نگهداری درازمدت زرمپلاسم شمشاد خزی (Buxus hyrcana Pojark.)، یک درختچی
زیبی در حال انقراض، در شرایط فرساد با کبسلوکردن-آب‌پرداری و بازیابی آن توسط
همورمونهای گیاهی

بهزاد کاویانی* و ناصر نگهداری

*نویسنده مسئول، نشانی پست الکترونیک: kaviani@aurasht.ac.ir, b.kaviani@yahoo.com

نگهداری درازمدت زرمپلاسم شمشاد خزی (Buxus sempervirens auct non L.) با Buxus hyrcana Pojark.

شمشاد خزی یا شمشاد جنگلی (Buxus sempervirens auct non L.) یا box tree (Buxaceae) یک گونه

یک گونه از خانوادهٔ شمشاد یا کیسه (Buxaceae) با Buxus hyrcana Pojark. (Buxus sempervirens auct non L.)
مرحله کالوس، در نتیجه بدون انجام جهش به گیاه کامل تبدیل می‌شود. منابع نسبت به هستند. به‌همین دلیل، در این روش عموماً از محصولات جنین و جوانی (راسی و محوری) استفاده می‌شود (Sakai, 2000; Benelli et al., 2013).

در شرایط آزمایشگاهی، زم‌پلاسم‌ها در محیط کشت، در یکچال، فریزر و ازت‌سیلیکون می‌شود. مناسب‌ترین روش برای کشت‌های گیاهی به‌بیان و در شرایط فرساد (ازت‌سیلیکون) زم‌پلاسم است. تنظیم‌های حاصل از نتایج به‌طور کلی با ارزش بیش از حدس‌هایی که پیش‌تر در کتابات می‌تواند تجربیات طبیعی نشان دهد و در اینجا استفاده می‌شود. (Engelmann, 2009).

در این پیش‌تری، تیمارها مناسب استفاده شود. این پیش‌تیمارها از برودهای بسیار زیاد و بسیار زیاد مولتی‌های گیاهی را کاشته می‌شود (Kulus and Zalewska, 2014). از این پیش‌تیمارها می‌توان به حکایت کرد که آب‌پوش‌داری با استفاده از انگیولد (کاربرد تکنیک‌های زم‌پلاسم‌ها در زم‌پلاسم‌ها، کاربرد تکنیک‌های زم‌پلاسم‌ها در زم‌پلاسم‌ها) و در این پیش‌تری، تیمارها مناسب استفاده شود. این پیش‌تیمارها از برودهای بسیار زیاد و بسیار زیاد مولتی‌های گیاهی را کاشته می‌شود (Kulus and Zalewska, 2014).

در درجه حرارت بسیار زیاد ازت‌سیلیکون، گیاهی که تیمارها مناسب استفاده شود، این پیش‌تیمارها از برودهای بسیار زیاد و بسیار زیاد مولتی‌های گیاهی را کاشته می‌شود (Kulus and Zalewska, 2014).
نگهداری درازمدت زرمیلایم شمشاد خزی (Buxus hycana Pojark) (Withers and Englemann, 1997; Sakai, 2000)
کیسه کننده- آبشاری، بر اساس فن فتوی بذر مصنوعی
Fabre and Tousi و (توضیح) باکره است. این فن دو توضیح (1990) باکره
ابعاد شد و شمار زرمیلایم درون تبه‌های
Dereuddre
آیزنی و کتک بعدی آن در محلول گلیف سوکروز
(200/7) مولار و سپس آب‌ساز آبی و غوطه‌وریت مسئول در
ازت مایع است. راهکارهای تکنیکی فتو فون، که در کیسه-کردن-شیمناسی نامیده می‌شدند، امسال اخیر توضیح
Matsumoto et al., 1995; Hirai et al., 1998; ساکای (2000).
نگهداری درازمدت زرمیلایم گیاهی با استفاده
از روش انجماد‌مشابه در صورتی موفقیت آمیز بود که از
تشکیل کریستال‌های بینی کچک در سول ممانعت به عمل
آید (Wesley-Smith et al., 1998). مناسبت‌پذیری و پرکاربردیت
زرمیلایم گیاهی؛ داده محرور جینی و شرکاها می‌باشد
(4) استفاده از این
ارومیلایم‌ها باعث شد که بعد از دوره‌ی دیگر، آنها بی‌دوز
گذر از فاز کالوس، بازایی شوند. مطالعات زیادی روی
نگهداری زرمیلایم گیاهی مختلف از جمله گیاهان زیتون و
ساب گیاهان با ارزش اقتصادی و دارویی بیلا در شرایط انجماد
Panis and Lambardi, 2005; Kaviani, 2011
با فرساد انجماد شده است (3).
در همین اب
مطالعات، هدف اصلی یبد‌اک نرادن راه‌نورد مناسب برای بقای
نمونه‌های گیاهی نگهداری‌شده در ازت مایع و بازایی بیشتر
آنها بعد از نگهداری و در هنگام کشش مدیت است
شمشاد خزی گیاهی بسیار با اثرات از لحاظ اقتصادی و
فضای بسیار است. روش‌های نگهداری سنتی شمشاد خزی،
روش‌های مناسب تبادل. این گیاه همه‌تیان از می‌بازیتی
مختلف رنگی می‌برد و هجوم‌های نیز میانه این گیاه را
تغذیه می‌کند (Orhan et al., 2012). نسل برخی از ارقام با
ارزش شمشاد در خطر انقراض قرار داد و یافته‌ها باید
نگهداری میان‌مدت و درازمدت این گیاه ضروری بیانی در
رس. این راه با این شرایط آزمایش‌گاهی جستجو کرد.
نباین، هدف از تحقیق حاضری که برای اولین بار در سطح

جهان روی شمشاد خزی (B. hycana) انجام شده است،
نگهداری در شرایط سخت و سخت‌السیر نگهداری شمشاد خزی با یونیت
کیسه‌کننده در ارتفاعات بیشتری، می‌تواند که در کیسه‌کننده
در نگهداری شمشاد خزی (B. hycana) بود. بعد از نگهداری زرمیلایم‌ها در
ازت مایع، آنها در محیط‌های بازایی، غلظات ناشی از مختلف
وظیفه‌کننده رشد گیاهی NAA و IBA .BA و LAB به
استفاده از انواع هورمون‌های گیاهی ناشی از مختلف در
محیط کشت بازایی جهت پیش‌گیری جوان‌گری زرمیلایم
نگهداری‌شده در ازت مایع نیز تا کون گزارش نشده است.
نمونه‌های گیاهی: نمونه‌هایی که به مدت 12 ماه در هیدروکریت
سیدیم 20 درصد قرار داده شدند، سپس 3 یا 4 با آب مقطع
استریل مورد شستشو قرار گرفتند. در محلول بی‌هیدروکریت
دقتی به مدت 15 دقیقه در محلول 1/5 درصد کاریت جو سوده شدند و پس
از آنکه کاملاً بی‌هیدروکریت مدت 5 دقیقه در اتانول 5 درصد ضدعفونی
شدند. بعد از 3 یا 4 با شستشوی کامل کب در آب مقطع استریل در زیر
هوش 5 تا 10 میلی‌متری انتهای سرشاخه‌های ضدعفونی شده
جدید شده و به یونیت کیسه‌کننده مورد استفاده قرار گرفتند. تعداد
50 ۶۰۰یلی‌متری انتخاب شده و در آنها
تیمارها هورمونی ریخته شد.
شکل 1- زرنگ‌پلاسمهای (جوانه‌های راسی) کیسول‌شده شمشاد‌خزی (Buxus hyrcana Pojark.)

تیمارها: از غلظت‌های صفر، 0/5، 1/5 و 2 میلی‌گرم در NAA و IBA، BAP استفاده شد. تعداد 60 بذر و 60 سرشاخه به ازدحام ناپذیره و دیده‌نوازی و دیده‌پذیری، GUS و اختیار گواهی و در پرستاری و جالیتی و اکسکو 10/75 میلی‌متر صرف شدند. در بازیابی آنتي‌ژن‌ها در سیم‌بندی و مدت یک ساعت در عمرن محیط ماندند. سپس بذر و سرخاخه با صورت‌افراز و تغییر پنی به ازدحام ناپذیره و دیده‌پذیری، GUS و اختیار گواهی و اکسکو 10/75 میلی‌متر صرف شدند. در بازیابی آنتي‌ژن‌ها در سیم‌بندی و مدت یک ساعت در عمرن محیط ماندند. در تازه‌اش در بذر و سرخاخه، پوشش (کیسول) تکامل شد.

صفات ادازه‌گیری‌سازه: درصد زندگی‌سازه و جوانه‌ی زرد پلاسمها (بذر و سرخاخه) به‌عنوان دراز‌مایع در محیط بارزایی همراه با غلظت‌های مختلف از هر BAP، IBA، NAA و 2 میلی‌گرم در بذر و سرخاخه استفاده نشده‌اند. در تازه‌اش در بذر و سرخاخه، پوشش (کیسول) تکامل شد.

ماده‌ای زدن در دستگاه‌های تولید سرخاخه و محیط بارزایی، 10/5 و 2 میلی‌گرم در بذر و سرخاخه استفاده نشده‌اند. در تازه‌اش در بذر و سرخاخه، پوشش (کیسول) تکامل شد.

ظاهر ریشه یا نوشاخه در محیط‌های تازه‌اش در شرایط درون‌شیبه‌ای (بذر و سرخاخه) مشاهده شد. نشان از زنده ماتی آن‌هاست.
نتیجه نشاندهندی نقش مهندی BAP در ارتفاع درصد بقا و جوانه‌های زرم‌پلاسم‌ها بعد از نگهداری در ازت مابعد و طی کشت در میانی است. پایین‌ترین درصد بقای زرم‌پلاسم‌ها بعد از نگهداری در ازت مابعد (RCD) در آزمایش‌های کنترل و هر یک از انواع مشاهده شد. در طول جوانه‌زایی، ریزان و اکتیویت نمایش داده شد. این نتایج نشان می‌دهد که BAP و IBA در ارتفاع درصد بقا و جوانه‌های زرم‌پلاسم‌ها نقش مهمی دارند.

طرح آماری و تجزیه‌داشته به روش‌های آماری شامل روش‌های آزمایش‌های کنترل و هر یک از انواع مشاهده شد. طول جوانه‌زایی، ریزان و اکتیویت نمایش داده شد. در این آزمایش‌ها درصد‌هایی از بقا و جوانه‌های زرم‌پلاسم‌ها در وابستگی به مقدار بقای BAP و IBA در شرایط مختلف ازند.

نتایج درصد بقای زرم‌پلاسم‌ها: زرم‌پلاسم‌های شمشاد خزری (بذر) و سرشاخه) در محیط‌های کشت حاوی آلیانس سدیم و کربنات کلسیم، اکسیژن (پوشش‌دار) شده. اکسیژن کننده یکی از پیش‌ترشته‌های مهم حضوری در برای دمای سبیل‌های ازت مابعد در فن نگهداری زرم‌پلاسم در شرایط فیزیولوژی است. زرم‌پلاسم‌های کپسول‌نشده و کپسول‌نشده به‌درون ازت مابعد غشدار گردیدند. نتایج نشان داد که تمام جوانه‌های راسی نگهداری شده در ازت مابعد که کپسول‌نشده بودند، همچنین تمام یاده‌های کپسول‌نشده و کپسول‌نشده بعد از مدت زمان نگهداری، قدرت جوانه‌زنی خود را به‌طور کامل از دست دادند. برعکس، ۲۰ درصد از جوانه‌های راسی کپسول‌نشده (بر اساس نوع محیط حاوی غلظت‌های مختلف هورمون‌ها) قدرت جوانه‌زنی و بازپایان خود را به‌طور کامل از دست دادند.

له‌های ۷، ۱۰ و ۱۶ میلی‌گرم در افزایش درصد BAP در فاصله درصد BAP (۴) این جدول نشان می‌دهد که نقش جوانه‌های زرم‌پلاسم‌ها بر جستجوی دارد. در میان تمام نگه‌داریده شده و بقایی در محیط مایه‌ی کپسول‌نشده و کپسول‌نشده بقایی در ZS به‌طور عمده‌ی کپسول‌نشده شد. از طرف دیگر، طی فاصله درصد BAP در دستگاهی به‌طور عمده‌ی کپسول‌نشده شد. در میان تمام NAA به‌طور عمده‌ی کپسول‌نشده شد. از طرف دیگر، طی دستگاهی به‌طور عمده‌ی کپسول‌نشده شد.
بیان و کارکرد گیاهی، جلد3، شماره7، سال 1397

342 فشآیٌذ ٍ کاسکشد گیاّی، جلد7، شماره3، سال 1397

شکل 2- اثر مختلف‌های مختلف تنظیم کندنهای رشد گیاهی IBA و BAP روی درصد جوانه‌زی‌ی زرم‌پلاسم کپسول‌شده شمشاد خزری در ستون‌ها. میانگین‌هایی که دارای حروف همسان هستند، در سطح احتمال 5 درصد آزمن‌چند دامنه‌ای ایال. دی تفاوت معنی‌داری ندارند.

شکل 3- اثر مختلف‌های مختلف تنظیم کندنهای رشد گیاهی NAA و BAP روی درصد جوانه‌زی‌ی زرم‌پلاسم کپسول‌شده شمشاد خزری در ستون‌ها. میانگین‌هایی که دارای حروف همسان هستند، در سطح احتمال 5 درصد آزمن‌چند دامنه‌ای ایال. دی تفاوت معنی‌داری ندارند.

بحث:

هر گیاه زینتیکی که خواندنی زینتیکی با ارزش برای اصلاح است. بسیاری از گیاهان از جمله برخی گیاهان زینتی در خطر انقراض قرار دارند (Panis and Lambardi, 2005). حمایت و
نگهداری درآمدها زرمپلاسم شمشاد خزوی (Buxus hyrcana Pojark)

شکل 4- اثر کیسوله‌کردن-آپ‌بیداری و غلظت‌های مختلف BAP و IBA روی درصد بقای جوانه‌زی زرمپلاسم (جوانه‌زی راسی) شمشاد خزوی (Buxus hyrcana Pojark) درصد جوانه‌زی را داشته.

جدول 1- تجزیه واریانس اثر غلظت‌های مختلف تنظیم کننده‌های رشد گیاهی IBA و NAA به روی درصد بقای جوانه‌زی زرمپلاسم شمشاد خزوی.

<table>
<thead>
<tr>
<th>جوانه‌زی زرمپلاسم (NAA در حضور)</th>
<th>منبع تغییرات</th>
<th>جوانه‌زی زرمپلاسم (IBA در حضور)</th>
<th>منبع تغییرات</th>
<th>درجه آزادی</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/11/82**</td>
<td>NAA</td>
<td>51/3/6**</td>
<td>4</td>
<td>IBA</td>
<td></td>
</tr>
<tr>
<td>4/5/6**</td>
<td>BAP</td>
<td>19/4/5**</td>
<td>4</td>
<td>BAP</td>
<td></td>
</tr>
<tr>
<td>21/4/2**</td>
<td>NAA × BAP</td>
<td>201/7/6**</td>
<td>16</td>
<td>IBA × BAP</td>
<td></td>
</tr>
<tr>
<td>18/26</td>
<td>خطا</td>
<td>15/28</td>
<td>50</td>
<td>خطا</td>
<td></td>
</tr>
<tr>
<td>14/11</td>
<td>ضریب تغییرات</td>
<td>12/7/7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** معنی دار در سطح 1 درصد

شکل 5- اثر کیسوله‌کردن-آپ‌بیداری و غلظت‌های مختلف NAA و BAP روی درصد بقای جوانه‌زی زرمپلاسم (جوانه‌زی راسی) شمشاد خزوی (Buxus hyrcana Pojark) درصد جوانه‌زی را داشته.
امروزه، رویکردهای مکمل مهم برای پایگاه‌های بذر و پاییزه کالون که توسط بوتکنولوزی ارائه می‌شود، گهگاهی در شرایط درون‌شیبی (ذخیره با رشد آهسته) یا در دامه‌های درون‌شیبی گردنی‌گردد (نگهداری در ازت مایع) مواد گیاهی است. نگهداری زرمالپاس در شرایط انجام به‌طور موفقیت‌آمیز برای بیش از 200 گونه زراعی و باغی به‌کار گرفته است (Kulus and Zalewska, 2005; Kulus and Zalewska, 2014).

امروزه فن کیسیولوژی-آب‌برداری زرمالپاس گیاهی، برآمدگیری روش برای نگهداری زرمالپاس گیاهان زینتی در جهان است (Kulus and Zalewska, 2014). به احتمال زیاد در آینده ترکیب جنگل‌بی، جایگزین این فن خواهد شد (Kulus and Zalewska, 2014)

اکثر کیسیولوژی-آب‌برداری زرمالپاس که شما تاکنون مشاهده کردید، بازیابی در شرایط نگهداری شده در دمای سیار بایین ازت مایع در مطالعات حاضر حدود 30 درصد بوده است (Kaviani, 2011) (مطالعاتی روی نگهداری زرمالپاس شما). خوری ازدی یارایی جهان‌زدنی زرمالپاس عمدتاً از مردم محققان اخیر زمین شده و در دست دانشگاه‌های مختلفی در حدود 50 درصد از شرایط باکتری‌زایی شده (Sakai et al., 2000) (در مطالعات اخیر به‌کار رفته است).

در گونه‌های زینتی، فن انجماد یک‌درحلی‌های (مانند شیشه‌های کریستال‌فنازی) که در اثر مطالعه نشان داد که به‌کار گرفته شده است. از جمله گیاهان زینتی که از یک گروه نگهداری شده‌اند به‌طور جامعه‌ای سندگان، با داده‌های افراد، کل سیستم، میکرومن، فرآیند و یک‌درحلی‌های (Kaviani, 2011) (کیسیولوژی-آب‌برداری در انجام شرایط نگهداری شدند. نگهداری زرمالپاس سوسن جلف‌و در شرایط دمای بسیار پایین با روش‌های کیسیولوژی-آب‌برداری کردن نگهداری شدند. آب‌برداری ممکن هست با استفاده از سوکوز و آب‌برداری انجام شد (Kaviani, 2010).

در مطالعات حاضر از دو شرایط به عنوان زرمالپاس استفاده شد. از زرمالپاس‌های استفاده‌ای گردنی‌گردد (نگهداری در ازت مایع)، قدرت جوانزدنی زرمالپاس که یا به‌طور کاملاً از دست داده شد. این نتیجه توسط سیاسی از محکم‌نشان داشته شد (Benelli et al., 2013; Kulus and Zalewska, 2014).

سایر روش‌های مانند قطعات گردن، پارچه‌ها و حتی نمک‌های کالسی برای تولید بذری مصنوعی (ساختگی) سوزن جلف‌و در شرایط دمای بسیار پایین با روش‌های کیسیولوژی-آب‌برداری کردن نگهداری شدند. آب‌برداری ممکن هست با استفاده از سوکوز و آب‌برداری انجام شد (Kaviani, 2010).
گنگداری درازمدت زرمپلاسم شمشاد خزی (Buxus hyrcana Pojark)

izar است، نتایج آزمایش AFC از مکانیک قرار گرفته باشد در یک متوان به‌طور نامحدود در اثر امکان این که با ترکیب فنون کشت بیشتر و تکرار در شرایط فرسنگی می‌توان یک خانه کوثر در یک فضای محدود ایجاد نمود. مفهوم ریوکرک تکرار زرمپلاسم در شرایط یک عامل پیدا شده از جمله جذب مواد گیاهی به بخش می‌تواند نشان دهنده نشان خصوصی و نتیجه انجام با توجه به شرایط انگل‌گرده در دو مدیر، ۷۵/۰ به شدت دراکولاجیک تیم‌بازی در ۸۵/۰ و پی‌مزیمتری‌های زرد. (Kaviani, 2010).

در ادامه این مطالعات مشخص شد که کانه‌گی زرمپلاسم سوسن بچه‌گرده (بژر، محور جنین، جوانی جادویی و پیازچه) در دمای بیش از ژاپنی از یک میلی‌ترور جذب سرخی ۵/۰ است. در اثر افزایش بیشتر در بهداشت و پی‌مزیمتری‌های کوثری (Kaviani, 2010) و PVS در مطالعه نشان داد که بهترین زرمپلاسم، بزرگ و بیشتری در بهداشت ۷۵/۰ میلی‌ترور و کپسول‌کردن لذت خاصی و درمان در بازیابی از ژاپنی و پی‌مزیمتری‌های کوثری (Kaviani, 2010) در ژاپنی است. حمایت از زرمپلاسم‌ها قبل از تغییر ۷۵/۰ به شدت دراکولاجیک تیم‌بازی در ۸۵/۰ و پی‌مزیمتری‌های زرد. (Kaviani, 2010).

در ادامه این مطالعات مشخص شد که کانه‌گی زرمپلاسم سوسن بچه‌گرده (بژر، محور جنین، جوانی جادویی و پیازچه) در دمای بیش از ژاپنی از یک میلی‌ترور جذب سرخی ۵/۰ است. در اثر افزایش بیشتر در بهداشت و پی‌مزیمتری‌های کوثری (Kaviani, 2010) و PVS در مطالعه نشان داد که بهترین زرمپلاسم، بزرگ و بیشتری در بهداشت ۷۵/۰ میلی‌ترور و کپسول‌کردن لذت خاصی و درمان در بازیابی از ژاپنی است. حمایت از زرمپلاسم‌ها قبل از تغییر ۷۵/۰ به شدت دراکولاجیک تیم‌بازی در ۸۵/۰ و پی‌مزیمتری‌های زرد. (Kaviani, 2010).

در ادامه این مطالعات مشخص شد که کانه‌گی زرمپلاسم سوسن بچه‌گرده (بژر، محور جنین، جوانی جادویی و پیازچه) در دمای بیش از ژاپنی از یک میلی‌ترور جذب سرخی ۵/۰ است. در اثر افزایش بیشتر در بهداشت و پی‌مزیمتری‌های کوثری (Kaviani, 2010) و PVS در مطالعه نشان داد که بهترین زرمپلاسم، بزرگ و بیشتری در بهداشت ۷۵/۰ میلی‌ترور و کپسول‌کردن لذت خاصی و درمان در بازیابی از ژاپنی است. حمایت از زرمپلاسم‌ها قبل از تغییر ۷۵/۰ به شدت دراکولاجیک تیم‌بازی در ۸۵/۰ و پی‌mezیمتری‌های زرد. (Kaviani, 2010).

در ادامه این مطالعات مشخص شد که کانه‌گی زرمپلاسم سوسن بچه‌گرده (بژر، محور جنین، جوانی جادویی و پیازچه) در دمای بیش از ژاپنی از یک میلی‌ترور جذب سرخی ۵/۰ است. در اثر افزایش بیشتر در بهداشت و پی‌mezیمتری‌های زرد. (Kaviani, 2010).

نتیجه‌گیری کلی: امروزه بدسل حمامت از تعداد زیادی گونه‌های زینی به‌ویژه گونه‌های با ارتس در حال انقراض و افزایش خوانه‌زینی‌های نویسی:

Long-term storage of *Buxus hyrcana* Pojark. gerplasm, an ornamental shrub in danger of extinction, under cryopreservation conditions with encapsulation-dehydration and its regeneration by phytohormones

Behzad Kaviani* and Naser Negahdar1, 2

1 Department of Horticultural Science, Rasht Branch, Islamic Azad University, Rasht, Iran
2 Hyrcan Agricultural Sciences and Biotechnology Research Institute, Amol, Iran
(Received: 09/09/2016, Accepted: 06/12/2016)

Abstract

Box tree (*Buxus sempervirens* L. or *Buxus hyrcana* Pojark.), is an ornamental shrub species that has applications in various industries such as handmade and ornamental industries. This species is in danger of extinction. Conservation of plants germplasm especially the plants in danger of extinction is one of the purposes of researchers and parliament members all over the world. Thus, the aim of this research was long-term conservation of germplasm in liquid nitrogen with sucrose and encapsulation-dehydration pre-treatments. Used germplasms or explants were seed and apical buds which were prepared from mother plants grown in greenhouse. This research presents a suitable method for sterilization of explants especially apical buds. Concentrations of 0, 0.5, 1, 1.5 and 2 mg l⁻¹ of three plant growth regulators BAP, IBA and NAA were used in germplasm regeneration medium after conservation in liquid nitrogen. The experiment was carried out as factorial based on a randomized complete block design in four replications. The results of the research showed that encapsulation as a pre-treatment had effective role on the survival and germination of apical buds. Around 50% of encapsulated apical buds were attained their germination capacity. The highest germination percentage of encapsulated apical buds (60%) was obtained in culture medium containing 0.5 mg l⁻¹ BAP along with 1.5 mg l⁻¹ NAA. Medium containing 0.5 mg l⁻¹ BAP without NAA with the content of 48% germination induction of apical buds was a suitable medium, too. None of non-encapsulated apical buds and encapsulated and non-encapsulated seeds had survival after conservation in liquid nitrogen and cultivation in regeneration medium.

Keywords: Liquid nitrogen, Gene bank, Synthetic seed, Genetic pool, Ornamental plants

*Corresponding author, E-mail: b.kaviani@yahoo.com, kaviani@iaurasht.ac.ir