تغییرات فصلی برخی از ترکیبات شیمیایی در چهار کلون چای (Camallia sinensis L.)

منصور افشار محمدیان*، ساره ابراهیمی نوکتده، و مریم ساسی
گروه زیست شناسی، دانشکده علوم پایه، دانشگاه گیلان، رشت

(تاریخ دریافت: 17/09/1395، تاریخ پذیرش نهایی: 31/03/1396)

چکیده:
چای یکی از قدیمی‌ترین نوشیدنی‌های جهان محسوب می‌شود و ترکیبات موجود در شاخه‌های چای چا با اثری به شرایط آب و هوایی فصل، نوع زمین و سن شاخه متفاوت هستند. در این تحقیق، شاخه‌های چای شامل یک گونه راسی و دو بُرگ مجازی از گونه های 100، 278، 451 و DN در سه فصل روش‌های تهیه، تابستان و پاییز از مرکز تحقیقات چای کشور (لاریجان) جمع آوری شد. پس از عصاره گیری نمونه‌ها، میزان تغییرات فصلی در ترکیبات هدف‌نظر (DPHH) کلزاک‌ها، کفرون‌ها و پروتئین‌کل ارزیابی شد. نتایج این پژوهش نشان داد که تغییرات آنتی‌اکسیدانی کلون‌های 100، 278، 451 و DN در سه فصل مختلف تغییرات ناجی را نشان داد. این تاثیر تأثیر تغییرات فصلی را بروی ترکیبات شیمیایی شاخه‌های چای چای دارد.

کلید واژه: پروتئین‌کل، چای، ظرفیت آنتی‌اکسیدانی، کفرون‌ها، کلزاک‌ها

مقدمه
چای یکی از گیاه‌های مصرفی دنیایی و مهم‌ترین گیاه‌درمانی (Camallia sinensis) است. بر اساس شاخه‌های Camelliaceae مختلف از جمله یکی فلفل ها، گروه‌های و مصرف موجب شدن ترکیبات شیمیایی و زیستی است که دارای خواص آنتی‌اکسیدانی و آنتی اکسیدانی هستند. نتایج چای نیز به عمل و تغییرات ترکیبات در فیلی فلفل آورده و در تاریخ 30 درصد مادهی آنتی‌اکسیدانی جوان چای را تشکیل می‌دهد. پلم‌های سبز و در این زمینه، شیمیایی اصلی در چای هستند و شامل پروتئین‌ها، کافئین‌ها، فلافون‌ها، ایزوفلانول‌ها و غیره می‌باشد. (Halliwell, 1995). پلم‌های سبز در چای به عنوان یکی از آنتی‌اکسیدان‌های قوی‌ترین که اغلب

*نویسنده مسول، نشانی پست الکترونیکی: afshar1357@gmail.com
چای از منابع اصلی کافی ترکیبات طبیعی است و به طور معمول، هر گرم برک خشک چای دارای ۴۰۰-۴۰۰۰ میلی‌گرم کافین است. کافین از نظر داروسنجی یک ماده فعال محصول می‌شود و بسته به میزان مصرف، اثرات را مانند: افزایش حالت قلبی‌های عصبی مزج، افزایش هورسیاری و تمرکز کارخانه‌ای (با مصرف متوسط و نه زیاد)، گشادکننده مجاری نظامی، افزایش جریان خون کلیوی، افزایش ورد اکسیژن به ماهیچه‌های قلبی و سایر بدنی واکنش‌ها ویژه در بدن انسان می‌کند (معمر، ۱۳۸۸). پروتئین‌ها از جمله مهم‌ترین مواد برک سبز چای می‌باشند که در فراوانی تولید شکسته شده و به اسیدهای آمینه تبدیل می‌شود. از نظر بویشی، هرگاه مقدار پروتئین در گیاه حد معینی تغییر نمی‌یابد، موجب کاهش اسیدولی و در نتیجه تند کیفیت و مرگ‌بیماری می‌شود. طور کلی، مقدار پروتئین در برگ سبز چای پروتئین دانه در زیر شرایط سالمی، به مقدار قابل ملاحظه‌ای افزایش پیدا می‌کند. استفاده از این گونه برک چای که حاوی مقدار بالاتری از پروتئین‌هاست، در تولید چای سبز مهم‌ترین مصرف نمی‌شود. در حالی که در تولید چای آب فشار درصد پروتئین‌های برگ سبز چای بیشتر باشد، چای تولید شده از مرغوب‌ترین کیفیت بیشتر برخوردار خواهد شد.

مطالعات در رابطه با تغییرات فیزیکی چای در فصول مختلف برداشت در کشورهای مختلف انجام شده است. اما نتایج تحصیلاتی کمی در این رابطه در ایران صورت گرفته است. گزارش‌هایی وجود دارد که نشان داده‌اند میزان ترکیبات آنتی‌اکسیدنتی برگ چای با تغییرات آب و هوا، تاریخ گونه‌های سی و برک‌ها تغییر می‌یابند. تثبیت‌داده و همکاران (۱۳۸۷) به مطالعه میزان تغییرات ترکیبات نکلی هم در چای سبز (درم هیریچ چینی) سعی آوری شده و این مشاهده نشان دهنده این است که چای برداشت در فصول مختلف به پروتئین و بازدارند که گیاهان چای برداشت شده در فصل بهار و تابستان، بدتر می‌باشد. این مشاهده به گیاهان قابل حاصل از برداشت بازدارن بوده. آنها دو و نیز میزان درایفت نور خورشید را عامل مهمی در مقدار بالای پلی Wei فنل‌های گیاهان چای فصول بهار و تابستان معرفی کردن.
نتیجه‌گیری‌های برخی از ترکیبات شیمیایی در چهار کلون‌چای

نمونه‌برداری: شاخص‌های جوان‌چای شامل یک جوانه راسی و دو جوانه مجاور، از کلون‌های ۲۸۷، ۴۵۱ و کلون خارجی DN از مرکز تحقیقات چای کشور واقع در شهر لاهیجان انجام شد.

از چندین متغیر از میکروویژن‌ریزی و پل‌آمت در کلون‌های ۱۵ و ۷۰ و همکاران (۲۰۱۱) که برخی از ترکیبات موجود در برگ چای

۱۰ محقق انتخاب می‌توانند تحت تأثیر عوامل محیطی افرای یا کاهش یابد و همکاران (۲۰۱۱) در پژوهشی که بر روی Wang دو کلون مختلف گیاه چای در کشور چین پژوهش داشتند که بین میزان و نسبت تعداد گل‌های همبستگی شدید وجود دارد و میزان روند یولی تنها فلزی در میزان بیشتر کلمات از انواع این‌طوریها به تنهایی، نادیده‌گیری یاده برگ‌های چای جوان، تردد و شادابی که از بوته‌های چای پایدار

می‌شوند، باعث رشد و بهبود و انعقاد می‌شود. میزان تعداد گیاه‌های نوعی گیاه برای

پیشانی هستند. ترکیبات مهم ایجاد کندنی نشکند و خطر در چای، گیاه‌های جوان و نسبت در در قسمت بی‌حقیقی گیاه‌های همبستگی شدید

کلاسیکهای استاندارد یک گیاه چایی در ایران از اولین این درسی‌ها موفق است. برداشت گری چشی سیز

برداشتی از اولین ایجاد با توجه به شرایط آب و هوایی، متقاوت است. این پژوهش با

 пункты و برگ‌های آب و هوایی: نمونه‌برداری از مرکز تحقیقات چای کشور واقع در شهر لاهیجان انجام شد. این شرکت در ناحیه کوه‌بانیایی در ۵۰ درجه و ۱۲ دقیقه شرقی و در ۷۸ دقیقه شمایی است. این در ۳۰ دقیقه و ۱۲ دقیقه شرقی جغرافیایی فاراد، در تیزیان اقلیم لاهیجان گرم و مرطوب است. در

زمستان، ابتدا یک تا گرم شدید مورد و سپس بر نکرد. رطوبت بین ۳۷ تا ۷۹ درصد بوده و این گاهی به صدودصد نیز مرسد.

استخراج عصاره: با نظور نهایی عصاره، از روش عصاره‌گیری بخشی و آرآراوا (۲۰۰۶) استفاده شد. به این ترتیب که مقداری از نمونه‌های نهایی هر یک از دو کلون‌ها در فرایند نگهداری شده بود، به معادل ۸۸ گرم در دو کلون‌های ۴۵۱ و ۲۸۷ از میکروتیپ‌های مشخص انتقال داده شد. پس از آن، به هر کیک از میکروتیپها، ۱۵۰۰ میکرولیتر خالص.
منوان- استیک آمید (نسبت 85 به 15 اضافه شده به) 24 ساعت در یخچال نگهداری شد. سپس میکروتروپ‌های حاوی نمونه، در سانتریفیوژ قرار گرفته و مدت د ه دفنیه با سرعت (rpm) 10000 سانتریفیوژ شد. محلول روانوش که حاوی عصاره گیاه بود، با دقت توسط سیل‌سنج جدا شده و به میکروتروپ‌های با ذکر مشخصات جهت ارزیابی انتقال داده شد. میکروتروپ‌ها در دما 20-26 درجه سانتی‌گراد برای استفاده در مراحل بعدی آزمایش قرار داده شدند. این عمل به‌منظور بررسی بهتر، تابستان و پاییز به صورت چهارم راه‌الútjan انجام شد (نمونه‌های جمع آوری شده به سی بار عصاره گیری شدند. میکروتروپ‌های حاوی عصاره در دما 20-26 درجه سانتی‌گراد برای استفاده در مراحل بعدی نگهداری شدند.

تعیین فعالیت آنتی‌اکسیدانی: فعالیت آنتی‌اکسیدانی با استفاده از سنجش پاک‌سازی رادیکال آزاد (DPPH) بر از کنی (Kontogiorgis، 2005) و Hadjipavlou-Litina 2005 انجام شد. جداسازی ترکیبات فلئی در یک سیستم Waters، C18 (Dublin Ireland) با استفاده از دو حلال A (5 درصد متانول) و B (5 درصد آب: 95 درصد pH با حلال‌ها از استیگی‌سازی استفاده شد. حلال‌های قابل از استفاده با استفاده از سیستم سیستم و HPLC (Sartorios) فلئی استواتسولوئر (۴ میلی‌لیتر) در دما ۱۵۰ درجه سانتی‌گراد استخراج آماده شد. سپس میکروتروپ‌ها به خوبی نکات داده شده دما ۳۰ دقیقه در دما ۵۰ درجه سانتی‌گراد برای استخراج آماده شدند. و در دما ۵۰ درجه سانتی‌گراد برای استخراج آماده شدند.

%DPPH_{sc} = \left( \frac{A_{cont} - A_{amp}}{A_{cont}} \right) \times 100$

Downloaded from jisp.ijut.ac.ir at 17:32 IRST on Saturday October 5th 2019
تغییرات فصلی برخی از ترکیبات شیمیایی در چربی کلون چای.

نمونه‌های تهیه شده برای سنگش ترکیبات فوق استفاده شد. همه آن‌ها در 10 تکرار آزمایش شد. روش‌ها و انواع آزمایش‌های کرومئوتگرام‌های حاصل از تزریق هر نمونه در هر تیمار، با کرومئوتگرام‌های به دست آمده از تزریق استانداردهای مربوطی مقایسه و در نهایت غلظت این ترکیبات برحسیب میکروگرم در یک گرم وزن خشک محاسبه شد.

سنگش پروتئین‌کل: به منظور سنگش فعالیت‌های پروتئین کل نمونه‌های گیاهی، از نظر استخری مناسب شامل بافر پتاسیم- Poly vinyl poly (PVPP) pH= 5/2 mM فسفات Ethylene diamine tetra acetic (EDTA) %2/ و 0.1 mM (acid)

برای استخراج عصاره، جهت سنگش میزان پروتئین از نمونه‌های کت‌گیه گیاهی چای استفاده شد. به‌دین منظوره این‌‌ها 50 گرم پالت نازدیک به کمک نترژن مایع پودر و به آن بفر استخراج غلظت اضافه شد. بسی میزان‌ها در مدت 15 دقیقه درجه‌سانتی‌گراد با دندان سوئینگ شدید سانتریفیوز سانتریفیوز بی‌تاخیر مدل Hettich ساخت کشور آلمان. بعد از سانتریفیوز محلول روبی با دقت برداشته شده و با میکروتیپ دیگر انقلاب یافته و جهت آن‌ها آزمایش استفاده شدند.

جهت تعیین محتوای پروتئینی عصاره استخراج شده، از روش براونرود (1976) استفاده شد. در این روش از پروتئین کاکا گلوبولین پلی‌لیس‌کاگی (BSA) به عنوان پروتئین استاندارد استفاده شد. برای رس میزان محتوای استاندارد این استخراج شد. به‌دین این‌‌ها 250 است. این ماده با آمینوسیدهای آرمانیک و قارچ واکنش می‌دهد. به دین منظوره استخراج شده، به 200 میلی‌لیتر مصرف براونرود ضافه‌های میوئولیکول‌ها پس از محلول شدن، به مدت 15 دقیقه در تزریق قرار گرفته‌اند. جذب هورتم‌ها در طول موج 595 نانومتر خوانی شد و غلظت پروتئین کل بر اساس مقایسه با منشأ استاندارد محاسبه شد.

تجزیه و تحلیل آماری داده‌ها: جهت آنالیز داده‌ها از نرم افزار 19 و برای مقایسه میانگین‌ها از آزمن داکس و SPSS 19 استفاده شد.
میانگین ها که حداکلی دارای یک حرف مشترک در سطح 5 درصد آزمون دانک اختلاف معنی داری دارند.

شکل 1- درصد فعالیت پاکسازی رادیکال آزاد کلونهای 100، 278، 451 و DN گیاه چای در سه فصل روبیش بهار، تابستان و پاییز.

شکل 2- تغییرات محتوای کانچین در کلونهای 100، 278، 451 و DN گیاه چای در سه فصل روبیش بهار، تابستان و پاییز. میانگین هایی که حداکلی دارای یک حرف مشترک در سطح 5 درصد آزمون دانک اختلاف معنی داری دارند.

در مطالعه، تغییرات محتوای کانچین در تشخیص اثرات برخی از شیوه‌های سیب و چای خشک در دوره‌های مختلف برداشت بر حساب شرایط گیاهی به خصوص نوبه‌نویسی نور خورشیدی فرچ مکند (Alexandr Ya, 2015). تغییرات محتوای کانچین در گیاه چای در نور زیاد افزایش و با سایه کاهش می‌یابد. این بدین‌هده به فعالیت HPLC مورد بررسی قرار گرفته.
تغییرات فصلی برخی از ترکیبات شیمیایی در چربی کلمه‌وار

دانگان که هر آزمایش در بستر تحت تغییرات فصلی قرار گرفته، تغییراتی در ترکیبات شیمیایی چربی کلمه‌وار را به خود می‌بخشد. همچنین در این آزمایشات تغییراتی در ترکیبات شیمیایی چربی کلمه‌وار بیان شده است. تغییراتی که در بستر تحت تغییرات فصلی قرار گرفته، تغییراتی در ترکیبات شیمیایی چربی کلمه‌وار را به خود می‌بخشد. همچنین در این آزمایشات تغییراتی در ترکیبات شیمیایی چربی کلمه‌وار بیان شده است.

دانگان که هر آزمایش در بستر تحت تغییرات فصلی قرار گرفته، تغییراتی در ترکیبات شیمیایی چربی کلمه‌وار را به خود می‌بخشد. همچنین در این آزمایشات تغییراتی در ترکیبات شیمیایی چربی کلمه‌وار بیان شده است. تغییراتی که در بستر تحت تغییرات فصلی قرار گرفته، تغییراتی در ترکیبات شیمیایی چربی کلمه‌وار را به خود می‌بخشد. همچنین در این آزمایشات تغییراتی در ترکیبات شیمیایی چربی کلمه‌وار بیان شده است.
شکل 3- تغییرات محتوای ایپی‌گالکاتین جنین در کلون‌های 100، 278، 451 و DN گیاه‌های چای در سه فصل روشی بهار، نابیان و پاییز. میانگین هایی که حداقل دارای یک حرف مشترک در سطح 5 درصد آزمون دانکن اختلاف معنی‌داری ندارند.

شکل 4- تغییرات محتوای کالسین در کلون‌های 100، 278، 451 و DN گیاه‌های چای در سه فصل روشی بهار، نابیان و پاییز. میانگین هایی که حداقل دارای یک حرف مشترک در سطح 5 درصد آزمون دانکن اختلاف معنی‌داری ندارند.

شکل 5- تغییرات محتوای کلرورزینکاسید در کلون‌های 100، 278، 451 و DN گیاه‌های چای در سه فصل روشی بهار، نابیان و پاییز. میانگین هایی که حداقل دارای یک حرف مشترک در سطح 5 درصد آزمون دانکن اختلاف معنی‌داری ندارند.
تغییرات فصلی برخی از ترکیبات شیمیایی در چهار کلون چای

(راضی‌زاده و همکاران ۱۳۸۵)

محتوای پروتین کل: تغییرات غلط در محتوای پروتین کل در فصول مختلف در کلون‌های مورد مطالعه در شش ماه داده شده است. برخی از انواع استاندارد جذب بر اساس جذب های خوانده شده با نمودن مقدار استاندارد پروتین بیشتر شدند.

شیب خط مشی و معادله حاصل از این نمودن، غلط پروتین کل نمودن محاسبه شد.

نتایج نشان داد که محتوای پروتین کلون‌های ۱۰۰ و DN در سه برداشت مختلف، تفاوت معنی‌داری نداشتند. همچنین کلون‌های ۷۸ در برداشت اول دارای کمترین کلون و ۴۵۱ در برداشت دوم دارای بیشترین میزان پروتین بود.

تورلی چای سبز، پروتین‌های آن تجزیه شده و آلدهیدها را میزانی که موجب ایجاد عطر و طعم چای می‌شوند. ولی همانطور که در مقدمه گفته شد، برای تولید چای سبز استفاده از گروه‌های کاهی مقدار بالاتر از پروتین‌های هستند. موجب کاهش رنگ و طعم می‌شود. در این پژوهش با توجه به شکل ۷ نشان داده شده است که مقدار تابستانه کلون‌های ۲۷۸ و ۴۵۱ و مقدار پاییزی کلون‌های ۲۷۸، ۴۵۱ و ۴۵۱ در برداشت بیشترین مقدار پروتین کلون بودند. محتوای پروتین کلون ۱۰۰ در برداشت مختلف، تغییرات ناچیزی را نشان داد.

معروف (۱۳۸۸) اعلام کرد که محتوای پروتین محسول به‌هر قبلاً نسبت به برداشت تابستانه پایین است و یکی از علل کم‌پیدایش چای به‌هر نسبت به نامه‌ای پروتین‌های آن معرفی کرده است. احمد و همکاران (۲۰۱۱) که Mentha longifolia بررسی می‌کردند تغییرات فصلی پروتین‌های یک چای پرداختنی مشاهده کردهند که محتوای پروتین بین گیاه در فصول مختلف دارای مقادیر متفاوتی است و بیشترین مقادیر پروتین این گیاه در برداشت اول دارای بیشترین وضعیت است، این مشاهده نمودند. این گیاه از پروتین بالا در برداشت پاییزی مشاهده نمودند.

کلون‌های ۴۵۱ در سه برداشت مختلف دارای مقادیر مختلفی از بیشترین پروتین بود، به طوریکه در برداشت اول دارای بیشترین و در برداشت دوم دارای کمترین مقدار کلون‌های بود. گزارشی نشان داد که مقدار این تغییر در ماه‌های مختلف سال در گیاه Lrupeus می‌باشد نابینا باعث گیاهی فصلی بوده است. گزارشی نشان داد که پروتین‌های این گیاه از فصل تابستان (نیم ماه) تا برف‌مان در فصل برداشت (۲۰۱۴)
شکل ۶- تغییرات محضیون کرونیسین در هکل‌های ۱۰۰، ۲۷۸، ۴۵۱ و DN گیاه‌های در سه فصل روبیپه، تابستان و پاییز. مانگین‌هایی 
که حداقل دارای یک حرف مشترک در سطح ۰ درصد آزمون داتن اختلاف معنی‌داری دارند.

شکل ۷- تغییرات محضیون پروتئین کل در هکل‌های ۱۰۰، ۲۷۸، ۴۵۱ و DN گیاه‌های در سه فصل روبیپه، تابستان و پاییز. مانگین‌هایی 
که حداقل دارای یک حرف مشترک در سطح ۰ درصد آزمون داتن اختلاف معنی‌داری دارند.

نتیجه‌گیری کلی
نتایج حاصل از این پژوهش نشان داد که هکل‌های ۱۰۰، ۲۷۸، ۴۵۱ و DN در دارای مقاومت منفی از ترکیبات فیلی و محضی 
پروتئین در سه برداشت مختلف در شرایط باغ بودند و احتمالاً
Ginkgo


From Turkish Tea Leaf (Camellia Sinensis L.). International Journal of Food Properties Vol 17, No 7.


