی با فعالیت مشاهده شد. که میزان ترکیبات آتیکسیدانی در برابر ترکیبات زیاد ترکیبات در دم (تیر)، نسبت به دو برندهای دیگر (داربسته و شهریور) بالاتر بود. در رقم ۷۸ و ۴۵۱ کاهش در مقدار آتیکسیدانی ها با کاهش ۲۵٪ در قسمت اولیه آتیکسیدان ها با عبور از فصل به پایه شاهد این که حاکی از تأثیر تغییرات FCSL در ترکیبات آتیکسیدانی می‌باشد. در تحقیقاتی که

مصادرهای تهیه شده برای سنجش ترکیبات فوق استفاده شد. همه آن‌ها در ۲ تکرار اندازه‌گیری شد. به منظور انالیز‌کمی کرموتوگرام‌های حاضر در تزیینه هر نمونه در هر تیمار، با کرموتوگرام‌های به دست آمده از تزیین استانداردهای مربوطه مقایسه و در نهایت نشان داده این ترکیبات بررسی میکروگرم در یک گرم وزن خشک محاسبه شد.

سنجش پروتئین زیستی: به منظور سنجش فعالیت پروتئین كل نمونه های گیاهی، از بافر استخراج مناسب شامل بافر پتاسیم-
Poly vinyl poly (PVPP) pH= ۵/۰ از سطح ۵۰ mM فسفات Ethylene diamine tetra acetic (EDTA) ÷ ۲/۰ و بافر استخراج Shiba (۲۰۰۸) به مدت ۱۵ دقیقه سانتی‌گراد با دور ساختمان‌بندی (ستاریفوژ سیچ) در دی‌نشان Hettich کشور آلمان. بعد از سانتی‌فود، محلول رویی با دقت برد شده و به میکروتیپ دیگر انقلاب یافته و جهت اندازه‌گیری آزمایش استفاده شدند.

جهت تعیین محتوای پروتئین عصاره استخراج شده، از روش پراکسیدرود (1976) استفاده شد. در این روش از پروتئین کاملاً گلی ایون‌پلیسای گاوت (BSA) به عنوان پروتئین استاندارد، برای رس این استاندارد استفاده شد. عامل ایجاد G- برگ در روش پراکسیدرود، ماده‌ای تا کمک خاص الکتربالو (۱۹۷۸) است. این ماده با آب‌میوه‌های آرماتیک و بازی وکشت می‌ده. به منظور تغییر استخراج شده، به ۲۰۰ میلی لیتر عطر پراکسیدرود اضافه و محیط‌زایی لوله پس از مخلوط شدن به مدت ۱۵ دقیقه در تاریکی فرار گرفتند. جذب نمونه در طول موج ۵۹۵ نانومتر خواندن شد و غلتک پروتئین کل بر اساس مقایسه با منشأ استاندارد محاسبه شد.

تحقیق و تحلیل آماری داده‌ها: جهت آنالیز داده‌ها از نرم افزار ۱۹ و برای مقایسه میانگین‌ها از آزمون دانک و SPSS
میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین هایی که حداقل دارای یک حرف مشترک در میان ۵ دندان از میان میانگین HPLC و RCE چیزی از نظر گزارش و اثبات ندارند.
ببرو و مدت نمودار کردن که مزان فلئیکه‌ها مثل ای‌پی کانجین، کالس و ای‌پی گالکانتین گالس، در مه‌دستی کرده مسال بیشتر و در مقابل، میزان ای‌پی گالکانتین و کانجین کل در مه‌دستی کرده مسال بیشتر بود و این نتایج از ترکیبات را تنها یک یا همه عوامل مختلف مانند رطوبه، شدت نش استفاده می‌کند.

تغییرات محتوای کانجین: محتوای کانجین عصاره‌ها، توسط HPLC دستگاه مورد اندازی قرار گرفتند، در این بررسی، محتوای کانجین کل ۱۰۰ درصد در دو برداشت بهار و تابستان تفاوت معنی‌داری نشان نداده ولی عصاره‌های بسته آماده از فصل پاییز در کلون دیگر، مقدار کانجین بالاتری نسبت به فصل پاییز در کلون ۴۵ از برداشت اول تا برداشت سوم به طور معنی‌داری کاهش یافته بود به‌پیشترین میزان کانجین در کلون DN در برداشت تابستان مشاهده شده.

محتوای کانجین این کلون در دو برداشت دیگر نیز در برداشت بهار و پیشترین محتوای کانجین را داشت و در دو برداشت دیگر نیز در برداشت بهار و پیشترین مشاهده شده (شکل ۵). این افزایش مقدار کانجین به دو هزار و ۸۰۰ دوره آکولوژی‌های گیاهی به ترتیب در فصل پاییز و تابستان دارای پیشترین مقدار همانند آپالوی کانجین بودند.

تغییرات محتوای ای‌پی گالکانتین: با تجزیه و تحلیل نتایج حاصل از داده‌های دستگاه HPLC مقدار ای‌پی گالکانتین کلونهای مورد طاق‌بندی، در سه برداشت بهار، تابستان و پاییز به‌کنار گذاشته شد. این شکل در ۳ دیده می‌شود. نشان داد که کلونهای ۱۰۰ و DN به ترتیب در فصل پاییز و تابستان دارای پیشترین مقدار ای‌پی گالکانتین بودند.

محتوای ای‌پی گالکانتین از برداشت تابستان تا برداشت پاییز کاسته می‌شود که نتایج ما در برخی از کلون‌ها مثل کلونهای ۴۵۱ و Lee و نتایج آنها تأیید می‌کند. ابزار تحقیقات DN و همکاران (۲۰۱۱) نشان داد که در پژوهشی Wang و همکاران (۲۰۱۰) شاخص‌های چپی که در مناطق به دمای بالا و تابی بیشتر رشد کرده بودند، سطح پایین‌تری از ای‌پی گالکانتین و کانجین نسبت به جای اصلی که در مناطق به دمای زیاد بیشتر، نور کم و کم بارش کشت شده بودند را نشان می‌دهند. در پژوهشی دیگر Yao و همکاران (۲۰۰۵) نیز به بررسی تغییرات فصلی برخی از ترکیبات فلئیکه‌ای در چهار کلون چایه...
شکل 3- تغییرات محتوای اپی-گالوتانسید در کلونهای 100، 278، 451 و DN گیاه چای در سه فصل رویشی بهار، تابستان و پاییز. میانگین هایی که حداکثر دارای یک حرف مشترک در سطح 5 درصد آزمون دانکن اختلاف معنی دری ندارند.

شکل 4- تغییرات محتوای کلروزینکاسید در کلونهای 100، 278 و DN گیاه چای در سه فصل رویشی بهار، تابستان و پاییز. میانگین هایی که حداکثر دارای یک حرف مشترک در سطح 5 درصد آزمون دانکن اختلاف معنی داری ندارند.

شکل 5- تغییرات محتوای کلروفیل در کلونهای 100، 278، 451 و DN گیاه چای در سه فصل رویشی بهار، تابستان و پاییز. میانگین هایی که حداکثر دارای یک حرف مشترک در سطح 5 درصد آزمون دانکن اختلاف معنی داری ندارند.
تغییرات فعَّال برخی از ترکیبات شیمیایی در چهار کلون چای

(ضراعتاده و همکاران ۱۳۸۹).

بحث و بررسی:

محور پروپنیتا: تغییرات غلظت پروپنیتا کل در فصول مختلف برشاد در کلونهای مورد مطالعه در شش ماه از شروع اسفناج در کلونهای ۱۰۰ و ۴۵۱ در برشاد دوم دارای بیشترین میزان پروپنیتا می‌باشد. در مبحث تولید چای سیب، تغییرات پروپنیتا در نتایج نشان داد که مقدار پروپنیتا کمتر از ۲۷۸ و ۴۵۱ در برشاد دوم دارای بیشترین میزان پروپنیتا می‌باشد. در بخش سوم مقاله، محدود پروپنیتا کمتر از ۲۷۸ و ۴۵۱ در بخش سوم مقاله، محدود پро
تغییرات ماحوتی و پروتئینی در دانه‌های گیاهی، کنترل و دو درصد آزمون دانکن اختلاف معنی‌داری ندارند.

شکل 6- تغییرات ماحوتی و پروتئینی در سطح 5 درصد آزمون دانکن اختلاف معنی‌داری ندارند.

نتایج گرفته که محصول گریختگی کلون‌های 278 و 451 از سطوح پروتئینی بازبینی گردیده و دانه‌های کنترل و دو درصد آزمون دانکن اختلاف معنی‌داری ندارند.

نتایج گرفته که محصول گریختگی کلون‌های 278 و 451 از سطوح پروتئینی بازبینی گردیده و دانه‌های کنترل و دو درصد آزمون دانکن اختلاف معنی‌داری ندارند.

نتایج گرفته که محصول گریختگی کلون‌های 278 و 451 از سطوح پروتئینی بازبینی گردیده و دانه‌های کنترل و دو درصد آزمون دانکن اختلاف معنی‌داری ندارند.
Ginkgo

