تأثیر تنش خشکی و اشعه ماوراء بنفش (UV-C) بر سیستم دفاع آنتی-اکسیدانی آنزیمی و غیر آنزیمی در سه رقم گندم (Triticum aestivum L.)

ژنب رضا ایل فر، سیامک فلاحي، اسماعیل فلیزاد

نویسنده مسئول، نشاني پست الکترونیکی: Gholinezhad1358@yahoo.com

چکیده:
تنش خشکی و اشعه UV به عنوان عوامل محیطی تنش‌زا اثرات زیان‌دار بر فنونده‌های فیزیولوژیک و رشد گونه‌های گیاهی داردند. لذا به Tricium منظور بررسی تاثیر تنش خشکی UV بر سیستم دفاع آنتی-اکسیدانی آنزیمی و غیر آنزیمی در ارقام مختلف گیاه گندم. (aestivum L.) امرآموزی گلدانه به صورت فاکتوریل در قالب طرح کلیه‌نماهایی به شکل تکرار در سال‌های ۱۳۹۴ اجرا گردید. غلبه اول شرایط محیطی موجب نشان‌داد که در شرایط تنش خشکی و اشعه UV محتواهای فلاؤنیدها در رقم "میوه" افزایش و در رقم "پیشگام" کاهش معناداری یافت در حالی که در هر دو شرایط (نشان خشکی و اشعه UV) محتواهای آنتی-اکسیدانی گیاهی در ارقام مختلف کاهش گذشت. در علاوه بر این تنش خشکی ترکیبات فنی را افزایش داد و موجب افزایش فعالیت آنزیم‌های آنتی-اکسیدان نظیر کاتالاز، سویروکسید دیژموز و پراکسیاز شد. محتواهای کربونه‌های محلول زنی تحت شرایط تنش خشکی افزایش معناداری یافت. در شرایط تنش خشکی، کاربرد اشعه UV محتواهای پروپونیا در کل این افزایش داد در حالی که این افزایش در شرایط بدون تنش خشکی ۲۲ درصد بوده است. افزایش فعالیت آنزیم‌های آنتی-اکسیدانی در هر سه واریانش مشاهده شد. همچنین محتواهای مالودی آلنی و پرولین در هر سه رقم UV-C مورد مطالعه افزایش یافت. اشعه UV باعث کاهش معنادار محتواهای کربونه‌های a و b کربونه کل شد. همچنین تیمار با اشعه UV باعث کاهش وزن خشک، رشد و سالنگی و طول ریشه و ساقه در هر سه رقم شد. کاربرد نمود تنش خشکی و اشعه UV باعث تشدید خارات وارده به گیاه شد. همچنین رقم "زاویه" با توجه به افزایش میزان فلاؤنیدها و آنتی-اکسیدانی نسبت به ارقام "میوه" و "پیشگام" رقم محروم به تنش خشکی شناخته شد.

واژه‌های کلیدی: آنتی-اکسیدان، اشعه UV، تنش خشکی، فلاؤنیدها، گندم

مقدمه:
فناکننده کاربرد مصرف فیتو‌خورا در در حال خشکی و افزایش سطح مناسب برای کثافتری کاسه می‌شود. در حالی که نیاز غذایی برای روز، به روز در حال افزایش است. نشان‌داده‌های فوق و نیز غذا را افزایش می‌دهد و تجمیع رادیکال‌های آنزیمی در گیاهان نیتیم به تنش خشکی و اشعه UV مشابه است. این افزایش در حال خشکی و اشعه UV باعث نمود تنش خشکی و اشعه UV باعث تشدید خارات وارده به گیاه شد. همچنین رقم "زاویه" با توجه به افزایش میزان فلاؤنیدها و آنتی-اکسیدانی نسبت به ارقام "میوه" و "پیشگام" رقم محروم به تنش خشکی شناخته شد.

Gholinezhad1358@yahoo.com
آنتوسیانین مورد بررسی قرار داده و مسئله نمودنده که ردش روایی به طور معنی‌داری کاهش بوده است (قاتی و همکاران، 2012). همچنین در آزمایش دگری شکر (Triticum aestivum L.) معنی‌دار نبوده است (Ganji Arjenaki et al., 2012). در آزمایش دیگری که در سال 1394 بر فراز گزارش شد (Salwa and Osama, 2014) با افتادن نسبت کم آب، صفه میزان بر رنگ‌یابی فلانودین، تکثیری (Triticum كری عجیف و همکاران، 2014) کل فلانودین یا کلی که در مقدار کمی در دموم (Triticum) کاهش معنی‌داری یافته بوده است (بلوچی و همکاران، 1385). تاکید ادبیات در دستور دموم کری عجیف و همکاران، 1385) نشان می‌دهد که این کاهش لغت دو عامل اصلی به‌کار رفته‌اند: عامل سطحی بر جویان می‌باشد. به علت راندمان تولید زرد و نیاز مکان کشتن آن در نقاط جهان و همچنین قابلیت یکپارچه نمونه بر فرد غلظی‌های شیمیایی و کیفیت فوق العاده غلظی‌های هیج غلظی نمی‌تواند با آن رقابت نماید (Al-Mahasne, 2006). با توجه به اینکه تأکید هیج تحقیقات در مورد تأثیر مناسب کتاب خشکی و اشعه UV-C بر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است لذا این یزحش با هدف بررسی تأثیر ارقام مختلف کنده که آن‌ها عده‌ای غلظی‌های انسان را تحت تأثیر قرار می‌دهد انجام نشده است L...
تأثیر نش خشکی و اشعه مارواره فیش (UV-C) بر پیستم دفاع آنتیاکسیدانی ...
آزمی‌ها توزیع بارفی فسفرات مسید 0/1 مولار (pH=7/5) حاوی (PVP) فلاز آزم (3/4% از برگ‌های انجام گرفت و روشناری پس از 20 دقیقه سنتی‌فایوز در دمای 4 درجه سانتی‌گراد با 2000 دور در دقیقه مورد استفاده قرار گرفت.

مسجس‌های کروبی‌کیده‌های محلول: ابتدا بخش هواوی و ریشه‌کی به وسیله دستگاه دوربین سیمپلی نظارت 7/6 سانتی‌گراد به مدت 38 ساعت خشک و آستانه 7/6 کرم از نمونه آسیاب شده نوین و درون لوله آزمایش حاوی 10 میلی‌لیتر آتانو/7/6 ریخته شد و به مدت یک هفته در دمای 4 درجه سانتی‌گراد قرار گرفت. سپس محلول‌ها با کاغذ وات و مصرف صاف گردید. در میان حفظ فراخور اضافی و ترکیبات دیگر به 0/5 محلول پنج میلی‌لیتر محلول 7/6 سالات روز و پنج میلی‌لیتر محلول هیدروکسید باریم 7/6 اضافه شد و محلول حاصل به مدت 10 دقیقه با سرعت 3300 دور در دقیقه سنتی‌فایوز شد. به 2 میلی‌لیتر محلول روتو نمونه‌ها پی اضافه شد. سی دقیقه پس از آماده سازي محلول‌ها، جدیب آن‌ها با دستگاه اسپکتروفوتوتر در طول موج 440 نانومتر قرائت شد. محتوای کروبی‌کیده‌های نمونه‌ها با استفاده از محاسبه‌ی استاندارد گل کورک بی‌ا و با واحد میلی‌گرم در گرم وزن خشک محاسبه شد (Sheilig, 1986).

مسجس محیطی پروتئین‌های محلولی همان محاسبه برای محاسبه‌ی پروتئین از روش براکداذ استفاده شد (Bradford, 1976).

برای این مقدار 0/1 گرم از ابتدا 24 ساعت و به‌گونه‌ای استفاده از افزایش جذب فعالیت‌ها همچون میزان تراکم‌ها مورد بررسی آزم (3/4% از 4 میلی‌لیتر تراکم و فشار از 15/4 میلی‌لیتر در دمای 4 درجه سانتی‌گراد قرار گرفت. سپس از 5 دقیقه جذب نمونه توزیع دستگاه اسپکتروفوتوتر در طول موج 595 نانومتر خوانده شد. از آن‌ها در گامی برای رسم منحنی استاندارد و تعیین محیطی پروتئین نمونه‌ها با واحد 1 mg/gDW استخراج آزم‌های سینتی‌آتی‌آکسیدان استخراج.
سنجش مالوندی آلنید (MDA): برای اندازه‌گیری مالوندی آلنید (MDA) 12 گرم بافت گیاهی تری مولکولربایش و پر 2 های گیاه با 2 میلیلیتر محلول تری کلرواستیکاسید (0/1 ٪) استرخراج و به مدت 15 دقیقه در 100000 rpm سانترفیوز شد. سپس 0/5 میلیلیتر از روش‌نار در مولول 17 تری کلرواستیکاسید 20 ٪ حاوی 2٪ تیوباربیوتیکاسیس مخلوط شده و به مدت 3 دقیقه در حمام آب چوج بای دمای 95 درجه سانتی‌گراد قرار داده شد. بعد از این مدت لوله‌ها را سریع در بخش سرد کرده و جذب آن را در طول موج 532 نانومتر در مقابل شاهد که با جای شهره‌ای محلول استرخراج است، اندازه گیری کرده و محتواهای نکوداشتگی در Excel تخمین داده شد. محدوده اندازه‌گیری ماده سنجش 1586-6120 هکتادات/میلیلیتر (FW = 118) بود. (Zhang et al, 2012)

میکرومول آلی‌کسیون در دقیقه به عنوان یک واحد آزمیز کاتالاز ارگینی شده (1997). (Obinger et al.)

نتایج و بحث:
تحمیل واریانس صفات: نتایج تجزیه واریانس آزمون نشان دهنده مقداری از تغییرات به صورت روز و همچنین اثرات متغیرهای داده‌ها بر صفات مورد مطالعه در جدول 1 آورده شده است (جدول 1).

مقدار میانگین صفات رشدی: مقایسه میانگین داده‌ها نشان داد که تری کلرواستیکاسید 0/1 درصد W به مدت 15 دقیقه در 120000 g سانترفیوز شده و روش‌نار مورد استفاده قرار گرفت. 540 میکرولیتر از عصاره به 5 میلی لیتر از محلول واکنشی شامل 10 میلی مولاری فسفات پانسیم و یک مولار دپیدی پاسیم اضافه شده و مخلوط حاصل به مدت 0 میلی لیتر از تاریکی به منظور انجام واکنش قرار گرفت. جای نمونه‌ها در 390 نانومتر توسط اسپکتروفوتومتر اندوزه گیری شد. مقادیر بر اساس میانگین استاندارد H2O2 نمود (Heath and Packer, 1968)

سنجش پرکسیدهورزن (H2O2): محلول استرخراج شده در تری کلرواستیکاسید (1/1 درصد W به مدت 15 دقیقه در 120000 g سانترفیوز شده و روش‌نار مورد استفاده قرار گرفت. 540 میکرولیتر از عصاره به 5 میلی لیتر از محلول واکنشی شامل 10 میلی مولاری فسفات پانسیم و یک مولار دپیدی پاسیم اضافه شده و مخلوط حاصل به مدت 0 میلی لیتر از تاریکی به منظور انجام واکنش قرار گرفت. جای نمونه‌ها در 390 نانومتر توسط اسپکتروفوتومتر اندوزه گیری شد. مقادیر بر اساس میانگین استاندارد H2O2 نمود (Heath and Packer, 1968)

محدوده اندازه‌گیری پرکسیدهورزن 108-1630 گرم ماده تری گیاهی با هالو خرد شده و درون لوله آزمایش دیجیتال شد. سپس 10 میلی لیتر سولفونالوسیلیک اسید 2/1 ٪ آن اضافه شد و نمونه‌ها درون یک بخش داده شد. سپس از سانترفیوز در 15000 دور به مدت 15 دقیقه در دما 4 درجه سانتی‌گراد، مقدار 2 میلی لیتر عصاره حاصل با 2 میلی لیتر نیتر نیتریدین و میلی لیتر اسیدتیک بی‌سایکل مخلوط شد. نمونه‌ها پس از قرار گیری در حمام آب گرم 80 درجه به
جدول 1- خلاصه نتایج تجزیه واریانس صفات مورد مطالعه در گیاه گندم

<table>
<thead>
<tr>
<th>میانگین مربوطات (MS)</th>
<th>درجه</th>
<th>منابع تغییرات</th>
<th>آزادي</th>
<th>تنش خشکی</th>
<th>UV</th>
<th>رقم</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین مربوطات (MS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کاربوهیدرات</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فلازونیپیده</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آنتوسیانینها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کاربوهیدرات</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رقم</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ضریب تغییرات (C.V.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** و * به ترتیب اختلاف معنیدار در سطح احتمال 1% و 5% و غیر معنیدار

موزارا، بهترین عمده منجر به نشان دهندری یونیقت پریمیدین سیكلو بودانت و پریمیدین پریمیدین می گردد که منجر به چشح در گیاهان می شود چنانچه چشح به فعل زن اتفاق افتاد ممکن است سبب خصائص افتاده در کاربردی تأثیر در گل دهی و غیره شود (1998). تأثیر پرتو UV بر گیاهان شامل تغییرات مورفولوژیک از جمله ایجاد میان گره های کوچک، کاهش وزن، کاهش بهبود، وزن گندم و ترش خشک

تنش خشکی، کاربرد اشعه UV طول میانگین در کلیه ارتفاع بجز رقم پیشگام حذف 7 درصد کاهش داد در حالی که این کاهش در شرایط بدون تنش خشکی جز در رقم پیشگام حذف 23 درصد بوده است. بررسی نتایج حاصل از اندازه گیری طول ریشه و ساعت نشان داد که اشعه UV-C باعث کاهش معنی دار طول ریشه و ساعت شد. این امر داشت که ترمینالی در نتیجه اثر اشعه موزارا، بهترین عملکرد در همانند سازی است. اشعه DNA تیپ 71- اشاعه موزارا، بهترین عملکرد در همانند سازی
جدول 1- مقایسه میانگین اثرات مختلف تنش خشکی (UV-C) بر سطح احتوای آنزیم پراکسیداز (سی آدنوزین دیفسه) و آنزیم کاتالاز در لیموسین (MS)

<table>
<thead>
<tr>
<th>میانگین مربوطات (MS)</th>
<th>درجه</th>
<th>آنزیم کاتالاز</th>
<th>آنزیم پراکسیداز</th>
<th>پروتئین</th>
<th>پرولین</th>
<th>روش تغییرات آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA</td>
<td>4/56</td>
<td>0/50</td>
<td>0/55</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>UV</td>
<td>1</td>
<td>0/50</td>
<td>0/55</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>فاصله UV × تنش خشکی</td>
<td>2</td>
<td>0/50</td>
<td>0/55</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>قیمت طرح × تنش خشکی</td>
<td>3</td>
<td>0/50</td>
<td>0/55</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
</tbody>
</table>

جدول 2- مقایسه میانگین اثرات مختلف تنش خشکی (UV-C) بر سطح احتوای مطلق مطالعه در گیاه گندم

<table>
<thead>
<tr>
<th>کاروئیل</th>
<th>تیمار</th>
<th>طول ساقه (سانتیمتر)</th>
<th>وزن ساقه (گرم)</th>
<th>(نشش خشکی × روم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/45</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>20/75</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>20/50</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>12/99</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>16/19</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
</tbody>
</table>

جدول 3- مقایسه میانگین اثرات مختلف اشعه UV × روم بر سطح احتوای مطلق مطالعه در گیاه گندم

<table>
<thead>
<tr>
<th>کاروئیل</th>
<th>طول ساقه (سانتیمتر)</th>
<th>وزن ساقه (گرم)</th>
<th>(اشعه UV × روم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33/21</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>32/24</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>43/25</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>42/49</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>45/13</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
</tbody>
</table>

اعاده که حروف مشابه دارند از نظر آماری اختلاف معنی‌دار در سطح احتمال 5 درصد بر اساس آزمون دانک ندارند.
جدول 4- مقایسه میانگین اثرات مقابل تنش خشکی × رنگ بر صفات مورد مطالعه

<table>
<thead>
<tr>
<th>تیمار</th>
<th>کارونتیون (محیط گرم بر گرم وزن ترکیه)</th>
<th>کرویه‌دارات</th>
<th>UV-C × رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین آبیاری نرمال</td>
<td>0.26 ab</td>
<td>0.26 ab</td>
<td>0.26 ab</td>
</tr>
<tr>
<td>میانگین خشکی نرمال</td>
<td>0.26 ab</td>
<td>0.26 ab</td>
<td>0.26 ab</td>
</tr>
</tbody>
</table>

اعدادی که حروف مشابه دارد از نظر آماری اختلاف معنی‌دار در سطح احتمال 5 درصد بر اساس آزمون دانکن ندارند.

ادامه جدول 4- مقایسه میانگین اثرات مقابل تنش خشکی × رنگ بر صفات مورد مطالعه

<table>
<thead>
<tr>
<th>تیمار</th>
<th>فلاتونتیون (نانولوم بر گرم وزن ترکیه)</th>
<th>MDA (حیاط بیکروکرم/پروتئین)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین آبیاری نرمال</td>
<td>0.26 ab</td>
<td>0.26 ab</td>
</tr>
<tr>
<td>میانگین خشکی نرمال</td>
<td>0.26 ab</td>
<td>0.26 ab</td>
</tr>
</tbody>
</table>

اعدادی که حروف مشابه دارد از نظر آماری اختلاف معنی‌دار در سطح احتمال 5 درصد بر اساس آزمون دانکن ندارند.

پیشگاه در شرایط آبیاری نرمال و بدون ابعاد UV و رنگ "میه" در شرایط تنش خشکی بسته آمد (جدول 2). تنش خشکی در مقایسه با آبیاری مطلوب، وزن خشک ریشه را حدود 21 درصد کاهش داد (جدول 2). در شرایط تنش خشکی کارونتیون UV طول ریشه را در کلیه ارقام حسود 35 درصد کاهش داد در حالی که این کاهش در شرایط بدون تنش خشکی 20 درصد بوده است. کاهش وزن خشک ریشه در گیاه گندم با افزایش تنش خشکی در سایر تحفقات نیز ریشه، وزن تر و خشک اندامه‌های هواوی، کاهش سطح برق و همبستگی کاهش تولید مثل و میانگین رشد و طول شدن هیپوکرتیل می‌باشد (ریهول زاده و خارا، 1376). مقایسه میانگین شاخص داد می‌تواند (250000 گرم) و در شرایط تنش خشکی کاهش داد، UV در شرایط بدون ابعاد UV (250000 گرم) وزن خشک ساقه به ترتیب از ارقام پیشگاه در شرایط بدون ابعاد UV جهت استفاده در ارزیابی اعمال ابعاد UV (جدول 3).
Salwa and Osama, 2014.

Glarowsky et al. (2006) reported that exposure of rice plants to UV-C radiation results in a decrease in the growth rate and the number of leaves. However, there was no significant effect on the dry weight of the plants.

McIntosh et al. (2007) also found that exposure to UV-C radiation negatively affected the growth and development of soybean plants. However, the effect was not as severe as that observed in previous studies.

Other studies have also shown that UV-C radiation can have a variety of effects on plant growth and development, depending on the specific conditions under which the plants were grown. For example, exposure to UV-C radiation has been shown to have a positive effect on the growth and development of certain types of algae, while it has a negative effect on the growth and development of other types of algae.

In conclusion, UV-C radiation can have a variety of effects on plant growth and development, and the specific effects observed will depend on a variety of factors, including the type of plant, the dose and duration of exposure, and the environmental conditions under which the plants were grown.

References:

شكل 1- تاثیر تنش خشکی (A) و انرژی UV (B) بر محتوای کاروتئین (mg / g . FW) در ارگان‌های مختلف گندم. اختلاف‌های میان مقادیر مربوط به ستون‌هایی که دارای حروف یکسان هستند در آماری نسبت به یکدیگر معنی‌دار می‌باشند (p < 0.05).

شكل 2- تاثیر تنش خشکی (A) و انرژی UV (B) بر محتوای کاروتئین (mg / g . FW) در ارگان‌های مختلف گندم. اختلاف‌های میان مقادیر مربوط به ستون‌هایی که دارای حروف یکسان هستند در آماری نسبت به یکدیگر معنی‌دار می‌باشند (p < 0.05).
تأثیر نشش خشکی و اشعه مارواره پفه (UV-C) بر پیستم دفع آنتی-کسیدانی... 165

محافظت می‌کنند (Gould et al., 2009). افزایش آنتی‌کسیدانی در شرایط نشش خشکی و اشعه UV-C وارد کردن گاز خشک شده است (Balouchi et al., 2009). ترکیبات جذب کننده UV-C می‌توانند به عنوان مشخصات یوندوکسی سیستم هیدرولوژیکی اسید مل آنتی‌کسیدانی است. همچنین این مطالعه در اکثر و در واقعیت تجربه پادکست به دلایل غیرهای گزارش شده است (Carvalho et al., 2002). واابًٞ ٔطشااٛاي وفثٛٞيااؽـار ٔطَّٛ سطز سبثيف دفسٛٞبي ٔبٚـاء ثٙفً ؼـ ٌيبٜ ٌٙاؽْ سٛواظ

Zhang et al., 2012, Yao, 2014, Yeo et al., 2011, تا نشش خشکی محط‌های آنتی‌کسیدانی را کاهش داد. این تحقیق از واابًٞ ٔطشااٛاي وفثٛٞيااؽـار (اًتی) و "میهن" و "زارع" افزایش می‌شود که معنی دارد نیود (جدول 4). پیشروین و کمترین فلوراتید به ترتیب از تیمار تنش خشکی و بدون اشعه UV-C تنش، خشکی و بدون اشعه UV-C افزایش آنتی‌کسیدانی در رقم "میهن" 6/21 میلی‌گرم و یون "میهن" 3/9 میلی‌گرم بر گرم وزن ترکیب و ویژه "میهن" 6/21 میلی‌گرم بر گرم وزن ترکیب باشد (آعیت 2). این تحقیق ترکیبات فلوراتید باعث افزایش می‌شود، و افزایش نشانه می‌باشد که در کسی و سبیعی از گیاهان (Syed et al., 2012; Buer et al., 2010).

مهلت ترین (766 میلی‌گرم بر گرم وزن ترکیب) و کمترین (1/2 میلی‌گرم بر گرم وزن ترکیب) محط‌های آنتی‌کسیدانی به ترتیب از این افزایش UV-C (افکایی) و "میهن" در شرایط نشش خشکی و اشعه UV-C و "میهن" در شرایط بدون اشعه UV-C افزایش محط‌های آنتی‌کسیدانی را کاهش داد. این تحقیق در محققانی به عنوان مشاهده است که در ارتباط با افزایش منشأه شده است (Oncel, 2004) تجربه نشانه و تجمع کربوهیدرات‌های محلول مثل گلکز، سرکوز، سوئلور و فروکتون است.

نتایج حاصل از بررسی محط‌های کربوهیدرات‌های محلول تحت تنشی نشش خشکی بین گروه‌های میلیدت (4) در شرایط شرایط "میهن" و "زارع" در شرایط "میهن" و "زارع" افزایش نشانه می‌باشد که در کسی و سبیعی از گیاهان (Syed et al., 2012; Buer et al., 2010).
ساير محفلات گزارش شده است (2004). به طور کلی پیشین میزان افزایش در رقم "پیشگام" تحت تنش خشکشی و بدون اشعه UV مشاهده شد. البته پیشین و کمترین محتوای پرولین به ترتیب از ارقام "وارژ" و "میهن" در شرایط تنش خشکشی بیشتر (جدول 2). تنش خشکشی محتوای پرولین را در کلی ارقام حضور 26 درصد افزایش داد (جدول 2). بررسی نتایج حاصل از این اعداد، برای محفلات پرولین نشان داد که خشکشی محتوای پرولین را به طور معنی‌داری افزایش داد. تجربه پرولین در انواع تنش‌ها مثل شوری، خشکشی، یونس و فلزات سگین در بسیاری از گیاهان به دلیل افزایش سنگین آن و یا کاهش تحریب آن گزارش شده است (Parida and Das, 2005; Kavi Kishor et al., 2005).

مطالعه روش گیاهی V-C در این مطالعه روز پرولین معنی‌دار نبود (جدول 1).

به طور کلی تغییرات محفلات پرولین فقط تحت تنش خشکشی معنی‌دار بود و در سایر تیمارها تغییرات معنی‌داری مشاهده نشد. نتایج حاصل نشان داد که محفلات شیرین محتوای بالقوه پرولین شد.

با اعمال تنش خشکشی فعالیت آنزیم سوپراکسیدومناز افزایش معنی‌داری پیدا کرد (جدول 4). در هر دو شرایط آلاین، تنش خشکشی، اعمال تنش اشعه UV تحت تنش محتوا SOD گردید (بدون اشعه UV) در تمامی ارقام مورد مطالعه افزایش داده به طوری که در شرایط تنش خشکشی، اشعه UV در مقایسه با شاهد بدون اشعه UV محفلات SOD نسبت به تنش آلاین در شرایط UV آلاین، تنش خشکشی اشعه UV تحت تنش SOD کاربردی اشعه UV در حضور 60 درصد افزایش داد. با کاهش اشعه UV حضور 30 درصد بود این موضوع است که تنش خشکشی نتایج اشعه UV بیشتر از SOD گردید (جدول 4).

بین سه رقم مورد مطالعه البته ترین تغییرات در رقم "پیشگام" مشاهده شد. به طور کلی پیشین و کمترین محتوای فعالیت "پیشگام" تحت تنش خشکشی مشاهده شد (جدول 4). سلول‌های گیاهی با اشکال تیپ شد. آنزیم "میهن" قبلا در شرایط آلاین و افزایش حضور این در شرایط تنش نشان داد است که در مقابل تنش آلاینی کاهش گردید (Abedini and Daei-Hassani, 2009).

در مقایسه با آنزیم SOD، تغییرات در DNA آنزیم گری، انرژی ترکیب‌ها و تحریب رشته DNA می‌باشد.

لحظه پرولین میانه‌های غشا ترکیب‌ها مثل مالوندی آلیدید، پروپناز، گلوتال، هیئانال، و
پراکسیدازها (III) که نش از آنها کسید کردن فنلها با استفاده از H2O2، داده است که گیاهان متحمل در مقابله با گیاهان غیرمتحمل دارای سیستم دفاع آنتی کسیدانی کارآمدتری بیان شد.

نتایج

نتایج حاصل از بررسی شایعات هوشیمیایی و فیزیولوژیکی ارگان مختلف گیاه کندم از ان تحقیق نشان داد که نش خشکی و اشعه UV-C بعث وارد آمدن آسیب به این گیاه شد. نش خشکی و اشعه UV موجب کاهش میزان کاربولیک، طول ریشه و ساقه و وزن خشک ریشه و ساقه شد. ارگان کندم جهت فضایی و ضبط آن میزان گیاه شد. ارگان مختلف گیاه عکس عملی به مقابله نشان داده است که UV-C دارای اثر افزایش میزان ترکیبات جاذب UV شد و UV-C در مقایسه با UV-C-GH یک گاز است که میزان متفاوتی از UV-C دارد و UV-C دارای اثر افزایش آنتی سیستمیت و فعالیت فعالیت آنتی سیستمیت و فعالیت UV-C این روش میتواند از دو روش بسیار و می‌تواند با این بان. خشکی و نش مارون افزایش، باعث افزایش نش آنتی سیستم و آنتی سیستمیت دارای آنتی سیستمیت دار نشان داد که با تغییر نتایج فعالیت آنتی سیستم دفاع آنتی کسیدانی همراه بود. بنابراین در نتیجه گیری کلی می‌توان گفته کرد که گیاه کندم تا حدی توانایی مقابله با نش خشکی و اشعه UV بیشتر دارد. ولی اگر شدت نش خشکی زیاد باشد، حتی محکم‌ترین منابع مقابله گیاه کندم با ان نش شدید نتایج کرد و از گیاه دفاع داشت ولی اشعه UV اثرات تخریبی کمتر نسبت به نش خشکی در گیاه کندم ایجاد کرد. اما کاربرد توان نش خشکی و اشعه UV تخریبی شدیدری بر گیاه کندم داشت.

نشان (Chawla et al., 2013) (Oriza sativa) (2015) و برخی تهیه و داده است که گیاهان می‌توانند در مقابله با گیاهان غیرمتحمل دارای سیستم دفاع آنتی کسیدانی کارآمدتری بیان شد.

تیمار که توسط اشعه UV باعث افزایش میزان فعالیت آنزیم‌های سوپراکسیدازسرز، پراکسیداز و کاراکائز مشابه Arabidopsis (Solania tuberosum، الذرو، سیب زمینی (Solanum tuberosum) در پاسخ به تأثیر اشعه UV گزارش شده (Brassica napus).

است بیشترین محتوای آنزیم کاتالاز مربوط به رقم "میمن" تحت نش خشکی و اشعه UV بود که این افزایش از نظر آماری معنی دار بود (جدول ۴). واکنش‌های جدید این نتایج سایر محفظ و مطابقتی دارد (Syed et al., 2012; Tossi et al., 2009).

نش خشکی سبب افزایش فعالیت آنزیم کاتالاز در گیاه کندم شد. در شرایط نش خشکی، کاربرد اشعه UV محتوای آنزیم پراکسیداز را افزایش داد در حالی که کاربرد اشعه UV در شرایط نمایه افزایش آنزیم پراکسیداز را کاهش داد (جدول ۴). به طور کلی بیشترین میزان فعالیت آنزیم کاتالاز مربوط به رقم "میمن" تحت نش خشکی و اشعه UV مربوط به رقم "میمن" بدون دفعات نش خشکی و اشعه UV بود (جدول ۴). آنزیم پراکسیداز نیز بیکار از اجزاء مهم سیستم دفاع گیاهان می‌باشد که به شکل حذف H2O2 تولید شده. به فعالیت SOD و استقلال روش POD در مراحل اولیه رشد زایی و افزایش بهتری رسیده‌ها می‌باشد در صورت بررسی UV بر صفات

کیفی برگ پرچم گندم دوروم (Triticum turgidum L.) علوم و فنون کشاورزی و منابع طبیعی (45): 167-181.
بهشتی، ص. و ندین، ع. (1396) اثر نش خشکی و محول پاشی اسید هیومیک بر برخی از شاخص‌های فیزیولوژیک لوپا لیما (Morus alba L.) و محول پاشی پایین دی هیدرات فسفات، نشره دانش کشاورزی و تولید پایدار (7): 1394-1397.

جُهان‌بین، ش. و فاقوری، م. و بادوی، ر. و بهدادی، ی. (1392) بررسی رشد و برخی خصوصیات گندم رقم والند در شرایط کم آبیاری و محول پاشی پایین دی هیدرات فسفات، نشره دانش کشاورزی و تولید پایدار (1391): 1394-1397.

خواجه، م. موسوی، نیک، س. و سیروسی، م. و بادوی، ر. و بهدادی، ی. (1394) اثر نشندی کم آبی و محول پاشی سیلیفون بر عملکرد و رنگ‌های فیتوتزری گندم در مناطق مختلف، فصلنامه علمی پژوهشهای فیزیولوژیک گیاهان زراعی (1394): 1391-1394.

رحیم پور، س. و خاردی، ج. (1387) تاثیر پرتوی UV-C بر روی رشد و برخی از فاکتورهای ریخت شناسی و فیزیولوژیک در گیاهان گندم هموست با سه گونه از فارآچه میکروژ، مجله زیست شناسی گیاهان ایران (1387): 1391-1394.

برای عملکرد و جذب عناصر غذایی در Ca: B کند، نشریه مدیریت خاک و تولید پایدار (1392): 1394-1397.

شهبازی، ه. ارمزی، ا. و اسامعلی زاده، مه. (1395) تاثیر نش خشکی بر خصوصیات فیزیولوژیک در لایه‌های ایندری نوترکیب گندم، مجله فرآیند و کارکرد گیاهان (1395): 1391-1394.

The effect of drought stress and Ultraviolet on antioxidant defensive system of enzyme and non-enzyme in three varieties of wheat (*Triticum aestivum* L.)

Zeynab Rezayi Far¹, Siamak Fallahi¹ and Esmaeil Gholinezhad²

¹Department of Biology – University of Payame Noor
²Department of Agricultural Sciences, Payame Noor University

(Received: 04/03/2017, Accepted: 19/09/2017)

Abstract

Drought stress and ultraviolet radiation as stressful environmental factors have deleterious effects on physiological and growth of plants. So in order to evaluate the effect of drought stress and Ultraviolet on photosynthesis pigments and antioxidant defensive system of enzyme and non-enzyme in three varieties of wheat (*Triticum aestivum* L.), a pot experiment was conducted by using factorial based on completely randomized design (RCD) with three replications in 2015. Treatments were drought stress in two levels (control and drought stress by applying 25% of field capacity) and ultraviolet radiation (control and UV-C) and three wheat varieties (“Zare”, "Pishgham" and "Mihan"). In this study, morphological traits, photosynthetic pigments and enzymes affecting on defense system were studied. The results showed that under drought stress and UV rays, the content of flavonoids increased in "Mihan" and decreased significantly in "Pishgham" cultivar, while in the same conditions (drought stress and UV radiation), the content of anthocyanins increased significantly. Treatment drought stress and UV caused oxidative stress in different varieties of wheat. In addition drought stress increased phenolic compounds and cause to enhance antioxidant enzymes such as catalase activity, superoxide dismutase and peroxidase. The content of soluble sugars increased under drought stress conditions. In drought stress condition, application UV increased proline amount in all three varieties about 31 percent but in optimum irrigation increased up to 22 percent. Increase of activity of antioxidant enzymes was observed in all three varieties, as well as the content of malondialdehyde and proline increased in all three varieties. UV radiation caused a significant reduction in the concentration of chlorophyll a, b and total chlorophyll. Also drought stress and UV reduced significantly root and stem dry weight, root and stem length. The interaction between drought stress and ultraviolet radiation increased damage to the plant. Also "Zare" variety according to increasing flavonoids and anthocyanin comparison with "Pishgham" and "Mihan" varieties was proven as tolerant to drought stress.

Key words: Anthocyanin, Drought stress, Flavonoids, UV radiation, Wheat.

Gholinezhad1358@yahoo.com