اثر سیدروفور باکتریایی بر رفتار بیولوژیکی ذرت در شرایط آبیاری تأخیری

ساناز صرافی، آرامن آذرو، روح الله صابری‌رها و علی‌اکبر محب‌میری

گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه ولی عصر (عج) رفسنجان، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه ولی عصر (عج) رفسنجان

نویسنده مسئول، نشانی پست الکترونیکی: armanazari@vru.ac.ir

تاریخ دریافت: ۱۳۹۷/۰۱/۰۸، تاریخ پذیرش نهایی: ۱۳۹۷/۰۲/۰۳

چکیده

این پژوهش بر کشت دوم ذرت (SC645) به صورت آزمایش فاکتوری در قالب طرح یافا بلکه‌های کامل تصادفی با سه تکرار انجام شد. دور آبیاری به عنوان عامل اول در دو سطح کامل آبیاری پس از ۷۵ (پس از آبیاری تأخیری) تیتر از تشکیل تیخر کل، باعث آبیاری پس از ۷۵ (پس از آبیاری تأخیری) تیتر کل و عدم آبیاری سیدروفور (پس از آبیاری شده) بود. کاربرد سیدروفور به صورت محلول‌پاشی (۲:۰:۰) در هزار در مراحل ۶ و ۱۲-۱۴ برگ و مصرف با آب آبیاری (۲۰ کیلوگرم در هکتار در مرحله گند) صوت گرفت. نتایج آزمایش نشان داد دور آبیاری یا نسبت به ۱/۴ سیب‌افزای رنگ‌هایه برگ، محیط‌های نسبی آب گیاهی (RWC) پاده داشت. شاخه سطح برگ و سطح اکستروسور (SLA) و کاهش ساکارز، پراکسیدازهای جریه‌ها (MDA)، فعالیت (LAI) و میزان فعالیت آنزیم‌های آنزیم‌های آناتیچی‌ها. سهم MDA و LAI از تأثیرات رنگ‌هایه برگ، قابلیت تنظیم اسمنز، نسبت S/i یز در مقایسه با a, گروه پرولین و پنده‌های محلول شد. بیشترین عملکرد توسط ثابت شد (۰/۷۵) از تیمار b پس از آبیاری آبیاری پس از آبیاری شده کاهش و کاهش (LAI) روند (کاک‌های گیاه‌زایی، افزایش ۹۴/۷گرم در مجموع سیدروفور باکتریایی با بهبود قابلیت موارد بیولوژیکی، فیوزیولوژیک و یوژنتیکی ذرت نواست در تحقیف اثرات تنش شکست و افزایش طرفیت فتوسترزی آن مؤثر بود. واژه‌های کلیدی: آنزیم آتی کسیدان، پرولین، خشکی، سیدروفور، مالون دی‌آلفیدین

مقدمه

از نقطه نظر کشاورزی، خشکی عبارت از ناتوانی بودن آب قابل دسترسی در طی دوره رشد گیاهان زراعی است که باعث محدود شدن پتانسیل زنده‌بودن عملکرد گیاه زراعی می‌شود (Gubis et al., ۲۰۰۷). نتایج امسیزی یکی از راه‌ریز پاسخ‌های گیاهی به تنش‌های محیطی است، ساکارز و دیگر نشانه‌های آلی در تنظیم انرژی در طول دوره تنش مشارکت

ارمنازاری@vru.ac.ir
ألف والمتانول، تأثيرات المتانول على النباتات ونمو النباتات. 2007. (Sankar et al., 2007)

تشكل البروتينات دخيلة داء وهم يشير إلى المسولية. بودة "ب ك معاه تانستي.وري ه.كي د.آزومات.دا.نجوم (Cao et al., 2004) موجهها تاد خصائص (Prady et al., 2005) (Chen and Dickman, 2005)

Downloaded from jispp.iut.ac.ir at 23:51 IRDT on Saturday May 18th 2019
تشنّه‌های محیطی مورد بررسی قرار گرفته است. با توجه به این مقایسه و نظر به اهمیت گیاه درت و برگ‌های خاص آن (گرما-دوست بودن و بهره‌وری از سیستم فتو‌تستی و C4)، سرعت رشد و تولید عمیکرده بالا)، ضرورت انجام این تحقیق شکل گرفت.

مواد و روش:

شهر رفسنجان در جغرافیایی ۳۰ درجه و ۲۳ دقیقه و طول جغرافیایی ۵۹ درجه با ارتفاع ۱۴۹۸ متر از سطح دریا در ارای اقلیمی خشک و زمستان نسبت سرد و تابستان گرم و خشک بوده و داده‌کننده دامی در مانی اکتشافات که سنگین و موهان می‌باشد که پیش‌بینی می‌کند هر سال هزینه در بالای سه میلیارد ریال می‌باشد.

صورت آرایشی فاکتوکلات قابل طرح یا به‌کلیه‌ای کامل تحقیق با ۳ نکته انجام گرفت. دور آبایی به عنوان عامل اول در دو سطح شام انجام آبایی از ۷۵ (به عنوان شاده) و ۱۰۰ میلی‌متر (به آب‌ای‌تأتیری) تجزیه از تطبیق بکلی است و در دو سطح شام سبز (S1) و دم کردری سبز (S2) به‌کار رفته است. کاربرد سیستم‌هایی در صورت حمل‌پشتی (до مرحله 3-6 ـ 6 متر پرکه و ۱۱-۲۴ پرکه، غلظت ساوار ۲ در ۱ تا ۴ متر در ۲ متر، محصول‌هایی با ۱/۳ ترکیب ۱۰ کیلوگرم در هکتار) صورت گرفت (جدول ۱). کاشت در صورت جوی و پشت به فاصله رضی ۷۵ مسانتی‌متر و تراکم ۱۰ بوده است. از تسمین‌های سیستم‌هایی که در حال حاضر توسط شرکت پردازش آبی به تولید می‌تواند (با فرمول شیمیایی، C16H12N10SO4)، در زمین که در زمین کردن بی‌پاتریک بی‌پاتریک گیاهی سیسی آبیاری عمومی است، اما به صورت طرح تحقیقاتی در زمین کردن اثرات

می‌باشد در پایه به حمله عوامل بیماری‌ها با تشکیل محیطی مانند تنفس شوری و شیمیایی، زخم پهنه‌ای‌ها و کاربرد تعادل از هیپرون‌های گیاهی تولید می‌شوند (Van Loon and Van Strien, 1999) سیستم‌های در گیاه تولید شده و سپس برای اطمینان می‌باشد از (SAR) سیستم‌های در تابعیت آب‌داشته و تشنّه‌های Ali and Vidhale, 2013 (از خانواده زراعی، گیاهی یک ساله، دگرگون، ویژه مناطق گرم و فصول گرم سال در منطق معقد است. گیاه به دلیل قدرت گاز‌گیری به شرایط اقلیمی کوتاکنی که دارد، خیلی زود در تمام دنیا گسترش یافته و می‌توان را بعد از کنار و بزرگ از نظر سطح زیر کشت به خود اختصاص داده است. بیشترین مصرف آن در نهایت دام و طیور به‌صورت دانه، علوفه سبز و سیلو می‌باشد. این ترتیب به‌طور غیرمستقیم از طریق کوشت، تخم‌مرغ و نباتات مورد تغذیه انسان قرار می‌گیرد (خواعی‌شناسی ۱۳۹۲).

با توجه به کمبود منابع آب تجدید شونده در دنیا، بزرگترین چالش در زمین‌شناسی کشاورزی، افزایش تولید محصولات کشاورزی با حداقل مصرف آب خواهد بود. انجام کشت ناسالم، امکان ضروری‌جویی در مصرف آب به میزان دو سوم کشت بهره‌را فراهم می‌آورد. به عنوان مثال، نیاز آبی در کشت اول در حدود ۱۰۰۰۰ متر مکعب هر کشت در ۵۰۰ سانتی‌متر مکعب می‌باشد (خواعی‌شناسی ۱۳۹۲). با این حال، انجام آب‌ای‌تأتیری در کشت ناسالم (کشت دروم یا فرعی) نیز کلی بررسی و توصیه بوده و در این زمینه، تحقیقات انجام شده محدود است. از این‌جایی که آب‌ای‌آوری‌خویی، با شدت‌های مختلف شکل وضعیت‌های خشکی می‌باشد، کاهش شدت نشانه‌ای طبق محلول‌ها برخی ترکیبات معکوس و آمی امکان‌یابید است. از خروج، سیستم‌های بی‌پاتریک می‌باشد که در حال حاضر توسط شرکت پردازش آبی به تولید می‌تواند (با فرمول شیمیایی، C16H12N10SO4)، در زمین که در زمین کردن بی‌پاتریک بی‌پاتریک گیاهی سیسی آبیاری عمومی است، اما به صورت طرح تحقیقاتی در زمین کردن اثرات

Downloaded from iissp.ut.ac.ir at 23:51 IRDT on Saturday May 18th 2019
جدول 1- ویژگی‌های فیزیکی و شیمیایی خاک مزرعه

<table>
<thead>
<tr>
<th>متغیر</th>
<th>نیتروژن</th>
<th>فسفر</th>
<th>منگنز</th>
<th>روی</th>
<th>مس</th>
<th>pH</th>
<th>EC</th>
<th>سلولار</th>
<th>وزن نمونه (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میلی‌گرم در کیلوگرم</td>
</tr>
<tr>
<td>میزان</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>تعداد</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>میزان</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
</tr>
</tbody>
</table>

نمونه‌برداری از برگ بلوط و در مرحله ناسیله دهی انجام و
صفات زیر مورد انتزاع جری در جدول 1 نشان داده می‌شود:

متغیر نسیاب برگ: ابتدا 10 عدد دیسک به قطر 9/5
ساختمان از بخش‌هایی برگ بالغ تهیه و وزن (FW) شده.
سپس داخل فولکlon حاوی 10 میلی‌لیتر آب مفطر به
مدت 4 ساعت در دمای 4 درجه سانتی‌گراد در تاریکی
قرار داده شدند تا بسیاری برگ به حالت تورناتسد کاملاً
درآیند. پس از حذف رطوبت سطحی آن‌ها، توزین (W)
گردید. بعد از آن نمونه‌ها در آن با دمای 40 درجه سانتی-
گراد به مدت 48 ساعت شکست شدند و وزن خشک دیسک‌ها
با استفاده از فرمول زیر محاسبه شد (Ritchie et al., 1990).

\[
\text{RWC} = \frac{\text{FW} - \text{DW}}{\text{FW}} \times 100
\]

پایداری غشاء سلول: تعداد 10 عدد دیسک به قطر 9/5
ساختمان از بخش‌هایی برگ بالغ تهیه در 0/9 میلی‌لیتر
آب مفطر درون لوله فولکلون ریخته و به مدت 8 ساعت داخل
پنجره قرار گرفت. سپس میزان هیداتم‌کلی محول
در دمای 25 درجه سانتی‌گراد سنجیده شد. در ادامه
انوکلس فولکلون‌ها به مدت 15 دقیقه و دمای 120 درجه
سانتی‌گراد انجام و بعد از سردشدن کاملاً، دوباره میزان‌های
کلی (EC2) در دمای 25 درجه سانتی‌گراد اندوزه گیری و
با رابطه زیر و میزان نشت کلی هیتیا با میزان پایداری غشاء
 CSLS: Cell Membrane Stability

\[
\text{CMS} = \frac{1}{\text{EC1} / \text{EC2}} \times 100
\]

رنگ‌گذاری برگ: میزان رنگ‌گذاری به شکل کارولفیل
ب و نسبت کارولفیل b / a با استفاده از روش (Arnon, 1967)
با نمونه‌گیری از جون‌های رنگ بالا و
عصاره‌گیری با استفاده اندوزگری شد، به‌نوبت که مقدار
در حمام آب گرم قرار داده شد و پس از خک شدن جذب در طول موج ۱۵-۲۵ نانومتر قرنیت کرده و استفاده‌ها از گلزک خالص در غلظت‌های ۰، ۰/۵، ۰/۷، ۱، ۱/۵، ۲، ۲/۵، ۳، ۳/۵، ۴ میلی‌گرم در لیتر تهیه و جذب آن‌ها اندوزه‌گی نموده است. بتاکس، ۱۹۷۳

برای تعیین میزان قدر حسب میکرومول بر گرم وزن نمونه انجام شد. (Irigoyen et al., ۱۹۹۲)

نهایه عصاره پروتینی: ۵۰۰ میلی‌گرم از بافت نازه گیاه در ۵ میلی‌سی سالری تانسم فسفات ۵۰ میلی‌میلی‌مولار با pH ۷/۵/۵ که حاوی پلاژن پیرولین (PVP) ۱ درصد و مولار بود، سپس نوشید. تمام مراحل استحراخ در بخش انجام گرفت. میزان عصاره‌ها به مدت ۲۰ دقیقه در pH ۷ و در مدت ۶ روز، ناده‌گی و تبدیل آن‌ها انجام شد. نمونه‌ها از تیپ آب و ۱۰۰۰ نانومتر و با استفاده از ضریب خاموشی (۱۸۵۰ μM cm۱) محاسبه شد.

(De Vos and Schat, ۱۹۹۱) MDA (μM g۱FW) = ((۱۹۳-۱۶۰۰)/۱۵۰ ۱۹۸۶)

صحا را به دست امده به مدت ۳ دقیقه با ۵۰۰ دور در دقیقه ساختاری شد. ۲ میلی‌لیتر از عصاره را برداشت و ۸ میلی‌لیتر KOH (۰/۵ میلی‌لیتر) به همراه به نمونه‌ها اضافه کرده و به مدت ۲۰ دقیقه در دمای ۱۰۰ درجه سلسیوس تگه‌داری شدند. وقتی که نمونه‌ها خشک شدند (تا دمای اتاق) ۳ میلی‌لیتر محلول آنتونر (۱۰۰ میلی‌لیتر اسید سولفوریک) رقیق شده (۷۱ میلی‌لیتر) در ۱۰۰ میلی‌لیتر اسید سولفوریک و ۳۰ میلی‌لیتر اب در نیاز به همراه به نمونه‌ها اضافه شده و در مدت ۴۰ دقیقه درجه ۱۰۵-۱۰۰ درجه سلسیوس تگه‌داری شدند. بعد از خشک شدن نمونه‌ها، جذب در طول موج ۲۰ نانومتر قرنیت شد. برای تهیه استاندارد از ساختار در غلظت‌های صفر، ۲۰، ۴۰، ۶۰ و ۱۰۰ و ۱۵۰ میلی‌گرم در میلی‌لیتر استفاده شد.

(‌Van handel, ۱۹۶۸)

محصول‌های محلول پراکسید: میزان ۱/۱ میلی‌لیتر از عصاره تهیه شده در حال ۱/۳ میلی‌لیتر از آنتونر تازه تهیه شده (۱۵۰ میلی‌گرم آنتونر به علامه ۱۰۰ میلی‌لیتر اسید سولفوریک (۲۵ ذر) مخلوط شد. سپس به مدت ۱۰ دقیقه
کاربرد سیدروفور بر تمامی صفات رنگرده‌های برگ و اثر متقابل آنها بر کارکرد a و b و کارکرد کل میزان در گردید (جدول 2). به گونه‌ای که با تأخیر در آب‌پز و عدم کاربرد سیدروفور، میزان a و b کاهش یافت و بیشترین و کمترین میزان کارکرد a و b کل به ترتیب مربوط به تیمار I سامی (جدول 3). کاهش کارکرد a، نتیجه منفی تنش خشکی ناشی از تأخیر در آب‌پز است. ولی این کاهش توسط برخی محققین نوعی ویژگی طبیعی در گیاهان در حال رشد تحت تنش کمبود آب نمایش می‌دهد (Schutz and Fangmeir, 2001) و از طرف دیگر، نتیجه آن را افزایش تولید آیدیکال‌های آزاد که باعث پرتوپاسیون و تجربه رنگرده‌ها می‌گردد. دیگر نتیجه است. کاربرد سیدروفور نیز به توجه نشان می‌دهد سایه رنگرده‌های گیاه در حال رشد تحت تنش کمبود آب نمایش می‌دهد (Schutz and Fangmeir, 2001).

نتیجه آزمون بی‌پنل اکسیدان: برای اکسیدان‌گیری محیط آزمون بی‌پنل اکسیدان، مخلوط واکنش شامل 1.5 میلی‌مول a pH برای 7.5 میکروولتر، 2.0 میکروولتر عصاره آنزیم ترکیب شد. سپس عصاره تهیه توسط دستگاه اسپکتروفوتومتری و جذب در طول موج 470 نانومتر به مدت 3 دقیقه اندوزگیری شد. (Plewà et al., 1991).

نتیجه آزمون نیل آلیان آمونیاژ: جهت اکسیدان‌گیری این آزمون، 1 میلی‌مول a pH برای 7.5 میلی‌مول، 10 میلی‌مول 2 pH البرز دو تظیه و 5 18 میلی‌مول I سامی بیان کننده ارتباط تندیک این دو رنگرده a/b می‌باشد. مقایسه میانگین اثر در آب‌پز بر نسبت کارکرد a/b می‌باشد. مقایسه میانگین که با کاهش a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I) سبب کاهش a/b نسبت کارکرد a/b و کاهش‌دهی نشان داد که تأخیر در آب‌پز (I)
جدول ۲- تجزیه واریانس و تغییرات نسبی کاروتئین‌ها و پروتئین بگ

| نوع گیاه | مرحله خاک | کاروتئین کل | ب/ا | پروتئین | جداسازی آزمایش
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>۱/۲۰</td>
<td>۱/۲۷۷۸</td>
<td>۱/۸۷۷۸</td>
<td>۲/۷۹۴۰</td>
<td>S2</td>
</tr>
<tr>
<td>S2</td>
<td>۱/۱۱۱</td>
<td>۲/۱۳۳۵</td>
<td>۵/۰۵۰۶</td>
<td>۱/۷۶۸۶</td>
<td>S1</td>
</tr>
<tr>
<td>LSD ۵%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳- مقایسه میانگین مربوط به عوامل آزمایش بر کاروتئین‌ها، b درهای مخلوط پروتئین و کاروتئین‌های بگ در دانه‌ای

<table>
<thead>
<tr>
<th>بگ محلول</th>
<th>پروتئین</th>
<th>کاروتئین کل</th>
<th>a/b</th>
<th>کاروتئین</th>
<th>S1 درهای آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/g FW</td>
<td>µg/g FW</td>
<td>mg/g FW</td>
<td></td>
<td>mg/g FW</td>
<td></td>
</tr>
<tr>
<td>۲/۴۸۹۴</td>
<td>۱۲/۰۵۱</td>
<td>۲/۴۹۴۶</td>
<td>۱/۸۷۷۸</td>
<td>۲/۷۹۴۰</td>
<td>S2</td>
</tr>
<tr>
<td>۲/۷۷۸۰</td>
<td>۱۰/۱۴</td>
<td>۲/۷۷۰۶</td>
<td>۵/۰۵۰۶</td>
<td>۱/۷۶۸۶</td>
<td>S1</td>
</tr>
<tr>
<td>۴/۵۹۴۶</td>
<td>۲/۷۸۴۲</td>
<td>۴/۵۹۵۶</td>
<td>۱/۷۶۸۶</td>
<td>۱/۷۶۸۶</td>
<td>S2</td>
</tr>
<tr>
<td>۶/۳۸۷۸</td>
<td>۳/۸۴۶۴</td>
<td>۶/۳۰۵۴</td>
<td>۱/۷۶۸۶</td>
<td>۱/۷۶۸۶</td>
<td>S1</td>
</tr>
<tr>
<td>۲/۱۱۱۵</td>
<td>۴/۰۰۰۰</td>
<td>۲/۱۱۱۵</td>
<td>۱/۷۶۸۶</td>
<td>۱/۷۶۸۶</td>
<td>S2</td>
</tr>
<tr>
<td>LSD ۵%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴- مقایسه میانگین مواد غذایی آزمایش بر کاروتئین‌ها، a/b کاروتئین‌ها، ساکزاس، مالون دی آلفید و آنزیم گیاهی گراکساز و پیل فل اکسیداز

<table>
<thead>
<tr>
<th>a/b کاروتئین‌ها</th>
<th>ساکزاس</th>
<th>مالون دی آلفید</th>
<th>unit/mg protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/g FW</td>
<td>unit/mg protein</td>
<td>mM/g FW</td>
<td>mg/g FW</td>
</tr>
<tr>
<td>۲/۱۸۵۰</td>
<td>۲/۱۷۵۰</td>
<td>۰/۴۷۷۶</td>
<td>۰/۴۷۷۶</td>
</tr>
<tr>
<td>۲/۲۱۱۰</td>
<td>۲/۱۹۰۰</td>
<td>۰/۴۷۷۶</td>
<td>۰/۴۷۷۶</td>
</tr>
<tr>
<td>۲/۲۴۴۰</td>
<td>۲/۲۱۳۰</td>
<td>۰/۴۷۷۶</td>
<td>۰/۴۷۷۶</td>
</tr>
<tr>
<td>LSD ۵%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۵- مقایسه میانگین مواد غذایی حاصل از کاروتئین‌ها، a/b کاروتئین‌ها، ساکزاس، مالون دی آلفید و آنزیم گیاهی گراکساز و پیل فل اکسیداز

<table>
<thead>
<tr>
<th>a/b کاروتئین‌ها</th>
<th>ساکزاس</th>
<th>مالون دی آلفید</th>
<th>unit/mg protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/g FW</td>
<td>unit/mg protein</td>
<td>mM/g FW</td>
<td>mg/g FW</td>
</tr>
<tr>
<td>۰/۲۱۶۶</td>
<td>۰/۲۱۶۶</td>
<td>۰/۲۱۶۶</td>
<td>۰/۲۱۶۶</td>
</tr>
<tr>
<td>۰/۱۹۰۰</td>
<td>۰/۱۹۰۰</td>
<td>۰/۱۹۰۰</td>
<td>۰/۱۹۰۰</td>
</tr>
<tr>
<td>۰/۱۸۰۰</td>
<td>۰/۱۸۰۰</td>
<td>۰/۱۸۰۰</td>
<td>۰/۱۸۰۰</td>
</tr>
<tr>
<td>LSD ۵%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
یابدینا، که با اندازه‌گیری میکروپیدوم (MDA) در هر دو گروه، مقدار MDA در گروه یک بارا از گروه دوم بیشتر بوده و این تفاوت عرضه کرد.

لطفاً توجه داشته باشید که این نتایج بر پایه ارزیابی‌های بیش از ۵۰ نمونه انجام شده بودند و دقت مراحل انجام برای این افزایش نشان دهنده اثرات مثبتی بوده است.

پژوهشگران (Matthews و Anderson، ۱۹۸۸) نیز نشان داده‌اند که به‌طور کلی، در هر دو گروه، MDA مقدار متوسطی بیشتری نسبت به دیگر گروه‌ها داشته باشد.

به طور کلی، نتایج این آزمایش از نظر نظریه‌گرایانه نیز به‌طور کامل تایید می‌شود. به‌طوری‌که افزایش MDA در این گروه‌ها به‌طور کلی نشان‌دهنده اثرات مثبتی بوده و می‌تواند به عنوان یک عامل مهم در تغییرات محیطی به‌عنوان جایگزینی‌های محیطی مورد توجه قرار گیرد.
<table>
<thead>
<tr>
<th>جدول ۸- ضرایب همبستگی بین صفات</th>
<th>۰۱</th>
<th>۰۲</th>
<th>۰۳</th>
<th>۰۴</th>
<th>۰۵</th>
<th>۰۶</th>
<th>۰۷</th>
<th>۰۸</th>
<th>۰۹</th>
<th>۱۰</th>
<th>۱۱</th>
<th>۱۲</th>
<th>۱۳</th>
<th>۱۴</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۰۱</td>
<td>۰۲</td>
<td>۰۳</td>
<td>۰۴</td>
<td>۰۵</td>
<td>۰۶</td>
<td>۰۷</td>
<td>۰۸</td>
<td>۰۹</td>
<td>۱۰</td>
<td>۱۱</td>
<td>۱۲</td>
<td>۱۳</td>
<td>۱۴</td>
</tr>
<tr>
<td>۰۱</td>
<td>۸۹</td>
</tr>
<tr>
<td>۰۲</td>
<td>۸۹</td>
</tr>
<tr>
<td>۰۳</td>
<td>۸۹</td>
</tr>
<tr>
<td>۰۴</td>
<td>۸۹</td>
</tr>
<tr>
<td>۰۵</td>
<td>۸۹</td>
</tr>
<tr>
<td>۰۶</td>
<td>۸۹</td>
</tr>
<tr>
<td>۰۷</td>
<td>۸۹</td>
</tr>
<tr>
<td>۰۸</td>
<td>۸۹</td>
</tr>
<tr>
<td>۰۹</td>
<td>۸۹</td>
</tr>
<tr>
<td>۱۰</td>
<td>۸۹</td>
</tr>
<tr>
<td>۱۱</td>
<td>۸۹</td>
</tr>
<tr>
<td>۱۲</td>
<td>۸۹</td>
</tr>
<tr>
<td>۱۳</td>
<td>۸۹</td>
</tr>
<tr>
<td>۱۴</td>
<td>۸۹</td>
</tr>
</tbody>
</table>

درجه منابع تغییر:
- **۸۹** و **۸۹** به ترتیب توان و ضعف معنی دار. معنادار در سطح احتمال ۰.۰۱ و ۰.۰۵ دارد.
- ns به ترتیب توان و ضعف معنی دار. معنادار در سطح احتمال ۰.۱ و ۰.۰۵ دارد.

طریق کمک به چسب عنوان یک تنظیم کننده اسم‌های ایفای نقش داشته است. کاربرد سیروفر نیز باعث کاهش MDA و کاهش رادیکال‌های آزاد تولیدی را به دنیای داشته باشد. نتایج تجزیه واریانس آزمون آنتی اسیدان برگ نشان داد که اثر اصلی عوامل آمیش بر میزان فعالیت آنتی‌سیسیاتیک گاواناکول پرولین پیشرفت به عنوان یک تنظیم کننده اسم‌های ایفای نقش داشته است. کاربرد سیروفر نیز باعث کاهش MDA و کاهش رادیکال‌های آزاد تولیدی را به دنیای داشته باشد. نتایج تجزیه واریانس آزمون آنتی اسیدان برگ نشان داد که اثر اصلی عوامل آمیش بر میزان فعالیت آنتی‌سیسیاتیک گاواناکول.
در آپاری از، هرگز همکاری دارای محتوا نسبی آب بیشتری بودن (جدول 9). انجام آپاری با دور کوانتوم، به دلیل ضعف بیشتر رطوبت در ناحیه، سبب بیشتر شدن محتوا نسبی آب برد شد. تیمار ۱ در مقایسه با Sb باعث افزایش محتوا نسبی آب برد گردید (جدول 10). فاصله رطوبت باعث افزایش محتوا نسبی آب برد و انجام فوتوسنتز بیشتر (افراشی رنگرزشی فوتوسنتزی) و کاهش میزان تولید برق می‌گردد. کاربرد سیدروفور احتمالاً از طریق بهبود و تقویت راهکارهای تظیم اسماً همکاری محتوا نسبی آب برد گردیده است. این صفت در برناوهای اصلاحی بعنوان شاخص مناسب و مهمی در انتخاب برای مقاومت به خشکی می‌گردد. پیشینگ آب گیاه و محتوی نسبی آب برد همکاری مثبت و با کاهش وجود دارد و گیاهانی که در پیان ذری نشان بیان محتوا نسبی آب برد بالاتری با حفظ چند به لحاظ مقاومت به خشکی نیز برتر خواهند بود (حسنی‌پور و همکاران، ۱۳۸۷).

پایداری غلبه تحت تأثیر اثرات اصلی دور آپاری و سیدروفور قرار گرفت (جدول 9) و در تیمار ۱ و همچنین Sb، پایداری غلبه بیشتری حاصل شد (جدول ۹ و ۱۰). از آنجایی که انجام آپاری و کاربرد سیدروفور باعث کاهش تولید رادیکال‌های آزاد می‌شود (بر اساس نتایج فعالیت آزمایشی آتی البانیکی این آپاری و حفظ پوسیکی غلبه سلولی نیز بیشتر خواهد بود. یکپاردازه‌سینل‌های غلبه توسط رادیکال‌های آزاد سیاه پایداری غلبه سلول شده و در نتیجه، ترکیبات سیتوپلیاسمی به خارج از اندام‌ها نشته پیدا کرده و باعت آشفتگی عملکرد غشایی و بهبود زدن تعادل محیطی سلول می‌شود. پناه‌برداری پایداری غلبه سلولی یک شاخص مهم مقاومت، گیاهی نشته به نشته می‌باشد. a و b) پایداری غلبه با کارایی کافی (Kocheva et al., ۲۰۱۳) و کاربرد همکاری مثبت (به ترتیب دارای همکاری و MDA و کاراکتریکس همکاری مثبت (به ترتیب در دور آپاری ۱ و Sb) بود.

برای نشان داد که تأثیر انسان در مرمت و کاهش میزان فعالیت آتی البانیکی تأثیر داشت (مطالعات Ali و Vidhale، ۲۰۱۳) از نظر دور ویژگی نسبی آب برد گردید (جدول ۸).
جدول 8- تجزیه واریانس محتوای نسبی آب برگ، پایداری غشاء، شاخچ سطح برگ و سطح مخصوص برگ

<table>
<thead>
<tr>
<th>محتوای آب برگ</th>
<th>پایداری غشاء</th>
<th>درجه آزادی</th>
<th>میانگین</th>
<th>بلور</th>
<th>دور آبیاری سیدروفور</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۴۹۰۴ **</td>
<td>۰/۱۵۰ **</td>
<td>۰/۱۳۴ **</td>
<td>۱</td>
<td>۱</td>
<td>۰/۱۳۴ **</td>
</tr>
<tr>
<td>۰/۱۰۵۵۴ **</td>
<td>۰/۰۸۸ **</td>
<td>۰/۰۵۴ **</td>
<td>۲</td>
<td>۲</td>
<td>۰/۰۵۴ **</td>
</tr>
<tr>
<td>۰/۰۵۸ **</td>
<td>۰/۰۴۱ **</td>
<td>۰/۰۱۳ **</td>
<td>۳</td>
<td>۳</td>
<td>۰/۰۱۳ **</td>
</tr>
</tbody>
</table>

جدول 9- مقایسه میانگین اثر سیدروفور بر محتوای نسبی آب برگ، پایداری غشاء، شاخچ سطح برگ و سطح مخصوص برگ

<table>
<thead>
<tr>
<th>سطح مخصوص برگ</th>
<th>شاخچ سطح برگ</th>
<th>محتوای آب برگ</th>
<th>دور آبیاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/m² × 8۰۶۹۷۶</td>
<td>۱۳۸</td>
<td>۰/۸۸۸</td>
<td>۱</td>
</tr>
<tr>
<td>g/m² × ۳۷۳۸۲</td>
<td>۱۴۳</td>
<td>۰/۳۷۳</td>
<td>۲</td>
</tr>
<tr>
<td>g/m² × ۷۴۷</td>
<td>۰/۲۹۷</td>
<td>۰/۰۱۹</td>
<td>۳</td>
</tr>
</tbody>
</table>

جدول 1۰- مقایسه میانگین اثر سیدروفور بر محتوای نسبی آب برگ، پایداری غشاء، شاخچ سطح برگ و سطح مخصوص برگ

<table>
<thead>
<tr>
<th>سطح مخصوص برگ</th>
<th>شاخچ سطح برگ</th>
<th>محتوای آب برگ</th>
<th>دور آبیاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/m² × ۸۳۴۲۶</td>
<td>۱۲۵</td>
<td>۰/۸۰۳</td>
<td>۱</td>
</tr>
<tr>
<td>g/m² × ۷۰۳۲</td>
<td>۱۴۶</td>
<td>۰/۷۸۲</td>
<td>۲</td>
</tr>
<tr>
<td>g/m² × ۷۴۷</td>
<td>۰/۲۹۷</td>
<td>۰/۰۱۹</td>
<td>۳</td>
</tr>
</tbody>
</table>

همچنین تیمار ۹ و ۸ باعث افزایش در این صفات شد (جدول ۹). افزایش رشد و تقویت سولو از یک طرف و بهبود ظرفیت انرژی و فتوسنتزی بیشتر توسط سیدروفور از طرف دیگر همراه با کاهش بیشتر پر برگ شده که هم شاخچ سطح برگ و هم سطح مخصوص برگ را افزایش می‌دهد. البته باید گفت میزان اثر گذاری کمبود روتین و غلاب بر اثر سیدروفور بوده است. افزایش در این صفات باعث افزایش ظرفیت فتوسنتز و کاهش سطح برگ، افزایش تعداد استلال می‌شود که در شرایطی که دسترسی بدون محدودیت و با حداکثر ظرفیت صورت می‌گیرد (فرآیند رنگی‌های برگی). پایداری غشاء بیشتری نیز وجود دارد و زمانی که بر اثر عامل ناسازه، پرولین افزایش می‌یابد، از پایداری غشاء نیز کم‌کاره خواهند شد. افزایش میزان MDA بسیار پایداری غشاه می‌گردد. در شرایط عدم وجود نش و پای بودن مسئول انتقال الکترون در سیستم فتوسنتز، تشکیل رادیکال‌های آزاد به طور قابل ملاحظه‌ای کم می‌باشد.

اثر اصلی عوامل آزمایش بر شاخچ سطح برگ و سطح مخصوص برگ معنادار بود (جدول ۸). دور آبیاری ۱ و ۲.
نتیجه‌گیری کلی:
کاربرد سیدروفور در شرایط آبیاری تأخیری موجب افزایش توانایی تولید اسید فلوئوریک، اسید سیلیکیک، هیدروکسیکلرد و گلوکزین در گیاه‌ها می‌گردد. ضمن اینکه تقویت توانایی‌های حفاظتی سلولی از فعالیت آنزیم‌های آنتی‌اکسیدانی منجر به حفاظت بیشتری از نیتروژنات و یا اسید خوراکی‌های سلولی شده که موجب تداوم حیات سلول و انجام فنستزی می‌گردد. آب‌زایی شاهد (I)، افزایش رنگی‌های پرکسید لیپید و شاخص مفصل برق و سطح مفصل برق و در نتیجه افزایش شرایط فنستزی‌ها به دنبال اثبات می‌شود. عین حال‌پاره در نظر داشته که کاربرد سیدروفور، باعث تحقیف اثرات تنش خشکی در گیاه می‌گردد، اما قادر به جبران اثرات آن نمی‌باشد.

ماناب:

احمدی، ع. و سی و سه مره، ع. (1383) تأثیر تنش آبی بر گیاه‌های درختی محلول، کارفورل و پروتئین در کنف آبی‌پی‌ی. تحت رزم‌های مختلف رطوبتی، مجله ایرانی علوم کشاورزی 25: 162-173.
حسین‌بیور، ج، کافی، م. و میرهادی، م. ج. (1384) اثر تنش خشکی بر عملکرد و برخی خصوصیات فیزیولوژیک جو، مجله علوم کشاورزی ایران. 39: 163-176.
خادابنده، ن. (1379) غلات انتشارات دانشگاه تهران.
خواجی‌پور، م. و شمیم‌زاده، م. (1392) انتشارات جهاد دانشگاهی واحد صنعتی اصفهان.
رستمی صدقی، م. و مولایی، م. (1384) اثر تنش خشکی بر عملکرد و برخی خصوصیات فیزیولوژیک جو، مجله علوم کشاورزی ایران. 39: 163-176.

