تغییرات فصلی برخی از ترکیبات شیمیایی در چهار کلون چای (Camallia sinensis L.)

منصور افشار محمدیان، جلد ۷، شماره ۲۳، بهار ۱۳۹۷

گروه زیست شناسی، دانشکده علوم پایه، دانشگاه گیلان، رشت
(تاریخ دریافت: ۱۷/۰۹/۱۳۹۵، تاریخ پذیرش نهایی: ۳۰/۱۲/۱۳۹۶)

چکیده:
چای یکی از قدیمی ترین نوشیدنی های جهان محسوب می شود و ترکیبات موجود در شاخه‌های چای چاپ با توجه به خواص آب و هوا، فصل، نوع زیستگی و سن شاخه‌ها متفاوت هستند. در این تحقیق، شاخه‌های چای شامل یک جوانی راسی و دو برگ مجاور از کلون‌های ۱۰۰، ۲۷۸ و ۴۵۱ در فصل روشی بهار، تابستان و پاییز با فاصله آزمایشی ۲۰ دنی در فضاهای آزمایشی خاک‌دار مورد بررسی قرار گرفت. ترکیبات کلروفیلات، کلروفیلات، DPPH، ترکیبات اکسیژن، ترکیبات شیمیایی در سال ۱۳۸۷، رشته تحقیقاتی، دانشگاه گیلان، رشت

کلید واژه: پروتون، کلت، چای، ظرفیت آنی اکسیداتی، کایاته، کورتن.

مقدمه

چای (Camallia sinensis) گیاهی دولیه و هیبه است از خانواده Camelliaceae می‌باشد که در جهان بزرگ شاخه از ترکیبات مختلف از جمله پلی فلز ها، تری فلز ها، گروهی از ترکیبات شیمیایی و یکی از ترکیبات شیمیایی و یکی از ترکیبات شیمیایی است که دارای خواص آنی باکتریال و آنی اکسیداتی هستند. تحقیقات چای به علت وجود ترکیبات پلی فلزی که حدود ۳۰ درصد مادهی خشک شاخه‌های چای را تشکیل می‌دهند، پلی فلز‌ها ماده‌ای شیمیایی اصلی در چای هستند و شامل فلورون، کایاته، فلورونا، از فلورونا و غیره می‌باشند (Halliwell et al., 1995). پلی فلز‌ها پر قهوه کاپیت آنی اکسیداتی که اغلب

afshar1357@gmail.com
چایی از منابع اصلی کافی‌ترین طبیعی است و به طور معمول، هر گرم برک خشک چای 200-2000 میلی‌گرم کافی‌ترین است (Yamauchi et al., 2008). کافی‌ترین نزدیکی داروشیما یک ماده فعال محصول برک و بسته به میزان صرف، اثرات را می‌آید: افزایش غلیظ دستگاه عصبی مرکزی، افزایش خفیق، و تمرکز. افزایش مبتلا به فلورئیسی و کاهش خستگی (با صرف متوسط و نهایتی)، گشادکننده مجازی تهیه، افزایش جریان خون کلیوی، افزایش ورود کلسیم به مادریت‌های قلبی و سایر بافت‌ها و یکی از این اثرات، به دست افرادی که در فصل های برفی، در فلورئیسی و لایی پر کردن، کاهش خستگی و تمرکز را می‌آورد، به علت فلورئیسی و خستگی ایجاد می‌کند و این افراد در فصل های سرمایی و لایی پر کردن، به علت فلورئیسی و خستگی ایجاد می‌کند و این افراد در فصل های سرمایی و لایی پر کردن، به علت فلورئیسی و خستگی ایجاد می‌کند و این افراد در فصل های سرمایی و لایی پر کردن، به علت فلورئیسی و خستگی ایجاد می‌کند و این افراد در فصل های سرمایی و لایی پر کردن، به علت فلورئیسی و خستگی ایجاد می‌کند و این افراد در فصل های سرمایی و لایی پر کردن، به علت فلورئیسی و خستگی ایجاد می‌کند و این افراد در فصل های سرمایی و لایی پر کردن، به علت فلورئیسی و خستگی ایجاد می‌کند و این افراد در فصل های سرمایی و لایی پر کردن، به علت فلورئیسی و خستگی ایجاد می‌کند و این افراد در فصل های سرمایی و لایی پر کردن، به علت فلورئیسی و خستگی ایجاد می‌کند و این افراد در فصل های سرمایی و لایی پر کردن، به علت فلورئیسی و خستگی ایجاد می‌کند و این افراد در فصل های سرمایی و لایی پر کردن، به علت فلورئیسی و خستگی ایجاد می‌کند و این افراد در فصل های سرمایی و لایی پر کردن، به علت فلورئیسی و خستگی ایجاد می‌کن...
نگاهات فصلی برخی از تركیبات شیمیایی در چاه کلون چای...

و همکاران (2011) که برخی از تركیبات موجود در برگ چای
10 منطقه مختلف گیاهی را مطالعه کردند، گزارش کردند که
محصولات کاتچیپ می‌تواند تحت تأثیر عوامل محیطی افراد با
کاهش یابد (2011) در پژوهشی که بر روی
3 کلون مختلف گیاه چای در کشور چین پرداختند، نشان دادند
که بین متوسط دمای روزانه و مقدار پیل یا همسکتی شدید
وجود دارد و می‌تواند روی میزان پیل فلک‌ها و هم در میزان هر
کلمه از انواع فلابلونیها به تنهایی، تاپورگلار باشد.
برگ‌های چای، مولع و شادابی‌های که آنها چای چیده
می‌شوند، بخش مرغوب مورد استفاده این گیاه برای
چای‌سازی هستند. تركیبات مهم ایجاد کننده رنگ و طعم در
چای، در قسمت چای‌های خشک‌اندازه‌کاری که در برگ‌های گیاه
در ایران از اولار اردیبهشت تا اول آبان در سه چین
(برداشت) عمد شام لی‌چره پاسی، تاسبان و پاییز انجام می
شود. میزان تولید محصول و کیفیت آن در زمان‌های مذکور با
توجه به شرایط آب و هوایی متفاوت است. در این پژوهش با
اعمال برگ‌چینی استاندارد یک گیاه و دو برگ در دوره‌های
برگچینی بهار (اردیبهشت)، تاسبان (بر) و پاییز (آبان)، به
بررسی تغییرات فصلی برخی از تركیبات فنی و غیر فنی سه
زننیپ انتخابی داخلی 100 و 278 و رقم سرپرکیانی
برداشت شد. هدف از انجام این پژوهش، ارزیابی برخی
ترکیبات شیمیایی شاخاسه‌های چای در سه فصل
روش‌های بهار، تاسبان و پاییز با توجه به تغییر عوامل موثر بر
رشد و اندازه چهار رنگ گیاه چای در فصول مختلف و در
شداپی و روش‌ها

نمونه‌برداری: شاخص‌سنجی چای شامل یک جوانه
راسی و دو برگ مجاور از کلون‌های 100، 278 و 451 و کلون
خارجی DN از مرکز تحقیقات چای کشور (لیسبانی) می‌باشد.
فصل روی‌بهلار، تاسبان و پاییز (اردیبهشت، ۱۵ تیر و
15 آبان) جمع‌آوری و سپس تهیه از نمونه‌ها به مخزن حاوی

نیروزون مانع انتقال داده شدن و پس از استبدادی و نامگذاری،
در فریز 20- درجه سانتی‌گراد صورت گرفت. سپس ۰/۵ گرم از
نمونه برگ خشک شده ده هزار بیابیدی شد و به
میکروتیپ‌های مشخص انتقال داده شد. پس از این، به هر کرک
از میکروتیپ‌ها ۱۵۰۰ میکروتری خلاصی می‌گذراند.
مانوان- استیک آبی (نسبت 85 به 15) اضافه شد و به مدت 24 ساعت در یخچال تهیه شد. سپس میکروتیوب‌های حاوی نمونه، در سانتریفیوژ قرار گرفتند و مدت ه دقيقه با سرعت (10000 rpm) سانتریفیوژ شد. محلول روشنوار که حاوی عصاره گیاه بود، با دقت توسط میکروتیوب شد و به میکروتیوب‌های دارای مشخصات جهت ارزیابی انقلاب داده شد. میکروتیوب‌ها در دمای 20 درجه سانتی‌گراد برای استفاده در مراحل بعدی آزمایش قرار داده شدند. این عمل برای نمونه‌های هر یک از فرضیه‌های ترانسیت، باتیست و پاییز به صورت جداگانه در سه تکرار انجام شد (نمونه‌های جمع آوری شده سه بار عصاره گیری شدند). میکروتیوب‌های حاوی عصاره در مدت 20 درجه سانتی‌گراد برای استفاده در مراحل بعدی نیز دامنه شدند.

تعیین نیعیاکیدانی (فعالیت آنتی‌کاپیدانی) با DPPH (استرداده زبان اصلی دبای دیه-1) ارزیابی شد (آقایی، و (and Hadjipavlou-Litina 2005 دارای منظور، با استفاده از سیمپلی 50 میکرومتر از عصاره 30 میلیلیتر رقیق شده، داخل میکروتیوب ریخته شد. سپس 95 میکرومتر محلول 1/100 در اثر میکروفیتوخ‌ها به خوبی نکان داده که آن اضافه شد. کنتل و یک لیزر نیز به ترتیب با DPPH ترمال نرمال محلول 1/100 نرمال در دمای و 1 میلیلیتر حلال استخراج آماده شد. سپس میکروتیوب‌های به خوبی نکان داده که آن در دمای 1/100 درصد. نتایج دقتی در فضای لازم در آن استخراج آماده شد. به همراه 30 اضافه کننده به حالت فلبسی می‌باید. در این مطالعه ترکیبات فلزی اندوزگری شده شامل کارتوئزیکسید، کلنیچ، اپی‌الکانیچ، كربنیکسید، گالانوئید و کافئین بود. برای اندازه‌گیری ترکیبات فوق، شناسایی به ترتیب در طول موج‌های 500، 350 و 280 نانومتر نظیم شد. اینها هر 50 میکرومتر از محلول‌های استخراج آماده شدند و در طول موج‌های مربوطه تریک شدند و پیک‌های مربوط به استخراج آماده به دست آمد. برای جدایی اندوزگری مقادیر این ترکیبات در عصاره به همراه دیگر یک، مقدار 50 میکرومتر از نمونه در هر یک از طول موج‌ها دسته‌گاه تریک شدند. از

ص. 100%\%DPPHsc = \left(\frac{A_{cont} - A_{a}}{A_{cont}}\right) \times 100$

\%DPPHsc
برای رسم نمودارها از نرم افزار Excel استفاده شد.

نتایج و بحث:

تغییرات فعالیت DPPH: تغییرات فعالیت آنتی اکسیدانی عصاره گیاهی چای در چهار کلون تحت مطالعه، برابر با 3 گرفت. نتایج حاصل از فعالیت پاک‌سازی رادیکال آزاد نشان داد که کلون 100 بهار، دارای کمترین میزان فعالیت آنتی اکسیدانی بود و در برداشت‌های دیگر به تدریج بر فعالیت آنتی اکسیدانی آن افزود شد (شکل 1).

پیش برداشت: با کلون 100 فعالیت آنتی اکسیدانی کلون 515 نین از برداشت اول دارد و در کلون‌های دیگر کاهش دارد.

همانطور که مشخص است، میزان بالایی از فعالیت آنتی اکسیدانی در چهار کلون بررسی گیاه چای استفاده شده. به طوری که کلون‌های 173 و 178، نسبت به 100 و 451 پایه مقدار بالای 99/1 نشان دادند. در کلون‌های 400 و 541، میزان فعالیت آنتی اکسیدانی از اولین برداشت تا سومین برداشت روند افزایشی نشان داد. در حالیکه در کلون‌های 173 و 178، نسبت به 100 و 451 پایه مقدار بالای 99/1 نشان دادند. در کلون‌های 400 و 541، میزان فعالیت آنتی اکسیدانی از اولین برداشت تا سومین برداشت روند افزایشی نشان داد. در حالیکه در کلون‌های 173 و 178، نسبت به 100 و 451 پایه مقدار بالای 99/1 نشان دادند.

آزمایش استخراج عصاره، جهت سنجش میزان پروتئین از عصاره گیاه چای استفاده شد. به منظور اندازه‌گیری، ۵ گرم مایع مایع گیاه به کمک نیترول مایع پودر و به آن بافته شد. نتایج پیش‌بینی‌ها در مدول ۴ درجه سانتی‌گراد با دور ساخت Hettich سانتریفیوژ (سانتریفیوژ پیچوال مدل کشور آلمان) به کمک محلول الکتریکی با دقت برداشت شده و به میکروتیپ دیگری انتقال یافته و به جهت ان‌جمن آزمایش استفاده شدند.

جهت تعیین محصول پروتئین عصاره استخراج گیاه، از روش برادفورد (1976) استفاده شد. در این روش از پروتئین کاما گلوپولین پلاسمای گاوی (BSA) به عنوان پروتئین استاندارد استفاده شد. توجه می‌کنند تا مقدار نسبت به مقدار استاندارد، مانند استاندارد استفاده شده و در نتیجه مقدار ۵۰۰ (ppm) SPSS مقدار مخصوص است. با استفاده از نرم‌افزار SPSS، استاندارد معیاری در پیش‌بینی مقدار ۵۰۰ (ppm) SPSS مقدار مخصوص است.

_alertes: با استفاده از نرم‌افزار SPSS، استاندارد معیاری در پیش‌بینی مقدار ۵۰۰ (ppm) SPSS مقدار مخصوص است.
ب) تغییرات محیطی کاتجین در کلون‌های ۱۰۰، ۲۷۸ و ۴۵۱ و DNA غیاب چای در فصل روشی بهار، نابیستان و پاییز میانگین‌هایی که حداکثر دارای یک حرف مشترک در سطح ۵ درصد آزمون داراً اختلاف معنی‌داری ندارند.

در درصد فعالیت پاک‌سازی رادیکل آزید کلون‌های ۱۰۰، ۲۷۸ و ۴۵۱ و DNA غیاب چای در فصل روشی بهار، نابیستان و پاییز میانگین‌هایی که حداکثر دارای یک حرف مشترک در سطح ۵ درصد آزمون داراً اختلاف معنی‌داری ندارند.

کرومانتوگرام‌ها نشان دادند که کلون پاییز در فصل روشی بهار و دو امکان مقداری در کلون‌های ۱۰۰ و ۴۵۱ در فصل نابیستان و پاییز و دارای بیشترین مقدار کاتجین بودند (شکل ۲). بطور کلی می‌توان گفت که هر یک از کلون‌ها در فصول مختلف فصلی، دارای مقادیر متفاوتی از کاتجین بودند.

در فصل روشی بهار و دو امکان مقداری در کلون‌های ۱۰۰ و ۴۵۱ و DNA و در فصل نابیستان و پاییز و دارای بیشترین مقدار کاتجین بودند. در حالتی که دو امکان مقداری در کلون‌های ۱۰۰ و ۴۵۱ و DNA و در فصل روشی بهار و دو امکان مقداری در کلون‌های ۱۰۰ و ۴۵۱ و DNA در فصل نابیستان و پاییز تغییرات نسبی در طبیعت نشان دادند و تغییرات عمده‌ای در فعالیت آنتی-اسیدانی شاه‌پرایی یافته شد. تغییرات عمده‌ای در فعالیت آنتی-اسیدانی شاه‌پرایی یافته شد.

در تغییرات عمده‌ای در فعالیت آنتی-اسیدانی شاه‌پرایی یافته شد. تغییرات عمده‌ای در فعالیت آنتی-اسیدانی شاه‌پرایی یافته شد. تغییرات عمده‌ای در فعالیت آنتی-اسیدانی شاه‌پرایی یافته شد.
تغییرات فصلی برخی از ترکیبات شیمیایی در چربی کل‌ی...}

بند اول:
برداختن و مشاهده کردن که میزان فلئی‌کیهای مثل ای‌کاتجین کالت و ای‌گالکاتجین کالت، در ماه‌های گرم سال بیشتر و در مقابل، میزان ای‌گالکاتجین و کاتجین کل در ماه‌های سرد سال بیشتر بود. آنها این تغییرات را تأثیر یک یا همه عوامل مختلف مانند رطوبت، شدت تابش و... بود.

بند دوم:
تغییرات محیطی کاتجین: محیط‌های محیطی کاتجین عصاره‌ها. توسعه HPLC دستگاه Wargon, et al. (2011)

بند سوم:
تغییرات کلرونزیکسید: محیط‌های کلرونزیکسید عصاره‌ها مورد مطالعه در شکل ۵ نشان داد شد است. با توجه به تغییر و تحلیل داده‌های کروماتوگرامها مشاهده شد که برداشت بهاری کلون DN بیشترین میزان این ترکیب بود.

بند چهارم:
فیل‌آلات آمیتیالیس که آن‌زیم کلیدی در بیوسترو حلقوی کاتجین می‌باشد، بستگی دارد. وقتی که گیاه در سایه کار می‌گردد (دور از نور)، فعالیت این آنزیم به شدت کاهش می‌یابد. بیوسترو کاتجین‌ها همچنین با افزایش دما، احتمالاً به عنوان پایه بیوسترو این ترکیبات در گرم و حالت نش، افزایش می‌یابد.

بند پنجم:
همچنین مقدار کاتجین به وضعیت سیلوگرافی مناطق چاپ‌کاری بستگی دارد و مقدار آن بود.
شکل 3- تغییرات محتوای ای پال ستاتین در کلرولاژهای ۱۰۰، ۲۷۸ و ۴۵۱ و DN گیاه چای در سه فصل رویشی بهار، نابستان و پاییز. میانگین هایی که حداکثر دارای یک حرف مشترک در سطح ۵ درصد آزمون دانکن اختلاف معنی داری ندارند.

شکل 4- تغییرات محتوای کلرولاژیکاسید در کلرولاژهای ۱۰۰، ۲۷۸ و ۴۵۱ و DN گیاه چای در سه فصل رویشی بهار، نابستان و پاییز. میانگین هایی که حداکثر دارای یک حرف مشترک در سطح ۵ درصد آزمون دانکن اختلاف معنی داری ندارند.

شکل 5- تغییرات محتوای کلرولاژیکاسید در کلرولاژهای ۱۰۰، ۲۷۸ و ۴۵۱ و DN گیاه چای در سه فصل رویشی بهار، نابستان و پاییز. میانگین هایی که حداکثر دارای یک حرف مشترک در سطح ۵ درصد آزمون دانکن اختلاف معنی داری ندارند.
نگیریت فصلی برخی از ترکیبات شیمیایی در چهار کلون چای

سینامیکاسید (شامل کافئینکاسید فرولیکاسید و پاراکافئینکاسید) با کونکسید (Quinic acid) گفته می‌شود که درای اورملینی ساییدنی بالایی است (Clifford et al., 2003; Altunkaya, 2014) کلروژنیکاسید کلونهای ۱۰۰ و ۷۲۸ در سه برداشت مختلف تفاوت چندانی مشاهده نمی‌شود. اما در برخی از کلونهای کلونهای ۴۵۱ و ۶۴ در فصول مختلف، تغییرات معنی‌داری مشاهده شد که نشان می‌دهد عامل محیطی در این کلونها تاثیرگذار بوده است. صبایی و همکاران (۱۴۳) بیان داشتند که در تغییرات محیطی، بر محتوا کلروژنیک اسید گیاه افزوده شده است. گزارش شده است که بیوستنشتی ها نه تحت تأثیر زئینیک غیب نیست بلکه به توجه به انگیزه محیطی (Aliabadi-Farahani et al., 2009):

تغییرات محتوا کلونهای ۱۰۰ و ۴۵۱ در فصل پاییز مشاهده شدند. این تغییرات معنی‌داری نداشتند. (از گزارش یکی دیگر)

در برداشت بهره بیشترین و در برداشت نابسامان کمترین میزان این ترکیب را داشت.

کلونهای ۱۰۰ از برداشت اول تا برداشت سوم روند افزایشی مشاهده شد. در حالت کلونهای ۷۸۷ و ۴۵۱ در سه برداشت مختلف، تفاوت معنی‌داری نداشتند. (از گزارش دیگری)

در برداشت بهره بیشترین و در برداشت نابسامان کمترین میزان این ترکیب را داشت.

کلونهای ۷۸۷ و ۴۵۱ در سه برداشت مختلف، تفاوت معنی‌داری نداشتند. (از گزارش دیگری)

در برداشت بهره بیشترین و در برداشت نابسامان کمترین میزان این ترکیب را داشت.

کلونهای ۷۸۷ و ۴۵۱ در سه برداشت مختلف، تفاوت معنی‌داری نداشتند. (از گزارش دیگری)

در برداشت بهره بیشترین و در برداشت نابسامان کمترین میزان این ترکیب را داشت.
شکل 6- تغییرات محتوای کلسیم در کلونهای ۱۰۰، ۲۷۸ و ۴۵۱ و DN گیاه چای در سه فصل رویشی بهار، ناپیاز و پاییز. میانگین هایی که حداقل دارای یک حرف مشترک در سطح ۵ درصد آزمون داتکن اختلاف معنی‌داری تندانند.

شکل 7- تغییرات محتوای پروتئین کل در کلونهای ۱۰۰، ۲۷۸ و ۴۵۱ و DN گیاه چای در سه فصل رویشی بهار، ناپیاز و پاییز. میانگین هایی که حداقل دارای یک حرف مشترک در سطح ۵ درصد آزمون داتکن اختلاف معنی‌داری تندانند.

پروتئین نسبتاً بالایی برخوردارند. می‌تواند برای تولید چای سبز، بیشتر مورد توجه واقع شود و کلونهای با سطوح پروتئین کمتر نیز جهت تولید چای سیاه مورد استفاده قرار گیرند.

نتیجه‌گیری کلی

نتایج حاصل از این پژوهش نشان داد که کلونهای ۱۰۰، ۲۷۸ و ۴۵۱ در موارد مقایسه حاصل از ترکیبات فلزی و محتوی پروتئین در سه برداشت مختلف در شرایط باغ بوندند و احتمالاً...
تغییرات فصلی برخی از ترکیبات شیمیایی در چهار کلون چای

قلم:

رضازاده، ش. پژوهان، د. عطایی، ب. پیرغلی همدانی، م. و تیمور زاده، ر. (۱۳۸۵) بررسی تغییرات فصلی فلزاتونیدهای گیاه Ginkgo biloba (E. در ایران. فصلنامه گیاه دارویی، سال ششم، شماره ی بیست و یکم، ۱۱-۱۹.

علاوه بر: م. (۱۳۹۱) گزارش سالانه ی پژوهش‌های تحقیقاتی چای. مرکز تحقیقات چای، صفحه ۱-۱۰۰.

مصوبه: غ. (۱۳۸۸) پژوهشی و تکنولوژی فرآوری چای از آغاز تاکنون. انتشارات علمی گیاهان.

تصویر: راد. ا. احمدی، ج. اصغری، ب. و حسینی، م. (۱۳۹۳) بررسی اثر شکاف‌های خشنکی و شوری بر میزان ترکیبات فلزی گیاه Thymus vulgaris L. طبیعت ایران.

