چکیده:
شوری یکی از مهم‌ترین تنوع‌های مختلف زندگی‌محیطی است که باعث کاهش قابلیت تولید محصول در خاک‌های مختلف شکست و نیمه‌شکست می‌شود. اسید هیومیک به عنوان یک اجزای آلتی و آسکوربین به عنوان یک آنتی‌اکسیدان قوی می‌تواند در جهت بهبود عملکرد گیاهان در شرایط نش شوری موتر واقع شود. به منظور بررسی اثرات نشت شوری و بهبود کننده آن با اسید هیومیک و اسید آسکوربیک بر رشد رویشی، رنگ‌های فتوسنتزی و تغییرات آنزیم‌های آنتی‌اکسیدان گیاه‌دارویی بادرشو (Dracocephalum moldavica L.) ارزیابی‌های آزمایش شلوار شوری در پانزده سطح (0، 100، 200 میلی‌گرم در لیتر) بود. درصد رویش گیاه از اثر افزایش قند و ورق تراش، افزایش ساقه و برگ با افزایش میزان نشت شوری کاهش معنی‌داری نسبت به نیم‌گذار نشان دادند. کاربرد اسید هیومیک بیانبند 200 میلی‌گرم در لیتر در سطوح بالای ۱۰ میلی‌گرم بهبود این صفات نسبت به گیاهان شاهد گردید. رنگ‌های فتوسنتزی نیز تحت تأثیر نشت شوری به شدت کاهش یافته و کاربرد ۲۰۰ میلی‌گرم در لیتر اسید هیومیک و اسید آسکوربیک تحدید بود. افزایش میزان فعالیت آنزیم‌های آنتی‌اکسیدان در نش طبقه‌های شوری مشاهده شد و کاربرد اسید هیومیک (بویه ۲۰۰ میلی‌گرم در لیتر) برای آنزیم کاتالاز و آسکوربیک اکسیداز و ۲۰۰ میلی‌گرم در لیتر اسید آسکوربیک برای آنزیم کیتکالاز و نیکوتین اکسیداز در افزایش فعالیت آن‌ها نسبت به نیم‌گذار شده‌گردید.

واژه‌های کلیدی: اسید آسکوربیک، آنزیم‌های آنتی‌اکسیدان، اسید هیومیک، بادرشو، شوری

مقدمه:
در تحقیقات تیماری‌های ۲۰۰۰ گونه گیاهی وجود دارد که در جنس جداگانه (دریچه‌ای، آمیزی) و (Dracocephalum moldavica L.) خانواده گیاه بادرشو (Dracocephalum moldavica L.) عناصری بهبودی‌بخش بسیار می‌باشد. این گیاه بخش‌های میکرویگی مربوط به اهنده در مرکز و شرق اروپا است (Abd El-Baky et al., 2008).

گیاه دارویی بادرشو از اهمیت زیادی در ایران و
امروزه شورى خاك و آب یکی از موانع و محدودیت‌های استفاده از این منابع تولید بهینه محصولات کشاورزی است (همایی، 1381). مهم‌ترین واکنش گیاه به شورى، کاهش رشد است. شورى خاك از چند راه بر فعالیت‌های فیزیولوژیکی گیاه تأثیر می‌گذارد، ولی نشانه‌های آسیب دیدگی ناشی از وجود شوری محصولات تا حدی باعث شده است که تأثیر آن‌ها بر محصولات خاخ باعث کاهش رشد گیاه، کاهش کلیات کننده عناصر ریزیمی، سرطانی مواد آلی‌اند. خاك، تحریک فعالیت میکروفاج‌های و توسه ریشه، تقلیل هژه در کشاورزی و سازگاری با محیط زیست است (جبویتی، 1389). گرده‌های هیدروکسیل و کربنفل موجود در اسید هیدروکسیل باعث فعالیت پوششی‌هایی که به شیوه‌هایی به گیاهان تأثیر می‌گذارد (Ertani et al., 2013). اسید هیدروکسیل (ASA) یک ترکیب آنتی‌اکسیدانی قوی با وزن مولکولی کم و محصول در آب بوده که می‌تواند نقشماذاه‌ای را در خنثی کرد فعالیت رادیکال‌های آزاد و غیرعمده کردن پراکسید هیدروکسیل و سوپرپراکسید را حذف و H2O2 را به کمک آسیتریپزا پراکسیداز (Sairam and Tyagi, 2004). مطالعات انجام شده توسط سلاح و همکاران (1990) بر روی گیاه مزرعه‌جوش (Origanum majorana L.) نشان داد که اسید آسیتریپزا مواد افزایش فعالیت آنتی‌اکسیدانی گیاه به بخشی از ۵ برابر شده. به نحو مؤثرتری از فعالیت رادیکال‌های آزاد تحت شرایط تنش شدید شورى جلگمی‌کرده و به این ترتیب باقی بیشتر گیاه را تضعیم نمی‌کند. همچنین در مطالعه غلامی و همکاران (۱۳۹۱) نشان دادند که اسید هیدروکسیل و فولیک به خصوص اسید هیوپیک (۵۰ و ۱۰۰ میلی‌گرم در لیتر) سبب کاهش استرس شورى در گیاه جراحی شده‌شد. اسید هیوپیک و فولیک سبب افزایش وزن هزاردارانه، درصد بروزتیپ بذر و عادیدکرلوفیل‌شدن و تأثیر معنی‌داری بر غلظت عنصرات تپاسیم، کلسیم و سدیم در گیاه اسفرزه دارد.

ارسیبیا صفات رویشی: جهت تعیین ارتفاع بونه، تعداد گره و فاصله میانگره، ۴ بونه به‌طور ممکن از هر تکرار انتخاب و صفات موجود در اندازه‌گیری شدن و سالانه ۴ بونه به‌طور ممکن به‌طور همزمان در داخل آن به مدت ۴۸ ساعت در دمای ۲۲ درجه سانتی‌گراد قرار داده شد.

ارسیبیا صفات پروشیایی: برای اندازه‌گیری کلروفیل a و b کل و کاروتین، ۲۳ گرم (۲۰۰ میلی‌گرم) یک تازه از گل میوه، های جوان کامل التوسعه یافته را جدا کرده و آن را در هاوی چینی با ۱۰ میلی‌لیتر محلول قند در دمای ۷۰ درجه سانتی‌گراد استخراج رنگ‌دانه‌ها انجام داده‌ایم، سپس به مدت ۵ دقیقه سانتریپوز با سرعت ۳۰۰۰ دور در دقیقه انجام گرفت. سپس عصاره استخراج‌شده را برداشت‌با و با استفاده از اسکیپترونومتر میزان چربی نیترول ماده‌های ۴۷۰ و ۴۹۲ نانومتر قرار داده و در نهایت مقدار کلروفیل با استفاده از روابط زیر به دست آمد.

\[
\text{CHLa} = 15.65 \times 10^{-6} - 7.34 \times 10^{-6}
\]
\[
\text{CHLb} = 27.05 \times 10^{-6} - 11.21 \times 10^{-6}
\]
\[
\text{C} + \text{C} = 1000 \times 1 - 2.860 \times \text{CHLa} - 129.2 \times \text{CHLb}
\]
\[
\text{CHL} = \text{CHLa} + \text{CHLb} + \text{C} + \text{C}
\]

میزان کلروفیل a \text{CHLa} \text{کلروفیل a} \text{کلروفیل b} \text{کلروفیل b} \text{کلروفیل کل}

محاسبه شناسی سبزی‌جات با دستگاه SPAD

جهت عصاره پروشیایی: ۵۰۰ میلی‌گرم از یافته بهار گیاه در ۵ میلی‌لیتر باریک سرامیک (PH V/5) ۱ میلی‌لیتر EDTA و (PVP) \text{که حاوی پلی وینیل پروپیلیدین ۱ درصد} از موله و همچنین سنجش سبزی‌جات با دستگاه SPAD

ماهیت سبزی‌جات با دستگاه SPAD

سالم در گل‌نماهای از جنس پلاستیک، قطر ده‌های ۳۰ سانتی‌متر و ارتفاع ۳۰ سانتی‌متر و دارای زهکشی ماس بی‌طروری می‌باشد. سالم کهای و در چهار نقطه گلدان در اواست فرودین‌های کاشت‌شده، پس از بستن بند بی‌پا در مرهول در برگ‌نشکل کردن سبزی‌جات به طوری که در هر نقطه یک گیاه جایگزین سالم (چهار جایگزین) به‌طوری که در آن‌ها انتخاب شد. سالم گلدان‌ها از کپسول خاک زراعی ماس و خاک با تکیه گذاشته شده به دستشه بود (جدول ۱) با استفاده کامل گیاه در مرهول
جدول 1- خصوصیات فیزیکوییکی خاک محل آزمایش

<table>
<thead>
<tr>
<th>بافت خاک</th>
<th>رس (%)</th>
<th>لای (%)</th>
<th>نش (%)</th>
<th>هدایت الکتریکی (pH)</th>
<th>EC (dS/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>لومی رسی</td>
<td>41</td>
<td>29</td>
<td>7/8</td>
<td>1/2</td>
<td></td>
</tr>
</tbody>
</table>

میکرولیتر عصاره آنزیمی بو دارد. افزایش جدید به دلیل اکسیداسیون گایاکول در طول موج ۷۸۵ نانومتر به دست آمده. ۴ دقیقه اندازه‌گیری شد. (Plew et al., 1991). مقدار ترگاکاکول تولید شده با استفاده از فوتامتر محاسبه گردید.

نتیجه آماری: آزمایش به صورت فاکتوریال و بر پایه طرح کاملاً تصادفی با ۵ عضو در ۳ کنار تصادفی بهداشتآمده با استفاده از نرم‌افزار MOPP مورد تجزیه آماری قرار گرفت. مقایسه میانگین‌ها نیز بر اساس آزمون LSD در سطح احتمال ۵ درصد انجام شد.

میلی‌میکرولیتر، سایز‌ده. تمام مرحله‌های استخراج در یک انجام گرفت. میکرو‌عصاره‌ها به مدت ۲۰ دقیقه در ۵۰۰۰ دور در دقیقه و در دمای ۴ درجه سلسوس سانتریپوژ شدند. از محلول شفاف روش برای سنگش فعالیت آنزیم‌ها استفاده گردید. (Gapinas et al., 2008).

سنگش فعالیت آنزیم کالاراز (CAT): سنگش فعالیت بر اساس کاهش جذب آب اکسیژن در طول موج ۲۴۰ CAT نانومتر صورت گرفت (Dhindra, 1981). مخلوط واکنش (۵ میلی‌میل
جدول 2- تجزیه و ارزیابی صفات مورد بررسی در گیاه بادامچی تحت شرایط نشش شوری و کاربرد اسید هیموک و آسکوربیک

<table>
<thead>
<tr>
<th>میانگین مربوط به پروتئین</th>
<th>کاربیل</th>
<th>کالری</th>
<th>برهنگی</th>
<th>ساچه</th>
<th>ارتفاع بونه</th>
<th>وزن خشک</th>
<th>تعداد گره</th>
<th>وزن تر</th>
<th>وزن خشک</th>
<th>برهنگ</th>
<th>ساقه</th>
<th>تغییرات درجه</th>
<th>درصد</th>
<th>مقدار</th>
<th>CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>45/24</td>
<td>2/45</td>
<td>45/21</td>
<td>45/24</td>
<td>2/43</td>
<td>1/67</td>
<td>5/07</td>
<td>1/67</td>
<td>2/43</td>
<td>45/24</td>
<td>2/45</td>
<td>45/21</td>
<td>45/24</td>
<td>2/43</td>
<td>1/67</td>
<td>5/07</td>
</tr>
<tr>
<td>45/24</td>
<td>2/45</td>
<td>45/21</td>
<td>45/24</td>
<td>2/43</td>
<td>1/67</td>
<td>5/07</td>
<td>1/67</td>
<td>2/43</td>
<td>45/24</td>
<td>2/45</td>
<td>45/21</td>
<td>45/24</td>
<td>2/43</td>
<td>1/67</td>
<td>5/07</td>
</tr>
</tbody>
</table>

اماده جدول 2- تجزیه و ارزیابی صفات مورد بررسی در گیاه بادامچی تحت شرایط نشش شوری و کاربرد اسید هیموک و آسکوربیک

<table>
<thead>
<tr>
<th>میانگین مربوط به پروتئین</th>
<th>کاربیل</th>
<th>کالری</th>
<th>برهنگی</th>
<th>ساچه</th>
<th>ارتفاع بونه</th>
<th>وزن خشک</th>
<th>تعداد گره</th>
<th>وزن تر</th>
<th>وزن خشک</th>
<th>برهنگ</th>
<th>ساقه</th>
<th>تغییرات درجه</th>
<th>درصد</th>
<th>مقدار</th>
<th>CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>45/24</td>
<td>2/45</td>
<td>45/21</td>
<td>45/24</td>
<td>2/43</td>
<td>1/67</td>
<td>5/07</td>
<td>1/67</td>
<td>2/43</td>
<td>45/24</td>
<td>2/45</td>
<td>45/21</td>
<td>45/24</td>
<td>2/43</td>
<td>1/67</td>
<td>5/07</td>
</tr>
<tr>
<td>45/24</td>
<td>2/45</td>
<td>45/21</td>
<td>45/24</td>
<td>2/43</td>
<td>1/67</td>
<td>5/07</td>
<td>1/67</td>
<td>2/43</td>
<td>45/24</td>
<td>2/45</td>
<td>45/21</td>
<td>45/24</td>
<td>2/43</td>
<td>1/67</td>
<td>5/07</td>
</tr>
</tbody>
</table>

تشش شوری و درصد بارش بادامچی‌ها در گیاه بادامچی تحت شرایط نشش شوری و کاربرد اسید هیموک و آسکوربیک

<table>
<thead>
<tr>
<th>بارش بادامچی‌ها</th>
<th>درصد بارش</th>
</tr>
</thead>
<tbody>
<tr>
<td>بادامچی‌ها</td>
<td></td>
</tr>
</tbody>
</table>

بررسی صفات رویشی: صفات طول میانگین و ارتفاع گیاه

برای کاهش نشش نشش شوری و کاهش نشش شوری و کاربرد اسید هیموک و آسکوربیک
جدول ۳- مقایسه ترکیبات ماده‌های موجود در گیاه با دو روش محدوده ناحیه شرایط بیولوژی و کاربرد امید هومیک و آسکوربیک

<table>
<thead>
<tr>
<th>وزن تر بر (gr)</th>
<th>وزن تر ساقه (gr)</th>
<th>وزن تر خشک (gr)</th>
<th>ارتفاع (cm)</th>
<th>طول مکیانگ (cm)</th>
<th>ترکیب دهنه (mg/l)</th>
<th>ترش شوری (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27/3cm</td>
<td>1/16</td>
<td>6/4</td>
<td>5/16</td>
<td>7/16</td>
<td>8/9</td>
<td>H۱۰۰</td>
</tr>
<tr>
<td>26/2cm</td>
<td>1/16</td>
<td>6/4</td>
<td>5/16</td>
<td>7/16</td>
<td>8/9</td>
<td>H۰۰۰</td>
</tr>
<tr>
<td>10.6cm</td>
<td>1/16</td>
<td>6/4</td>
<td>5/16</td>
<td>7/16</td>
<td>8/9</td>
<td>H۱۰۰</td>
</tr>
<tr>
<td>11/1cm</td>
<td>1/16</td>
<td>6/4</td>
<td>5/16</td>
<td>7/16</td>
<td>8/9</td>
<td>H۰۰۰</td>
</tr>
</tbody>
</table>

در ستون میانگین‌های با حروف مشابه در سطح احتمال آماری ۵ درصد بر اساس آزمون LSD اختلاف معنادار ندارند و H و AS در جدول به ترتیب معنادار امید هومیک و آسکوربیک می‌باشند.

اسید هومیک توانست شرایط بهتری را برای وزن تر برک یابد (در این کلید) در سطح ۵۰ و ۱۰۰ میلی‌مترال شوری فراهم کند. ولی در شوری ۱۵۰ میلی‌مترال، کاربرد ۱۰۰ میلی‌مترال امید هومیک و آسکوربیک باعث بهبود این صفت و کاهش اثرات یک‌بار شوری شد. پیش‌ترین مقدار این صفت در شرایط عدم شوری و کاربرد ۲۰۰ میلی‌گرم در لیتر امید هومیک و آسکوربیک به ترتیب ۳۴/۷۴ و ۲۸/۴۷ گرم بسته آمد که به ترتیب ۲۸/۴۹ و ۲۷/۵۱ درصد نسبت به تیمار شاهد (بدون تنش) انرژی باید در حالی که بین این تیمارها تفاوت

۳۷/۲۷ درصد این نسبت به تیمار شاهد (عدم کاربرد ترکیب دهنه) نشان داد. الیه (در سطح امید هومیک ۱۰۰ و ۲۰۰ میلی‌گرم در لیتر) تفاوت معناداری از این نظر مشاهده نشد.

(جدول ۳) وزن تر برک (در این کلید) در شرایط عدم شوری و کاربرد ۱۰۰ میلی‌گرم در لیتر و ۱۵۰ میلی‌گرم در لیتر امید آسکوربیک دارای بیشترین مقدار بود که بین این تیمارها در شرایط بدون شوری تفاوت معنی داری وجود نداشت. همه‌تنین کاربرد ۲۰۰ میلی‌گرم در لیتر
که مواد هیومیکی منجر به افزایش رشد طولی می‌شوند مربوط به ترکیبات شیمیایی آن می‌شود (Nardi et al., 2002).

تأید بی‌شماری از گزارشات در مورد توانایی مواد هیومیکی روی افزایش رشد ساقه در ارقام مختلف گونه‌های کشاوی تحت شرایط گوناگون اثره است که اثر ترتیبی کننده مواد هیومیکی روی رشد ساقه در درجه اول به خاطر تأثیر H+-ATPase ریشه و توزیع نیترات ریشه در ساقه بوده که به نوبه خود منجر به تغییرات در توزیع مشخص سایتوکینه‌ها، بلی آمیه و ATP می‌شود (Nardi et al., 2002).

در یک تحقیق کاربرد امید هیومیکی خاکی بانوی افزایش معنی‌داری در رشد H+-ATPase ریشه شاخه خیار شک به آن در افزایش عضو در همراه بوده است، همچنین افزایش در غلظت نیترات ساقه و کاهش آن در ریشه رخ داده است. این تغییرات با آن در غلظت سایتوکینه‌ها و بلی آمیه در شاخه خیار و کاهش آن در مطالعاتی کاربرد امید هیومیکی در غلظت‌های مختلف موجب افزایش طول هیپوتیکی، قطر ساقه، وزن خشک و عملکرد گیاه کوه گیاهی درکی (Mora et al., 2010). در این مطالعات کاربرد امید هیومیکی که به همراه شرایط شرده کننگ (برگ، انرژی و کوارکفل) شد، همچنین افزایش برگ، افزایش گیاه و وزن خشک قسمت همی‌بسیار قابل معافیت در گیاهان رشد کرده در گلدن‌ها خاکی امید هیومیکی در غلظت‌های مختلف حتی در غلظتهای کم افزایش یافت (Arancon et al., 2003).

در گزارش کردن (Padem et al., 1999) با نهایت درکننده که فقط ساقه نتیجه‌بندی دارد، برگ و وزن تر و خشک ساقه و ریشه با کاربرد امید هیومیکی در گیاهان فیلئی و پایین‌افزایش یافت که این نتایج با طبیعت مطابقت داشت. چمن و همکاران (1994) در آزمایشی که روی گیاه پروانه انگلاد دادند بیشتر از همکاران پایین‌افزایش یافت که سطح بالایی امید هیومیکی (100 و 100 میلی‌گرم بر لیتر) باعث افزایش صفات رشد گیاه از قبل تعادل برگ و میزان کوارکفل گردید. همچنین با توجه به نظرات ایشان می‌باشد که نتایج آزمایشی که چمن و همکاران (1994) روی گیاه پروانه داشتند مطابقت دارد. یکی از مکانیسم‌های
تر همراه با کاربرد 100 میلی‌گرم در لیتر اسید آسکوربیک در شرایط بدون تنش همانند کارولفی a و
b حاصل شد. در نتیجه 50 میلی‌گرم کارولفی a و b اسید آسکوربیک تحقیق دهنده با افزایش میزان
کارولفی کل نسبت به شاهد گردید. به‌طوری که اسید آسکوربیک و سطح مختلط آن در این سه
سطح تفاوت معنی‌داری مشاهده نشد. کاربرد 200 میلی‌گرم در لیتر اسید آسکوربیک در سطح تنش
100 میلی‌گرم در کارولفی اسید آسکوربیک نسبت به سطح بالای آن بر روی بروز
صفایی تأثیر مثبتی دارد. بنابراین تأثیر سطح 100 میلی‌گرم
در لیتر اسید آسکوربیک نسبت به سطح بالای آن بر روی بروز
صفایی در این آزمایش احتمالاً به علت افزایش جذب عناصر
غذايي در سطح 100 میلی‌گرم در لیتر اسید آسکوربیک و مساعد بودن
شرایط محیطی است.

بررسی کنگره‌هاي فتوژن: میزان کارولفی a در سطح
مختلط تنش شوری با کاربرد اسید آسکوربیک و اسید
آسکوربیک پاسخ غیرمنتظره شدند، ولی در مجمع کاهش
مقدار انری با افزایش شوری مشهود بود. به‌طوری
که بیشترین مقدار در نتیجه شاهد 24/8 میلی‌گرم در کرم
وزن تنش مشاهده شد که با کاربرد 100 میلی‌گرم در لیتر اسید
آسکوربیک نسبت معنی‌داری نداشتند. در سطح پایین تنش
شوری (50 میلی‌گرم) کاربرد اسید آسکوربیک و اسید
آسکوربیک 100 و 200 میلی‌گرم به‌طور مثبت باعث افزایش میزان
کارولفی a نسبت به شاهد گردید در حالی که بین
تخفیف دهندها تفاوت معنی‌داری مشاهده نشد؛ ولی با
افزایش میزان تنش شوری 150 میلی‌گرم سطح
200 میلی‌گرم در لیتر تخفیف‌دهندها توانست به خوبی موجب
کاهش نرخ سه‌فرم کرده (جدول 4).

بی‌شکوی‌ترین میزان کارولفی a به‌کاربرد 100 میلی‌گرم در لیتر
اسید آسکوربیک در شرایط بدون تنش حاصل شد. همچنین
افزایش میزان تنش شوری موجب کاهش انصراف گردید.
همانطور که در جدول 4 مشاهده می‌شود با افزایش تنش
شوری تا 150 میلی‌گرم کاربرد اسید آسکوربیک پزشک سطح
200 میلی‌گرم در لیتر آن اثر بسیاری در افزایش میزان کارولفی
a داشت است.

کارولفی کل نیز تحت نشان شوری سبز نرمال از خود
نشان داد که بیشترین مقدار آن 17/9 میلی‌گرم در کرم و
زن‌
جدول 4- مقایسه میانگین صفات موردبررسی در گیاه با دردیو تحت شرایط نش شوری و کاربرد اسید هیومیک و آسکوربیات

<table>
<thead>
<tr>
<th>کاربرد (mg.g⁻¹FW)</th>
<th>کاربرد (mg.g⁻¹FW)</th>
<th>کاربرد (mg.g⁻¹FW)</th>
<th>تحقیق (mg/l)</th>
<th>نش شوری (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75b</td>
<td>0.75b</td>
<td>0.75b</td>
<td>57.9c</td>
<td>H1000</td>
</tr>
<tr>
<td>0.75d</td>
<td>0.75d</td>
<td>0.75d</td>
<td>57.9c</td>
<td>H1000</td>
</tr>
</tbody>
</table>

در هر سنو میانگین‌های با حروف مشابه در سطح اختلال آماری 5 درصد بر اساس آزمون LSD اختلاف معنی‌دار ندارند. در جدول به TAS و H اختلاف معنی‌دار اسید هیومیک و آسکوربیات می‌باشد.

در اینجاست چک اسید هیومیک به میزان 76 درصد و اسید فولیک به میزان 76 درصد غلظت کارفیل برگ را افزایش داد (Sladky and Ticht, 1959) مشاهده کرده که دماغه اسید هیومیک به طور معنی‌داری در محیوت کارفیل برخی موتر بوده و اثر خود را به طور اساسی بر محیوت کارفیل b در برگ داشت. مقادیری بین 200 میلی‌گرم در لیتر اسید هیومیک چه به صورت محلولی و چه اعمال خشکی (Bisheh et al., 2008) در بررسی اثر مواد هیومیک روى محیوت کارفیل برگ‌ها را سبب شد. در شرایط شکا نش شوری میزان آنزیم کارفیل‌ازافریش یافته و بهینه‌صورت
میزان کارولیف کاهش می‌یابد (2011). گزارش تحقیقاتی اخیر این اینکه هیپاکسی بعث آفت‌زایی میزان کارولیف بی‌کارانه جدی‌تر شد. چنانکه، میزان کاهش‌کننده کربنات و سبب به آفت‌زایی غلظت معادلی از تابعیتی که در غلظت شوری ۵۰، ۱۰۰ و ۱۵۰ میلی‌مولار به اطراف تیمار اسید آسکوربیک و اسید هیپاکسی کاهش می‌یابد (Saeid Nejad, 2011). در حالی که نسبت بهتیاسی‌ها و همچنین به آفت‌زایی رادیکال‌های آزاد در کارولیف بی‌کارانه می‌شود و تربیت کارولیف و غشای کارولیف‌لاستا در دیدار. کاهش شاخص‌های کربنات در غلظت موارد موارد ساده‌هایی که در غلظت شوری ۵۰ میلی‌مولار به بالا آسیب ناشی از میزان کاهش شده و سبب کاهش شده که غلظت آزمایشاتی که برابر ۱۵۰ میلی‌مولار به روندی که برابر ۱۲۴ و ۱۲۹ میلی‌مولار در غلظت شوری ۸ مسی‌زمن به ترتیب در سطح و بقیه ردی به نتایج آزمایش کاملاً مطابق دارد (دهقانی و مستجاب، ۱۳۸۹).}

میزان غلظت آزمایشاتی که در سطح ۱۵۰ میلی‌گرم در لیتر اسید آسکوربیک با ۴۰/۰۲۷ میلی‌گرم در لیتر بیست‌ویک مولار طبیعی یکسان دارد. در سطح شوری ۱۵۰ میلی‌مولار کاربرد اسید هیپاکسی بی‌کارانه کربنات و سبب به آفت‌زایی غلظت معادلی از تابعیتی که در غلظت شوری ۲۷، ۲۳ و ۵۰ میلی‌مولار به اطراف تیمار اسید آسکوربیک و اسید هیپاکسی کاهش می‌یابد (Saeid Nejad, 2011). در حالی که نسبت بهتیاسی‌ها و همچنین به آفت‌زایی رادیکال‌های آزاد در کارولیف بی‌کارانه می‌شود و تربیت کارولیف و غشای کارولیف‌لاستا در دیدار. کاهش شاخص‌های کربنات در غلظت موارد موارد ساده‌هایی که در غلظت شوری ۵۰ میلی‌مولار به بالا آسیب ناشی از میزان کاهش شده و سبب کاهش شده که غلظت آزمایشاتی که برابر ۱۵۰ میلی‌مولار به روندی که برابر ۱۲۴ و ۱۲۹ میلی‌مولار در غلظت شوری ۸ مسی‌زمن به ترتیب در سطح و بقیه ردی به نتایج آزمایش کاملاً مطابق دارد (دهقانی و مستجاب، ۱۳۸۹).
اثر اسید هیمیک و آسکوربیت بر صفات روشی و بیوشیمیایی گیاه‌... ۳۰۷

شكل ۱ اثر مقایسه تنش شوری و کاربرد اسید هیمیک (H) و اسید آسکوربیک (AS) (۱۰۰ و ۲۰۰ میلی‌گرم در لیتر) بر فعالیت آنزیم کاتالاز در گیاه با شاری و در هر ستون میانگین‌های با حروف مشابه در سطح احتمال آماری ۵ درصد بر اساس آزمون LSD اخبار میان دارند.

![Diagram 1](https://example.com/diagram1.png)

شکل ۲ اثر مقایسه تنش شوری و کاربرد اسید هیمیک (H) و اسید آسکوربیک (AS) (۱۰۰ و ۲۰۰ میلی‌گرم در لیتر) بر فعالیت آنزیم آسکوربیت پراکسیداز در گیاه با شاری و در هر ستون میانگین‌های با حروف مشابه در سطح احتمال آماری ۵ درصد بر اساس آزمون LSD اختلاف معنی‌دار دارند.

![Diagram 2](https://example.com/diagram2.png)

شکل ۳ اثر مقایسه تنش شوری و کاربرد اسید هیمیک (H) و اسید آسکوربیک (AS) (۱۰۰ و ۲۰۰ میلی‌گرم در لیتر) بر فعالیت آنزیم پراکسیداز در گیاه با شاری و در هر ستون میانگین‌های با حروف مشابه در سطح احتمال آماری ۵ درصد بر اساس آزمون LSD اختلاف معنی‌دار دارند.

![Diagram 3](https://example.com/diagram3.png)
ASPERGILLUS PRAECOCUS نشان داد. زیرا در سطح بالایی نشی به
علت انعکاس میانی شرایط محیطی نقص اسید، هیپوکسی می‌شود (شکل 10).

فاصله آنزیم گیپاکلریکتاز (GPX) بین همانند سایر
آنزیم‌ها در 200 میلی مولار نسبت به سطح دیگر نشی و
شاده افراش میانی داری را نشان داد. هم‌مانندی در دو شکل ۳
میلی‌گرم در لیتر اسید هیپوکسی و آسپریلین باعث افراش
نسبت به (Gayacol Proxidaz) GPX میزان عفالت آنزیم
میزان. خودکار شد. همانطور که در این مطالعه مشاهده شد، میزان SOD بالایی نشی در
شیری مواد کالری عفالت آنزیم‌های آنتی‌کانسرین در
شیری عدم تعیین از تغییرات گیپاکلریکتاز GPX نسبت به تیمار 150 میلی‌مولار نسبت به تیمار شاده شد.

نرمال این اثرات سازگار بود. در سریالی (APX) بیشترین
تغییرات آن، اسید هیپوکسی و آسپریلین (CAT) (1994)
و عوامل نیز دیده می‌شد. ترکیبات خیلی می‌کند و در
مانع دهنده الکترون به پراکسید هیپوکسی عمل می‌کند
و واکنش نیز دیده می‌شد. ترکیبات قلمی مثل گیپاکلریکتاز (Petrov and Breusegem, 2012)
میدان. پژوهش عناصر خیلی در شرایط بدون شوری کاربرد
تفعیل دره هده نتیجه می‌تواند با تیمار شاده نشید که
احتمالا مشاهده یک ترکیب برای رشد سازگاری در شرایط
عمد وجود نشی باشد. در صورتی که با افراش نشی به
میزان 100 و 150 میلی‌مول کاربرد 200 میلی‌گرم در لیتر اسید
هیپوکسی افراش مغذی داری را در میزان عفالت آنزیم
و از این طرف رشد را باعث نشی. ثبط (Dordas and Sioulas, 2008)
در واسطه خاصیت کلاته کوندگی قوی باشد. یکدنیش و
که دارد. پیشنهاد کاربرد اسید هیپوکسی بر جدید
(ب) انتگرای میزان GPX. این انگشت میزان اسید هیپوکسی بر جدید
پون‌ها توسط گیپاکلریکتاز GPX محلیت pH کشت و گونه‌های گیاهی بستر نشی. توانای مواد
کربن کربن یک شده که می‌باشد از تنادالترین
مواد گزارش شده اسید هیپوکسی روی گیاهان. افراش باید
مواد غذایی توسط گیپاکلریکتاز (APX) باشد.یک دانی (Nardi et al., 2009)
بنا بر نظر می‌رسد تا توجه به اینکه اسید هیپوکسی باعث جدید مواد
غذایی و کربن پون سبدی می‌شود شرایط برای رشد
گیاه مناسب می‌کند و موجب بهبود عفالت آنزیم‌های آنتی
اسکینه‌ای می‌گردد.
گیاه بادامی در هر سه سالگی به علوفه های با حروف مشابه در سطح احتمالی 5 درصد بر اساس آزمون اختلاف معنی دار دارد.

بروتئین‌های سبب تغییر اسیدهای نوکلئیک و پروتئین‌های سولول و تغییر سولولی می‌شوند (Peltzer et al., 2002). نتایج مشابه از کاهش پروتئین‌های محلول در اثر شوری توسط قربانی و همکاران (1389) بر روی سیبادانه غارش شده است. اسید آسپارگیوز یک آنتی‌اکسیدان پیش‌بینی اسید آسید‌های آراز موجب پدیدارشدن آنها می‌شود و با انجام مختلف اکسیژن‌های فعلی ترکیب شده و از آواشی آنها می‌کاهد. همچنین سبب افزایش فعالیت آنزیم‌های آنتی-اکسیدانی و تاثیب پوست‌پرینی بر علوفه نش آکسیدانت‌ها- که گردد (Farouk, 2008; Beltagi, 2011). افزایش محتمل پروتئین به وسیله نظیم کننده‌های رسید گیاهی نظر آسکورب‌ها ممکن است به‌علت آواشی تشکیل شکل‌آناپلاسمی خشک باشد که محیط مناسبی را برای آواشی پلی‌پروپزوم و فراهم می‌کند (Kim et al., 2007).

نتیجه‌گیری

نتایج این تحقیق دلایل آن دارد که شوری باعث القای اثرات مفعول بر رشد و فیزیولوژی گیاه باشد. شد. مواد هیمیکی و اسید آسکوربیک با اقلای تغییرات فیزیولوژیکی و تاثیرگذاری بر کربن و انقلال عنصر غذای گیاه باعث کاهش اثرات منفی نش آواشی در گیاه باشد. مجدد. با توجه به مشاهدات تحقیق حاضر من نین تجربه‌گری انجام که الکل NaCl با بردن متوسط نسبت به سبب گیاه بادامی می‌باشد و سبب تغییراتی در سطح‌های سولولی می‌شود در 200 میلی‌گرم در لیتر برای نش 100 میلی‌مولار و 100 میلی‌گرم در لیتر برای سطح نش 150 میلی‌مولار با تغییر آواشی. 24/22 درصد نسبت به سبب تغییر آواشی (عمر کاربرد تغییر‌دهده) شده و سبب سیب چربان این خصائص گردید (شکل 4). نش شوری سبب نش آکسیدانت‌ها می‌شود. رادیکال‌های آزاد تولید شده طی نش آکسیدانت‌ها به‌دست می‌ترکیب با...
طوری که تا سطح شوری ۵۰ میلیولار را تحمل می‌کند و سیستم‌های آنتی‌اکسیدانی و دفاعی گیاهی و مصرف پیش‌بینی می‌کند.

تشکیل شده و فعالیت آنزیم‌ها افزایش یافته‌ها می‌باشد.

لگ، فاصله‌ها ۱۰۰ و ۱۵۰ میلی‌ولت سپس ترخیص این شوری تا سطح میلی‌ولت سپس ترخیص این سیستم‌ها و کاهش فعالیت آنزیم‌ها می‌گردد که خود به‌دست آسیب تا این می‌باشد، ولی به‌هو حال تا حداکثر آنزیم‌ها در مقیاس با شاهد به‌خصوص

در تنها ۵۰ میلی‌ولت شوری مشاهده می‌گردد. از طرفی اینورد

\

ماهع

امیدبیگی، ر. (۱۳۸۷). تولید و فروآوری گیاهان دارویی جلد اول و دوم. انتشارات آستان قدس رضوی، تهران، فصل۷. راهبردی در احتمال و پارس، م. نظامی. (۱۳۸۹) تأثیر نش خشکی در مراحل مختلف روشنی بر شاخص‌های

زیستی گل‌خانه. تهیه‌پذیری های حیوانات (Cicer arietinum L.) پژوهش‌های اصلاح در این یا به عنوان نشان‌گاه تهیه‌پذیری، تهیه. ایران.

برکت گل‌خانه. (۱۳۸۶) اثر ممی‌زای مختلف کاشت بر روشنی، عملکرد، مقدار و اجرا تشکیل دهنده اساس گیاه بادرشی. پایان

نامه کارشناسی ارشد باغبانی، دانشگاه تربیت مدرس، تهران. ایران.

برکت، م. (۱۳۷۹) مطالعه تاثیر کوده‌های از در مراحل مختلف زندگی گیاه بادرشی و میزان تولید گیاهان نامه کارشناسی

ارشد، دانشکده کشاورزی تربیت معلم، ایران.

جیوهنتی، م. (۱۳۸۲) بررسی جامع موادهای کن‌کرده آنها در کشاورزی. نشریه فنی.

جمنی، ا.، نیایی، م. و قنبری، ع. (۱۳۹۴) تأثیر اسید سالیسیلیک و اسید هیدروکسی بر شاخص‌های روشنی گیاه زیمنی دارویی (Catranthus roseus L.) نشریه علوم باغبانی 4: ۲۴۱-۲۳۱.

حسن‌زاده دولتی، م. (۱۳۸۲) بررسی خصایص محلول پاشای اروه بر عملکرد، برخوردار و انقلا محدود از و ماده

خشک در دو رنگ گند. پایان نامه کارشناسی ارشد زراعت دانشگاه فردوسی منتهی. مشهد، ایران.

حیدری شریف‌آباد، ح. (۱۳۸۰) گیاه و شوری. انتشارات موضوعیه تحقیقات جنگل‌ها و مرتع‌های کشور. تهران.

دهفکان، ا. و مستاجران، ا. (۱۳۸۹) اثر تنش شوری بر رشد روشنی و فعالیت آنزیم‌های آنتی‌اکسیدانی و دفاعی در گیاه زنجیبی

(Zingerber officinalis Roscoe) سلاحوری، گ.، غلادی، م.، نیایی، ج. و علیرضا، م. (۱۳۸۱) تأثیر کاربرد بروز رونده آسکوربیک اسید بر برخی از تغییرات

فیزیولوژیکی در زانه‌ها (Origamum majorana L.) تحت تنش شوری. مجله علوم باغبانی ایران ۱۷: ۵۸۱-۵۸۵.

سرعت، م. و ملکونی، م. (۱۳۸۲) ضرر استفاده از اسیدهای آلی (اسید آلبانیک و فیلوبیک) در افزایش کم و کیفی محصولات

کشاورزی. نشریه دانشگاه رجایی.

قریب‌الله، م. ادبیه‌های یکی از نویسندگان م. (۱۳۸۵) بررسی اثر تنش شوری و آسکوربیک اسید بر روی برخی پاسخ‌های فیزیولوژیکی

همچنین، م. (۱۳۸۱) و اکرمی‌ملا، ق. و مهندسی، ر. انتشارات کمیه ملی آمار وزارت امور اکثریت ایران. تهران. صفحه ۹۷.

Effect of humic acid and ascorbate on growth and biochemical traits of Moldavian balm (Dracocephalum moldavica L.) under salinity stress

Rasoul Narimani¹, Mohammad Moghaddam¹*, Abdollah Ghasemi Pirbalouti², Seyyed Hossein Nemati¹

¹ Dep. of Horticultural Science, Ferdowsi University of Mashhad. ² Dep. of Medicinal Plants, Shahrekord Branch, Islamic Azad University.
(Received: 17/11/2016, Accepted: 04/01/2017)

Abstract

Salinity is one of the most important non-biological stresses which limits the production of agricultural yields in dry and semi-arid regions. Humic acid, as an organic acid and ascorbate, as a powerful antioxidant can improve yield of plants under salt stress. In order to investigate effects of salinity and its interaction with ascorbate and humic acid on growth, photosynthetic pigments content, antioxidant enzymes activity and soluble protein in Moldavian balm (Dracocephalum moldavica L.), a factorial experiment was conducted based on randomized complete design with three replications. Treatments included four levels of salinity (0, 50, 100 and 150 mM) and, three levels of ascorbate and humic acid (0, 100 and 200 mgL⁻¹). Vegetative traits such as plant height and fresh and dry weight of stems and leaves with increasing salinity concentration showed a significant decrease compared to the control. Humic acid application, especially 200 mgL⁻¹ improved traits compared to the control plants in high levels of salinity stress. Photosynthetic pigments were strongly decreased by salinity and application of 200 mgL⁻¹ humic acid and ascorbic acid (partly) could compensate effects of salinity. The highest activity of antioxidant enzymes was observed in 50 mM salinity stress. Application of humic acid (especially 200 mgL⁻¹) for catalase and ascorbate peroxidase and 200 mgL⁻¹ ascorbic acid for guaiacol peroxidase increased enzymes activity compared to the control treatment.

Key words: Ascorbic acid, Antioxidant enzymes, Humic acid, Dracocephalum moldavica L., Salinity

*Corresponding author: m.moghadam@um.ac.ir