تأثیر ارتباطات مکانیکی بر محتوای فنل، الکالوئید کل و فعالیت آنتی اکسیدانی بافت کالوس (Hyoscyamus reticulatus L.)

گیاه بذرالبیج مشبک (Solanaceae)

حیله حسن پور۱و وحید نیکنام۲

پژوهشگاه هوا فضا، وزارت علوم، تحقیقات و فناوری، تهران، سالنگری ۱۳۸۷-۱۳۸۸، ایران

۳دانشکده زیست‌شناسی، قطب تازه‌زایان موجودات زنده ایران، پردیس علوم، دانشگاه تهران، تهران، ایران

(تاریخ دریافت: ۱۸/۰۷/۲۰۱۳، نگهداری پذیرش نهایی: ۲۰۱۳/۰۷/۱۸)

چکیده

بذرالبیج مشبک (Hyoscyamus reticulatus L.) از گیاه‌های دارویی منطقه‌ای بی‌زنبوری (Solanaceae) است. این گیاه حاوی الکالوئیدهای تروپینی از جمله هیپوساین و اسکوپولاین بوده و در داروی خواص ضد اسپاسم، آنتی کلرژیک و ضد درد می‌باشند. ارتباطات مکانیکی یکی از تنش‌های غیر رایج است که می‌تواند روی رشد و توسعه گیاه تأثیر داشته باشد. در این پژوهش اثر ارتباطات مکانیکی بر شاخص‌های رشد، محتوای فنل، الکالوئیدی و میزان رادیکالهای آزاد با روش ۲-دی‌فیل - ۱-پیکرازیل (DPPH) در یکی از گیاه‌های بافت کالوس بافت کالوس گیاه بذرالبیج مشبک مورد بررسی قرار گرفت. ارتباطات مکانیکی در فرکانس‌های مختلف (۱۰، ۵۰ و ۱۰۰ هرتز) برای زمان ۱، ۲ و ۵ دقیقه روی بافت کالوس اعمال شد. نتایج نشان داد که با افزایش زمان اکسیداسیون ارتباطات مکانیکی از نظر رشد، فعالیت آنتی‌اکسیدان، محتوای فنل و الکالوئیدی مقاومت بود و بهینه زمان اکسیداسیون ارتباطات مکانیکی در ۳ دقیقه مشاهده گردید. ارتباطات مکانیکی در فرکانس‌های ۵۰ و ۱۰۰ هرتز منجر به افزایش معنی‌دار بار اثر و خاصیت رشد، محتوای پروتونین، بروز، محتوای ترکیبات فنلی و الکالوئیدی شد و بهترین مقدار این پارامترها در فرکانس‌های ۵۰ و ۱۰۰ هرتز برای زمان ۳ دقیقه مشاهده گردید. محتوای کربوهیدرات تحت ارتباطات مکانیکی کاهش معنی‌داری داشت و کمترین مقدار این پارامتر در فرکانس‌های ۱۰۰ هرتز برای زمان ۵ دقیقه مشاهده شد. همچنین ارتباطات مکانیکی منجر به کاهش معنی‌دار در پراکسیداز‌پروتئین لیپیدها و افزایش فعالیت ویژیل پاراژنتی و از آرودگی انرژی رادیکالهای آزاد از طریق کاهش مقدار IC۵۰ شد و بیشترین کاهش نیز در فرکانس‌های ۱۰۰ هرتز برای زمان ۵ دقیقه مشاهده شد. بنابراین می‌توان از ارتباطات مکانیکی در فرکانس‌های مختلف می‌توان به عنوان ابزار برای افزایش رشد و محتوای متابولیت‌های های کالوئیدی در سلول‌های گیاهی باشد.

واژه‌های کلیدی: ارتباطات مکانیکی، الکالوئید، بافت کالوس، بذرالبیج مشبک، پروتئین، ترکیبات فنلی

مقدمه

بذرالبیج مشبک (Hyoscyamus reticulatus) گیاهی دارویی، یک ساله و منطقه‌ای بی‌زنبوری (Solanaceae) است.


نوع‌م皎 مسؤل، نشانی پست الکترونیکی: hassanpour@ari.ac.ir


محیط انتقالی گیاهی H. niger در مناطق جغرافیایی متفاوت بوده و در برن به گیاهان جمع‌آوری شده از شهر ادرمیت (Edremen) ترکیه به ترتیب ۸۷٪ و ۵۸٪/۰۰٪ می‌باشد. نتایج ارتعاشات مکانیکی در فرانکاس هیال بالا بر سر سلو-راهی کامی بمر مورد مطالعه قرار گرفته است. بنابراین در پژوهش‌های اثر ارتعاشات مکانیکی بر تعداد‌ها و اثرات، رابطه رشد و محتوی متابولیت‌های دارویی بافت کالوس گیاه بدراویش مشکی بررسی گردید.

مواد و روش‌ها

کشت بافت کالوس و اعمال ارتعاش مکانیکی: با گیاهی H. niger در سال 1994 جمع‌آوری شده است. این گیاه در محیط‌های گیاهی (Hyoscyamus reticulatus) در اواخر تابستان و جمع‌آوری شده است. در سال 2002، بافت کالوس گیاهی در استحکام میکروویژن‌سازی و موهیت میکروچراغ در میکرو‌پردازه‌ای به مقدار ۹۵/۰ می‌باشد. در سال 2013، بافت کالوس گیاهی H. reticulates از گیاهی H. reticulates استرایل است که توسط گیاهی H. reticulates در معرض Cytosine می‌باشد. در سال 2012، بافت کالوس گیاهی H. reticulates است که توسط گیاهی H. reticulates در معرض Cytosine می‌باشد.

آذربایجان غربی و آذربایجان شرقی انتشار دارد و به خصوص در مزارع شهرستان نیشابور و خراسان رضوی شناخته می‌شود (Guler, 2012).

ارتعاشات مکانیکی جلو تنش‌های غیرپستی بوده و می‌تواند اثرات قابل توجهی روی رشد گیاهان داشته باشد. (Bochu et al., 2012) نشان دهنده غیرپستی در گیاهان می‌باشد. توانایی افرازی تجمیع رادیکال‌های آزاد و در پی آن اسب‌های بافتی شونده و راکتیسایسیون لیپیدهای غشا به وسیله رادیکال‌های آزاد ایجاد می‌شود. می‌تواند منجر به ایجاد ریشه دیگر گردد (Alihaid et al., 2013).

نمونه‌های مطالعات گیاهی در ارتباط با نتایج ارتعاشات روب طول های گیاهی گروه شده است و بیشتر مطالعات در فرانکاس های بافتی ایران و ارتعاشات مکانیکی است. ارتعاشات مکانیکی در سطح + ۱ هزار می‌تواند باعث شود در اثر رشد بی تهاجم گیاهی باشد. (Yang et al., 2002) ارتعاشات M. reticulatus به عنوان یکی از ۲ هزار بی‌افرازی در محیط‌های accumulated محتوی پروتئین‌های محلول و متابولیت‌های ناتوهاشد. Hyoscyamus reticulates در اوریزی و افزایش رشد و ارتعاش بالاتر به عنوان یکی از ۳ هزار رشد را کاهش داد (Bochu et al., 2002) در سالهای گیاهی تپهیاری زنده و همکاران (2013). 

محتوای سلول‌های کالوس گیاهی در محیط‌های پروتئین‌های محلول و متابولیت‌های ناتوهاشد. Hyoscyamus reticulates در اوریزی و افزایش رشد و ارتعاش بالاتر به عنوان یکی از ۳ هزار رشد را کاهش داد (Bochu et al., 2002) در سالهای گیاهی تپهیاری زنده و همکاران (2013).

بین دریاچه سلول‌های کالوس گیاهی را کاهش داد (Bochu et al., 2002). در بافت کالوس گیاهی H. reticulatus دارای هورمون (2,4-D= ۱ mg L^{-1}, BA=1 mg L^{-1}) ارتعاشات مکانیکی در محیط‌های سلول‌های کالوس گیاهی را کاهش داد (Bochu et al., 2002). در بافت کالوس گیاهی H. reticulatus دارای هورمون (2,4-D= ۱ mg L^{-1}, BA=1 mg L^{-1}) ارتعاشات مکانیکی در محیط‌های سلول‌های کالوس گیاهی را کاهش داد (Bochu et al., 2002). در بافت کالوس گیاهی H. reticulatus دارای هورمون (2,4-D= ۱ mg L^{-1}, BA=1 mg L^{-1}) ارتعاشات مکانیکی در محیط‌های سلول‌های کالوس گیاهی را کاهش داد (Bochu et al., 2002).
نتایج ارتباطات مکانیکی بر محتواي فن، اکسائوند کل و فعالیت آنتی اکسیدانی ...
2/8 ميلي لتر آب مقطور و 100 ميكروليتر معرف فولين (Folin–Ciocalteu's)
(1955) اضافه شد. بعد از
گذشتن نیم ساعت جذب آنها در طول موج 720 760 نانومتر نسبت
به شاهد ثبت گردید. اسید گالیک به عنوان استاندارد برای
سننی استاندارد بکار رفت. محتواي نقل كل عصارهها بر
اساس میلر گرم معادل اسید گالیک بر گرم وزن خشک گیاه
گزارش شد (Meda et al., 2005).

کالکوند کل: برای سنگش محتویات آلکالوئیدها از روش
کامادا و همکاران (1983) استفاده شد. 2 گرم از پودر
خلک کالکوس پوره در هور نمونه، به 10 میلی لتر از
محولت کریم متان: میزان (آمونیاک) 25/ با نسبت حجمی
(0/5: 1) اضافه شد و پس از 20 دقیقه با فرانکاس
کیلوهرتز با دستگاه مثلث امواج فراصوت مندل
سوئیتیکت سیس. در حاضم آب 40 درجه
Schweitzerland
برای 4 ساعت قرار گرفت. بعد از فیلتر، شنی، رسوبات دوبار
با 0.5 میلی لتر محلول متان تری کریلیک شسته گردید. محلول
صف شده تبخیر و خشک شد. به باقی‌مانده 5 میلی لتر متان
تری کریلیک 2 میلی لتر اسید‌سولفوریک 1 نرمال اضافه شده
و سپس به خوی مخلوط گردید. مانند تری کریلیک خارج
شده و آن را در کیلوهرتزک حسیب می‌گردند، مانند تری کریلیک حلالت
شده و آن را در کیلوهرتزک حسیب می‌گردند، مانند تری کریلیک حلالت

محتوا پروپت و تحت ارتعاشات مکانیکی افزایش می‌نمیشد. 
محتوا پروپت و تحت ارتعاشات مکانیکی افزایش می‌نمیشد. 

داخیر یافته 50/ (P ≥ 0/5) و بیشترین محتوا پروپت در
فرانکاس 50 هرتز در زمان 30 دقیقه ارتعاش می‌نمیشد. 
(جدول 1). فرانکاس 50 هرتز به ترتیب متنگ به افزایش
مقدار پروپت در زمان‌های 0/15، 0/45 و 0/45 دقیقه
نسبت به شاهد نشان داد.

محتوای پروپت با افزایش سطح فرانکاس ارتعاشات
مکانیکی افزایش می‌نمیشد. با نسبت به شاهد نشان داد (شکل
2). بیشترین مقدار پروپت در فرانکاس 50 هرتز و زمان
45/ دقیقه مشاهده گردید. نسبت به شاهد، 1/5/9/ را
نسبت به شاهد نشان داد. برخلاف پروپت، محتوا کروبیوریدات کل تحت
ارتعاشات مکانیکی بیشتر در 50 و 100 هرتز کاهش می‌نمیشد.
بافت و پیشین کاهش در فرانکاس 100 هرتز و زمان
50 دقیقه مشاهده گردید (شکل 2). محتوا کروبیوریدات در
زمان 30 دقیقه ارتعاش مکانیکی بیشتر از زمان‌های 15 و 45
دقیقه بود.

ارتعاشات مکانیکی در 50 و 100 هرتز متنگ به کاهش
محتوا آن را افزایش داد (شکل 3). ارتعاش مکانیکی در

نتیجه
کالکوس ها در نمونه شاهد به رنگ قهوه اي روشت بوده و در
تاثیر ارتعاشات مکانیکی بر محتوای فلا، الکلینید كل و فعالیت آنتی اکسیدانی...

شکل 1. تصویری از بافت های کالوس گیاه بذرالبته مشیک (Hyoscyamus reticulatus) تحت ارتعاشات مختلف مکانیکی a (0 هرتز)، c (100 هرتز) و d (150 هرتز).

جدول 1- تأثیر فرکانس‌های مختلف ارتعاشات مکانیکی در زمان های 15، 30 و 45 دقیقه بر وزن تر، وزن خشک و محتوای پروتئین بافت کالوس بذرالبته مشیک (Hyoscyamus reticulatus)

<table>
<thead>
<tr>
<th>ارتعاش (هرتز)</th>
<th>زمان</th>
<th>میانگین</th>
<th>نتیجه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>50</td>
<td>29/95 ± 1/98 b</td>
<td>دلیم ثبت دارد</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
<td>3/8/ ± 3/14 a</td>
<td>دلیم ثبت دارد</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>3/8/ ± 3/14 a</td>
<td>دلیم ثبت دارد</td>
</tr>
<tr>
<td>150</td>
<td>300</td>
<td>3/8/ ± 3/14 a</td>
<td>دلیم ثبت دارد</td>
</tr>
<tr>
<td>150</td>
<td>450</td>
<td>3/8/ ± 3/14 a</td>
<td>دلیم ثبت دارد</td>
</tr>
</tbody>
</table>

دقیقه منجر به کاهش بیشتر محتوای پراکسیداسیون لیپیدها نسبت به زمان‌های 15 و 45 دقیقه شد. کمترین محتوای پراکسیداسیون لیپیدها در 5 هرتز مشاهده شد و پی کاهش افزایش سطح فرکانس ارتعاش تا 100 هرتز محتوای تیز افزایش پیدا می‌کند. ارتعاشات مکانیکی در زمان‌های مختلف باعث های منجر به کاهش نسبت به زمان‌های مختلف محتوای در زمان 30 دقیقه نسبت به زمان‌های مختلف محتوای IC50 و کمترین محتوای IC50 نسبت به زمان‌های 100 هرتز شده است.
دیگر مشاهده شد. فرکانس 50 هرتن در زمان‌های 15، 30 و 45 دقیقه به ترتیب منجر به کاهش 2/1، 1/2 و 1/3 درصد در IC₅₀ محصول محصولات بینی و هبات در افزایش محتواز فل و کالوئید کل تحت ارتعاس مکانیکی افزایش معنی‌داری یافت (P < 0/05). 

نتایج این تحقیق نشان می‌دهد که در افزایش محتواز و کالوئید کل تحت ارتعاس مکانیکی افزایش معنی‌داری یافت (P < 0/05).
جدول 2- تأثیر فرکانس‌های مختلف ارتعاشات مکانیکی در زمان‌های 15، 30 و 60 دقیقه بر مهار رادیکال‌های آزاد محتوای فنل و کالویند کل فیتاب کالووس بذرالبج مشیک (Hyoscyamus reticulatus)

<table>
<thead>
<tr>
<th>ارتعاش (هرت)</th>
<th>زمان</th>
<th>مقدار تغییرات</th>
<th>طبقه‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>500</td>
<td>612 ± 17/95</td>
<td>ab</td>
</tr>
<tr>
<td>149/8</td>
<td>500</td>
<td>534 ± 18/95</td>
<td>ab</td>
</tr>
<tr>
<td>59/2</td>
<td>500</td>
<td>334 ± 20/95</td>
<td>ab</td>
</tr>
<tr>
<td>12/9</td>
<td>500</td>
<td>272 ± 4/8</td>
<td>a</td>
</tr>
<tr>
<td>77/7</td>
<td>500</td>
<td>164 ± 0/76</td>
<td>a</td>
</tr>
<tr>
<td>72</td>
<td>500</td>
<td>72 ± 8/9</td>
<td>a</td>
</tr>
</tbody>
</table>

infeld کالویند کل فنل کالویند کل فنل کالویند کل

مقادیر میانگین 4 تکرار + انحراف معیار و حروف ناشناخته بانگ‌گر اختلاف معنی‌دار در سطح احتمال 0.05 درصد بر اساس آنالیز واریانس

مشاهده نشان داد (2002) افزایش رشد تحت ارتعاشات مکانیکی می‌تواند در ارتباط با افزایش سیلیتی‌های غشا (Xiongbiao et al., 1993) سیلیتی‌های غشا می‌تواند منجر به حرکت سیلیت‌ها، انتقال مکمل‌های سیگمات، یار و پسند کانال‌های بی‌پروژه کانال‌های کلیمی شود (Mizoguchi et al., 1996) از طرفی، سیستم درون سیلیتی و رشد بافت گاهی تحت افزایش بلوتوس‌های محلول در بافت می‌باشد. با افزایش بلوتوس‌های محلول، سیستم درون سیلیتی و مقدار آنزنها افزایش می‌یابد (Yiyao et al., 2002). بنابراین می‌تواند افزایش رشد تحت ارتعاشات مکانیکی در ارتباط با افزایش محتوای بلوتوس‌های محلول در تبدیلات بین سیلیتی باشد.

بحث

تغییرات رشد به عونان اولین پاسخ آشکار گیاهان تحت نش‌های غیرزیستی است. هنگامی که گیاهان تحت نش‌های مکانیکی قرار می‌گیرند سیلیت‌ها به سلول‌ها منتقل شده و می‌تواند سبب یک پاسخ دوگانه (افزایش و کاهش) در سلول‌های گیاهی شود. در این پژوهش رشد و محتوای بلوتوس تحت ارتعاشات مکانیکی باعث تغییراتی بین مقدار بیان و بهبود رشد در فنل و کالویند کل 50 هرتز مشاهده شد (جدول 1). افزایش رشد بافت کالووس تحت ارتعاشات مکانیکی قبل داد کالووس تأثیر مهار رادیکال‌های آزاد در بیابان گیاهان نیز مشاهده شده است Gerbera jamesonii
یبانگر فعالیت بیشتر جاروب اندیشگی از RI G، IC50 با داشت. این پژوهش ارث ارشار مکاتیکی از DPPH از این روند، ارتعاشات مکاتیکی در گیاه H. kurdicus می‌تواند در ارتباط با حفظ سیاست بروتین‌ها و جاروب کندگی ترکیبات ROS می‌باشد.

در تحقیق بیشتری از DPPH از گیاه Camptotheca (اصفه) با داشت. این پژوهش ارث ارشار مکاتیکی از DPPH از این روند، ارتعاشات مکاتیکی در گیاه H. kurdicus می‌تواند در ارتباط با حفظ سیاست بروتین‌ها و جاروب کندگی ترکیبات ROS می‌باشد. پژوهش کالوئیتا گیاه بذلریم مشکل تحت ارتعاشات مکاتیکی در

یبانگر فعالیت بیشتر جاروب اندیشگی از RI G، IC50 با داشت. این پژوهش ارث ارشار مکاتیکی از DPPH از این روند، ارتعاشات مکاتیکی در گیاه H. kurdicus می‌تواند در ارتباط با حفظ سیاست بروتین‌ها و جاروب کندگی ترکیبات ROS می‌باشد.

تأثیر آزمایش گیاه بذلریم مشکل تحت ارتعاشات مکاتیکی در

یبانگر فعالیت بیشتر جاروب اندیشگی از RI G، IC50 با داشت. این پژوهش ارث ارشار مکاتیکی از DPPH از این روند، ارتعاشات مکاتیکی در گیاه H. kurdicus می‌تواند در ارتباط با حفظ سیاست بروتین‌ها و جاروب کندگی ترکیبات ROS می‌باشد.

توجهگیری

یبانگر فعالیت بیشتر جاروب اندیشگی از RI G، IC50 با داشت. این پژوهش ارث ارشار مکاتیکی از DPPH از این روند، ارتعاشات مکاتیکی در گیاه H. kurdicus می‌تواند در ارتباط با حفظ سیاست بروتین‌ها و جاروب کندگی ترکیبات ROS می‌باشد.


