تأثیر محلول پاشی برگی اسید سالسیلیک بر برخی صفات مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی انگور رقم ماسون سیدلس در شرایط تنش شوری

جعفر امیری
گروه علوم باهیانی دانشکده کشاورزی، دانشگاه ارومیه، ارومیه
(تاریخ دریافت: 14/07/1395، تاریخ پذیرش نهایی: 29/06/1395)

چکیده:
یکی از عوامل تنش زای محیطی است که رشد کمی و کیفی گیاهان را محدود می‌نماید. از راهکارهای مهم برای غلبه بر تاثیرات نامطلوب شوری کاربرد تنش‌زن‌کننده‌های رسیده گیاهی است. تأثیر منظور بررسی تاثیر اسید سالسیلیک بر برخی ویژگی‌های مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی انگور ماسون سیدلس در شرایط شوری، نمونه‌گیری گُلدانی با صورت فاکتوریل در قالب طرح کامل تصمیم‌گیری‌های مورد ارزیابی قرار گرفت. مقایسه ریشه‌گرده‌سازی این رقم با پنک شری (معدل آب آبیاری) صفر (شاده)، 25، 50، 75 و 100 میلی‌مولار کاربن دی‌سیم و چهار صفحه اسید سالسیلیک (محول پاشی برگرسی) صفر (شاده). 100 و 200 و 300 میلی‌گرم در لیتر می‌گردد. افزایش غلظت کلرید، باعث کاهش شاخص‌های رشدی، محیات و نسبتاً برق و نیز افزایش نتیج سنگین‌های مالودی‌الدین شد. در تیمار شوری 100 میلی‌مولار (بدون اسید سالسیلیک)، زیان کاوش طول ساقه و طول ریشه، رشد 17/18 و 95 درصد در مقایسه با شاهد بود. در سطح شوری 100 میلی‌مولار، کاربرد اسید سالسیلیک در غلظت 300 میلی‌گرم در لیتر، نیز پرولون را 4/11 برابر، تندهٔ محلول را 7/5 برابر، تغییرات آنزیم‌های گل‌پرکننده، آکسیژن‌های پپتریداز و کاتالاز را 3/27 و 4/6 و 3/3 برابر در مقایسه با شاهد افزایش داد. بافت‌های انگور این پژوهش نشان داد که در شرایط تنش شوری، کاربرد اسید سالسیلیک (در غلظت‌های 200 و 300 میلی‌مولار) باعث افزایش کاوش از رشد، افزایش تغییرات آنزیم‌های آنتی کلز و اسپولپیلیت سازگاری و نیز کاهش نتیج سنگین‌های مالودی‌الدین شد.

کلمات کلیدی: انگور، آنزیم‌های آنتی کلز، اسپولپیلیت سازگاری، تنش شوری، مالودی‌الدین

پناسیل آب، عدم تکثیر بوی در جذب مواد غذایی، بر هم زدن هپاتیت‌ها و سمت بوی در وسایل می‌یابد. برخی تحقیقات نشان‌دهند. در نتیجه خشکی که خشکی و شوری از مشکلات حساسی در آن افراسیب شوری، و در حال حاضر، در بیشتر مناطق کوه زمین، افزایش شوری، علت اصلی افزایش بوی در جذب مواد غذایی، بر هم زدن هپاتیت‌ها و سمت بوی در وسایل می‌یابد. برخی تحقیقات نشان‌دهند. در نتیجه خشکی که خشکی و شوری از مشکلات حساسی در آن

مقدمه:
شوری، به عنوان یکی از مهم‌ترین عوامل محیطی محترم محصول در گیاهان به‌ویژه در دوره باره‌گی محصول شده، زیرا پیشگیری گیاهان به شوری حساس بوده و در غلظت‌های بالا، بنابراین خاک، ابزار می‌بیند (Munns and Tester, 2008). شوری خاک دارای سه اثر ویژه شکل‌کاوش

j.amiri@urmia.ac.ir

نویسنده مسئول، نشانه پست الکترونیکی: j.amiri@urmia.ac.ir
آژتیون مالوندی-بدن‌کشی زمینه‌ای است که در آن مطالعاتی در زمینه مدیریت برنامه‌ریزی و منابع اجتماعی و طبیعی به وضوح نشان می‌دهند که این مطالعات بر روی این زمینه محدود می‌باشند. (Fisarakis et al., 2001)

در خلال برخی از این مطالعات، این امر حکایتی از اهمیت‌شناسی مدیریت برنامه‌ریزی و منابع اجتماعی و طبیعی است که در مطالعات مربوط به این زمینه مورد استفاده قرار می‌گیرد. (Yokoi et al., 2002)

از این جهت، مطالعاتی مربوط به مدیریت برنامه‌ریزی و منابع اجتماعی و طبیعی به وضوح نشان می‌دهند که این مطالعات بر روی این زمینه محدود می‌باشند. (Prakash et al., 2003)

از این جهت، مطالعاتی مربوط به مدیریت برنامه‌ریزی و منابع اجتماعی و طبیعی به وضوح نشان می‌دهند که این مطالعات بر روی این زمینه محدود می‌باشند. (Bhattacharjee et al., 2005)

از این جهت، مطالعاتی مربوط به مدیریت برنامه‌ریزی و منابع اجتماعی و طبیعی به وضوح نشان می‌دهند که این مطالعات بر روی این زمینه محدود می‌باشند. (Zhifang and Loescher, 2003)

از این جهت، مطالعاتی مربوط به مدیریت برنامه‌ریزی و منابع اجتماعی و طبیعی به وضوح نشان می‌دهند که این مطالعات بر روی این زمینه محدود می‌باشند. (Bhattacharjee et al., 2005)

از این جهت، مطالعاتی مربوط به مدیریت برنامه‌ریزی و منابع اجتماعی و طبیعی به وضوح نشان می‌دهند که این مطالعات بر روی این زمینه محدود می‌باشند. (Zhifang and Loescher, 2003)

از این جهت، مطالعاتی مربوط به مدیریت برنامه‌ریزی و منابع اجتماعی و طبیعی به وضوح نشان می‌دهند که این مطالعات بر روی این زمینه محدود می‌باشند. (Bhattacharjee et al., 2005)

از این جهت، مطالعاتی مربوط به مدیریت برنامه‌ریزی و منابع اجتماعی و طبیعی به وضوح نشان می‌دهند که این مطالعات بر روی این زمینه محدود می‌باشند. (Zhifang and Loescher, 2003)
تأثیر محلول‌پذیش گیاهی اسید سالیسیلیک بر رشد و نهایتا از آن به شیمیایی شریک نشدن شوری انرژی (Tari et al., 2002).

مواد و روش‌ها:

این پژوهش در گیاه‌های آزمایشگاهی هفت گروهی بهره‌مندی کننده علوم ایمنی و گروهی ریزش سنتی داشته است کههم‌گروهی ارومیه به اجرای آزمایش این گروه‌های برگ وزیگی‌های محلول‌پذیش می‌باشد. برای محلول‌پذیش فیبرولیزیک، تهیه‌کننده کمی شرکت سیالیسیل (با مارک Applichem) و جرم مولی 18/12 گرم بر مولی و در چهار غلظت مصرف (شاده)، 100، 200 و 300 میلی‌گرم در لیتر، به‌صورت محلول‌پذیش در چهار مرحله (از زمان شروع عامل تیمار شوری و 2 و 6 هفته پس از آن) صورت می‌گرفت. پس از اتمام تیمار شوری (پایان هفته هفتم) ویژگی‌های محلول‌پذیشی و بوشیمیایی رقم انگور تامپسس ولسن مورد آزمایش قرار گرفت. برخی ویژگی‌های رویشی گیاهی مورد آزمایش، شامل طول‌نشان‌های طول رشد هوا و دستکاری و ضخامت برق توسط کلوس دیجیتال اندازه‌گیری شد. همچنین تعادل گیاه‌ها شمارش شد. اندس‌گردی ویژگی‌های روشی گیاهان در پایان دوره آزمایش درصد گرفت و نسبتاً محدود بود. برخی ویژگی‌های فیبرولیزیک و بوشیمیایی در نسبت محتوا (Relative Water Content) به‌صورت درصد (وزن خشک - وزن تر) حاکی از استفاده راهبردی محاسبه گردید. (Rothen 1981)

روش کار به‌دين صورت بود که هر تکرار، تعداد دو گرگ توزه‌بند شده از سمت آنهای ساقه، نمونه‌گیری و به طراح‌های سیستم‌های تأمین شده 2 گرگ با 24 میلی‌متر قطر شده و در لوله‌های آزمایشی حمایت آب می‌فرستید. شرایط دو با دارای دمای 25 درجه گلدن‌سیس، از درجه سیلیسوس، در دستگاه شیمی‌آزمایشی در دما 120 درجه شش می‌باشد. نمونه‌های در اتوکلاو در دما 75 درجه و 100 میلی‌مبار استفاده شد. هفته‌ای به یک گرگ، مورد استفاده محصول‌های ایمنی و بویژه حساسیت‌های در بر، این پروپوزیت به‌منظور بررسی افزایش میزان مقاومت به شوری در رقم انگور تامپسس ولسن با کاربرد اسید سالیسیلیک و تأثیر آن بر بهتر شناسایی ویژگی‌های محلول‌پذیشی و بوشیمیایی در شرایط نشدن شوری انرژی گرفت.
جدول 1- نتایج آزمایش تجزیه خاک مورد استفاده برای کاشت‌های انگور در گلستان

| باتخاک | هدایت الکتریکی (dsm⁻¹) | اسیدهای خاک (درصد رس) | کربن آلی (%) | دارد/فکر | درصد سیلت
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2/7</td>
<td>48/3</td>
<td>22/0</td>
<td>17</td>
<td>1397</td>
<td></td>
</tr>
</tbody>
</table>

| لوم رنگ | 4/1 | 7/6 | 4/3 | 3/2 |

سال: 1397

فرآیند و کارکرد گیاهی، جلد 7، شماره ۲۴

برای نهایه عصاره گیاهی جهت تعیین میزان فعالیت آنزیم های کاتالاز، آسکوربیک پراکسیداز و گاماکول پراکسیداز از روش Salivate و Kang (2000) با اندکی تغییرات استفاده شد. فعالیت آنزیم کاتالاز با استفاده از روش Aebi (1984) اندازه‌گیری گردید. فعالیت آنزیم کاتالاز به‌صورت کاهش در یک طبیعی دقیقه در طول موج ۲۴۰ نانومتر با استفاده از استخراج اسکتریفومتر محاسبه شد. برای سنگین و فعالیت کاتالاز از رابطه ۴ و ضریب خاموشی (۴۳/۷ mM⁻¹ Cm⁻¹) استفاده شد.

(رابطه ۴)

Units (mM/min) = \frac{ΔOD/min (slope) \times Vol of assay \times 0.0002}{Exinction Coefficient (43.7)}

Extinction coefficient = ضریب خاموشی OD/min = اختلاف یک دقیقه

Vol of Assay

حجم محلول در کوروت = فعالیت آنزیم آسکوربیک پراکسیداز در نراد تیمارها و تکرارها با استفاده از روش Asada و Nakano (1987) با اندکی تغییرات اندازه‌گیری گردید. فعالیت آنزیم آسکوربیک پراکسیداز به‌صورت کاهش در یک طبیعی دقیقه در طول موج ۲۹۰ نانومتر با استخراج اسکتریفومتر محاسبه شد. برای سنگین و فعالیت آسکوربیک پراکسیداز از رابطه ۵ و ضریب خاموشی (۲/۴AmM⁻¹ Cm⁻¹) استفاده شد.

(رابطه ۵)

Units (mM/min) = \frac{ΔOD/min (slope) \times Vol of assay \times 0.00014}{Exinction Coefficient (28)}

Extinction coefficient = ضریب خاموشی OD/min = اختلاف یک دقیقه

حجم محلول در کوروت = حجم محلول در کوروت = فعالیت آنزیم گاماکول پراکسیداز با استفاده از روش و همکاران (1985) اندازه‌گیری گردید. فعالیت آنزیم گاماکول پراکسیداز به‌صورت کاهش در یک طبیعی دقیقه

سلسویس بندید ۲۰ دقیقه قرار گرفت و بعد از خنک شدن محلول و رساندی دمای آن به ۲۵ درجه سیلسوس. EC اندازه‌گیری محصولات آلیترین دیده شاخص پراکسیداز سوپرپروتئین برای تیمارها و همچنین معیار برای سنگین تأثیر نشان داد. (Novach و Popham 1991) اندازه‌گیری شد. در این روش گرم بسته تری کاراها (برگ) در ۵ میلی لیتر تری کارا‌سنسیس (TCA) یک دستگاه سایده شده و داخل لوله آزمایش ریخته شد. سپس نمونه به‌مدت ۴ دقیقه در ۸۰۰ سانتی‌پیوند شدید. یک میلی لیتر از فاز بالایی نمونه سانتریفورز شده، در لوله‌ای آزمایش که حاوی ۴ میلی لیتر محلول ۲۰ دستگاه تری کارا‌سنسیسیس رد شود. (Novach و Popham 1991) نمونه به‌مدت ۳ دقیقه در بن مایه با دمای ۹۵ درجه سالسویس قرار گرفت و بریک در آب یخ سرد شدند. سپس به‌مدت ۵ دقیقه در ۸۰۰ سانتی‌پیوند شده و در نهایت جذب آن در دو طول موج ۴۱۵۵ و ۵۰۰ نانومتر توسط استخراج استخراج اسکتریفومتر اندازه‌گیری شد. میزان آلیترین آلیترین با حساب میکرومول بر وزن در با استفاده از رابطه ۳ محاسبه گردید.

MDA (µmol/g FW) = [A532−A600/155]×1000

(رابطه ۶)

برای اندازه‌گیری پروتئین و فندق‌های محلول، عصاره گیری از در طول موج ۲۴۰ نانومتر (Irigoyen et al., 1992) استفاده شد و نهایا میزان جذب نمونه‌ها در طول موج ۴۱۵۵ نانومتر با استخراج اسکتریفومتر خوانده شد (Piquin و Lachesseur, 1979). (Irigoyen et al., 1992) استفاده شد و نهایا میزان جذب نمونه‌ها در طول موج ۴۱۵۵ نانومتر، با استخراج اسکتریفومتر قرار گرفت. برای تغییر میزان پروتئین محلول کل از روش برادفورد (Bradford 1976) استفاده شد.
تأثیر محلول پاکی برومی اسید سالسیلیک به برخی صفای مورفولوژیکی…

ویژه در سطوح بالای شوری، تأثیر معناداری بر کاهش ضخامت برك نداشت (جدول ۱). میزان تغییرات ضخامت برك با اکبرد اسید سالسیلیک (در غلظت ۳۰۰ میلی گرم در لیتر)، در نیمی‌های ۷۰ و ۱۰۰ میلی‌میلی‌متر شوری به ترتیب ۷۱/۳ و ۷۷/۵ برابر در مقایسه با شاهد (بدون عامل تنش شوری و بدون کاربرد اسید سالسیلیک) شد. طول ریشه، متناسب با افزایش غلظت نمک به‌طور معناداری کاهش یافت. تأثیر مثبت اسید سالسیلیک در سطوح یکپارچه شوری (۲۵ و ۲۵۰ میلی‌میلی‌متر شوری) بیشتر نمایان بود. به‌طوری که با کاهش اسید سالسیلیک با غلظت ۳۰۰ میلی‌گرم در لیتر درصد کاهش طول ریشه به مقایسه با شاهد در نیمی‌های ۲۵ و ۱۹/۸ درصد و در نیمی‌های ۵۰ میلی‌میلی‌متر شوری به درصد ۳۱/۴ درصد رشد (جدول ۱). نتایج این پژوهش نشان داد که سطوح مختلف شوری به‌طور معناداری باعث کاهش طول ریشه‌ها شد. غلظت‌های مختلف اسید سالسیلیک تأثیر مثبتی در کاهش اثرات منفی شوری بر طول شاخاسه داشتند. میزان کاهش طول شاخاسه با کاربرد اسید سالسیلیک با غلظت ۳۰۰ میلی‌گرم در لیتر در نیمی‌های ۷۵ میلی‌مولار، ۴۷ درصد و در نیمی‌های ۱۰۰ میلی‌مولار، ۴۵/۷ درصد بود (جدول ۱). در این پژوهش به‌طور دوباره، عوامل مهمی مانند پتانسیل متفاوت بسیار زیادی آب در محیط اطراف ریشه، سرمیت پوست ناشی از تجمع غلظت‌های بالای یونه سدیم و کلر در برق و عدم تعاون بیون‌ها جلوی نشان دهنده کاهش شاخاسه رشد نشان داشتند. با افزایش شوری، سلول‌های برق در برق موقت آب خود را از دست می‌دهند و در نتیجه گاهیی در سرعت تقویم و توالی شدن یاخته‌ها کاهش یافته و منجر به کوچک شدن اندازه‌های نهایی برق خواهی شد (۲۰۰۲). با اکبرد اسید سالسیلیک با غلظت ۳۰۰ میلی‌میلی‌متر شوری و ۵۰ میلی‌میلی‌متر شوری (بدون کاربرد اسید سالسیلیک) همگی به‌طور معنی‌داری ماهیت مشاهده نشد. در نیمی‌های نیمی شوری و ۱۰۰ میلی‌میلی‌متر شوری همگی به‌طور معنی‌داری سرعت ماده مایعات در برق و ۲۴/۳۶ درصد درصد کاهش در تعداد برق مشاهده گردید.

<table>
<thead>
<tr>
<th>Vol. of Assay</th>
<th>Extinction Coefficient</th>
<th>Extinction coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00001(mM/min)</td>
<td>26.6</td>
<td>26.6</td>
</tr>
</tbody>
</table>

OD/min = 26.6

![Table](https://example.com/table.png)

نتایج و بحث:

در شرایط بدون اعمال تمام شوری، غلظت‌های مختلف اسید سالسیلیک تعداد برج‌ها افزایش داده می‌شود که در مقایسه با تیمار شاهد (بدون کاربرد اسید شوری) اختلاف معنی‌داری مشاهده نگردید. با افزایش سطوح شوری، تعداد برج‌ها کاهش یافته و اختلاف بین تیماره‌ها از لحاظ معنی‌دار بود. به‌طور کلی، تعداد برج در نیمی‌های غلظت ۳۰۰ میلی‌گرم در لیتر و کمترین تعداد برج در نیمی‌های غلظت ۱۰۰ میلی‌مولار شوری (بدون کاربرد اسید سالسیلیک) نشان داده می‌گردد (جدول ۱). اسید سالسیلیک به‌وسیله غلظت‌های ۲۰۰ و ۳۰۰ میلی‌گرم در لیتر، تأثیر منفی در کاهش اثرات منفی شوری بر تعداد برج در این رقم داشت. اما این تأثیر مثبت در سطوح پایین شوری (۲۵ و ۵۰ میلی‌میلی‌متر شوری) بیشتر نمایان بود. در نیمی‌های شوری ۴۷ و ۷۵ میلی‌میلی‌متر شوری همگی به‌طور معنی‌داری سرعت ماده مایعات در برق و ۲۴/۳۶ درصد درصد کاهش در تعداد برق مشاهده گردید.

با افزایش غلظت شوری، ضخامت برق افزایش یافت و اختلاف بین تیماره‌ها معنی‌دار بود. کاربرد اسید سالسیلیک به...
جدول 2- نتایج مقایسه میانگین برخی از شاخص‌های رشدی مورد ارزیابی در انگور رقم تامپسون سیدلز در سطوح مختلف شوری (میلی‌مولار) با غلظت‌های متفاوت اسید سالیسیلیک (میلی‌گرم در لیتر).

<table>
<thead>
<tr>
<th>شاخص‌های اندازه‌گیری شده</th>
<th>طول رشد (سانتی‌متر)</th>
<th>ضخامت برگ (سانتی‌متر)</th>
<th>عدد برگ</th>
<th>مولاری اسید سالیسیلیک (میلی‌گرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>81/85</td>
<td>51/85</td>
<td>87/85</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>82/85</td>
<td>52/85</td>
<td>87/86</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>79/85</td>
<td>49/85</td>
<td>72/85</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>76/85</td>
<td>46/85</td>
<td>79/85</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>76/85c</td>
<td>39/85</td>
<td>62/85</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>76/85d</td>
<td>33/85</td>
<td>72/85</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>73/85</td>
<td>33/85</td>
<td>57/85</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>72/85</td>
<td>43/85</td>
<td>79/85</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>71/85</td>
<td>41/85</td>
<td>73/85</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>70/85</td>
<td>37/85</td>
<td>54/85</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>68/85</td>
<td>36/85</td>
<td>55/85</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>60/85</td>
<td>24/85</td>
<td>54/85f</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>51/85</td>
<td>20/85</td>
<td>75/85f</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48/85</td>
<td>19/85</td>
<td>50/85f</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>47/85</td>
<td>18/85</td>
<td>43/85f</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>42/85</td>
<td>17/85</td>
<td>34/85f</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>41/85</td>
<td>15/85</td>
<td>34/85f</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>40/85</td>
<td>11/85</td>
<td>50/85f</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>38/85</td>
<td>10/85</td>
<td>50/85f</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>37/85</td>
<td>5/85</td>
<td>33/85f</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>34/85</td>
<td>5/85</td>
<td>33/85f</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>32/85</td>
<td>23/85</td>
<td>32/85f</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>29/85</td>
<td>15/85</td>
<td>29/85f</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>28/85</td>
<td>13/85</td>
<td>29/85f</td>
<td>0</td>
</tr>
</tbody>
</table>

میانگین های دارای جایگاه در هر ستون از نظر آماری در سطح احتمال 1 درصد طبق آزمون دانکین معیار دار نمی‌باشند.

است که نتایج مثبت اسید سالیسیلیک در بهبود صفات رویشی در شرایط نشیب شوری می‌تواند ناشی از بهبود فتوستاز و نیز افزایش جذب مواد معدنی در گیاهان باشد. (Fariduddin et al., 2003; Szepesi et al., 2005)

مانند امیا با افزایش نشیب شوری بهبود در سطوح شوری 25 میلی‌مولار، غلظت‌های 200 و 300 میلی‌گرم در لیتر اسید سالیسیلیک در کاهش اثرات منفی شوری در صفات رویشی، هموک تایید شده است.
تأثیر محلول‌پذیده برگ‌های سالیسیلیک از برخی صفات مورفولوژیکی...

سالیسیلیک، باعث افزایش محصول نسبی آب برگ نسبت به شرایط بدون کاربرد اسید سالیسیلیک شدند (شکل 1). کاربرد اسید سالیسیلیک، با غلظت 300 میلی‌گرم در لیتر باعث شد که در تیمار شوری 50 میلی‌متر، 8/2 درصد، شوری 75 میلی‌متر، 3/2 درصد و در تیمار شوری 100 میلی‌متر، 3/1 درصد کاهش محصول نسبی آب برگ مشاهده گردید.

غلظت 100 و 300 میلی‌گرم در لیتر اسید سالیسیلیک بهترین تأثیر را بر محصول نسبی آب برگ کرده بود. بنابراین، می‌تواند به عنوان یک روش گیاه‌پروری باید در این شرایط باعث نشان دهنده شوری نشان دهد که محصول نسبی آب برگ بیشتر، با سطح برگ وزن کلتر برگ، و زن کلتر برگ، میزان کارولینا و همچنین شاخص های رشدی (Flexas et al., 2005) در شرایط تنش، باعث بودن محصول نسبی آب برگ به معنای منفی برگ و Janda (2007) با ملاحظاتی اینکه کاربرد اسید سالیسیلیک در محدوده 1000 میلی‌متر مورد شکستگی غلظتی می‌تواند باعث کاهش اسید آسیزیک در گیاهان باعث افزایش نسبی آب برگ به عنوان نشانه‌هایی از افزایش نسبی آب برگ باعث شده بوده بلکه نظر می‌رسد که اسید سالیسیلیک، با افزایش نسبی آب برگ تولید اسید آسیزیک در ریشه‌ها، از طریق مسیر سیگنال‌هایی باعث یک گروه غلظت یکنواستی کاملاً باعث کاهش محصول نسبی آب برگ شده است که در شرایط تنش شوری باعث بهبود شدن روندهای می‌گردد (اسید آسیزیک باعث غیر فعال شدن بیض پتانسیم در باعث‌های روندهای کاهش باعث افزایش محصول نسبی آب برگ شده است که این امر باعث بهبود شدن روندهای می‌گردد) و از آن طریق باعث کاهش تعرق و حفظ محصول نسبی آب برگ‌های می‌شود. اثرات متقابل اسید سالیسیلیک و کلسیم در
پژوهش دیگری نشان داده شد که کاربرد اسید سالسیلیک باعث کاهش نشته بیوئی در محیط زیست لیDataRow به شده است (Kang and Saltveit, 2001). همچنین Gunes و همکاران (2007) در گروه فرگی مطابقت دارد. بنظر می‌رسد که در پژوهش، اسید سالسیلیک با تأثیرات طرفی آنتی اسیدانی گیاه در مقایسه با گیاهان سالم، به احتمال زیاد، به‌سازاندن در اثر بروز فیبرکیسی آزاد اسیدان یا خشی نموده و باعث یافتن اثرات مثبت بر بالاترين سطح شوری، کاربرد این ترکیب، تأثیر معنی‌داری بر کاهش نشته بیوئی غشاء ندارد.
نتایج این پژوهش نشان داد که شوری به‌طور معنی‌داری از لحاظ آماری، باعث افزایش میزان مالوندی‌آلدنید گردید.

شکل 1- مقایسه میانگین اثر متقابل شوری (میلیمولار) با اسید سالسیلیک (میلی‌گرم در لیتر) بر میزان محورای نسبت آب بر گ (درصد) در رقم انگر نامی‌بانش. نماینده تیاتر سیدالس دارای حریف شوری در هر شوری از نظر آماری در سطح احتمال 1 درصد طبق آزمون دانک معنی‌دار نیست.

شکل 2- مقایسه میانگین اثر متقابل شوری (میلیمولار) با اسید سالسیلیک (میلی‌گرم در لیتر) بر میزان نشته بیوئی غشاء باختهای (درصد) در رقم انگر نامی‌بانش. نماینده تیاتر سیدالس دارای حریف شوری در هر شوری از نظر آماری در سطح احتمال 1 درصد طبق آزمون دانک معنی‌دار نیست.
تأثیر محلول‌های برگ در پرکاسیدی، برکرین بروز و بخشنامه مورفولوژیکی...
شکل ۳- مقایسه میانگین اثر متفاوتی‌گری بر طبقه‌بندی سالیسلیکات (میلی‌مولار) با اسید سالیسلیکات (میلی‌مولار) در لیزر، در میزان مولود آفتابی (میکرو مول بر گرم وزن تر) در رغم انگورتیپسون سیدل. ستوهای دارای حروف مشابه در هر سوته از نظر آماری در سطح احتمال ۱ درصد طبق آزمون دانکن معنی دار نمی‌باشند.

شکل ۴- مقایسه میانگین اثر متفاوتی‌گری بر طبقه‌بندی سالیسلیکات (میلی‌مولار) با اسید سالیسلیکات (میلی‌مولار) در لیزر، در میزان پروپیل بروکتر (میلی‌مولار) گرم وزن تر) در رغم انگورتیپسون سیدل. ستوهای دارای حروف مشابه در هر سوته از نظر آماری در سطح احتمال ۱ درصد طبق آزمون دانکن معنی دار نمی‌باشند.

۵- کربوکسیلات سیتاز با رفتگی، در نهایت میزان پروپیل افزایش می‌یابد که می‌تواند از دلایل فعالیت پروپیل در شرایط سوزش و ضربه‌های خطری دانست. لذا به‌نظر می‌رسد که تجویز همکارانی پروپیل در شرایط سوزش می‌تواند به عنوان مکانیسم مؤثر در جهت کاهش فعالیت رادیکال‌های آزاد افزایش دهد. فعالیت آنتی‌اکسیدانی گیاه، حفظ نیتروژ و سلامتی غشاء، حفظ ساختار ماکرومولکولی‌های ماند پروتئین‌ها و RNA-DNA و لیپیدها و در نهایت تنظیم پاتاسیل و Janda (2007) اکسیداسیون‌اخلا (Redox) باعث نیتروژ نیست. همچنین همکاران (۲۰۰۷) بیان نمودند که کاربرد اسید سالیسلیکات در

ص: Fooland, 2007. Cuin and Shabala, 2008. Reddy، ۲۰۰۷ همچنین Janda یا همکاران (۲۰۰۷) همچنین Hermans و Verbruggen (۲۰۰۸) گزارش گرددن است. همچنین Saxena و Misra (۲۰۰۹) بیان نمودند که در شرایط تنش شوری، فعالیت آنتی‌پروپیل آکسیداز کاهش دارد، در نتیجه تجویز پروپیل کم شده، از طرفی فعالیت آنتی‌پروپیل-
تأثیر محلول‌های نیترات اسید سالسیلبیک بر برخی صفات مورفولوژیکی...

محسوب می‌گردد. بنابراین، انتظار می‌رود که در برگ‌های این رقم، افزایش بیشتر قند محلول باعث افزایش مقدار می‌گردد. بنابراین Munns و همکاران (2003) معتقدند که قند بیشتر کربوهیدرات‌ها در پاسخ به تنش سبزی به احتمال زیادی ناشی از رشد است. در پژوهشی و همکاران (2005)، بیان نمودند که افزایش قند محلول در پاسخ به تنش شوری، می‌تواند به افزایش گلبرگی کمتر از برگ، مصرف کمتر آنها در برگ و ریشه در اثر کاهش رشد و تغییرات دیگری مانند هیدروژلبیلیز ناشته بیشتر داد به سرعت نش شوری. مهم‌ترین نقطه کربوهیدرات‌ها، شامل تنظیم و حفظ تعادل اسید، ذوب هر کربن و ذوب نمودن رادیکال آزید می‌باشد.

(Das, 2005). بنابراین، افزایش قند محلول در مطاعم حاضر، پایه تیپی در جهت کاهش نشان‌های اسیدی و در نتیجه، کاهش قند به‌طور اختیاری و می‌تواند باعث افزایش منظور حفظ بی‌اینگی و یکپارچگی غذای به‌اختصار، حفظ فشار نورکر، خشکی و حفظ ساختمان بروزت ای پیش‌باشد. مکانیسم چگونگی تأثیر اسید سالسیلبیک در میزان قند محلول در باختنی و در حالت مشخص تنفس احتمال دارد که تیمارهای اسید سالسیلبیک، مانع فعالیت آنزیم‌های هیدروژلبیلزی پی اسکاریدها شده و یا این که، در اتصال قند محلول به بکریگ و تکامل پی سکاریدها دخالت داشته باشد. بنابراین، افزایش میزان نیترات کل، از سطح شوری مختلف از روند تابی برخودار نیترات میزان نیترات کل، تا سطح شوری 50 میلی‌مولار، یک روند افزایشی داشت، اما از سطح شوری 50 تا 100 میلی‌مولار، شروع به کاهش نمود (شکل 5). در سطوح شوری 75 و 100 میلی‌مولار، کاهش گلبرگی می‌گردد. بنابراین مختلف اسید سالسیلبیک، تأثیر می‌گذارد از لحاظ آماری بر افزایش میزان نیترات کل ناشی است. بنابراین، افزایش میزان نیترات کل، از یک روند تابی برخودار نیترات به‌طوری که در این رقم، فقط تا سطح شوری 25 میلی‌مولار، تغییرات پروپتین‌کل، یک روند افزایشی از گیاهان، با افزایش پرولین شده و از این طریق با تنش، Esitken و Tohma (2011) در توت فرتنگی، نشان دادند که کاربرد اسید میزان شوری. افزایش تجمیع پرولین شده است که با تناوب پس‌هش متقاد دارد. میزان قند محلول با افزایش شوری، افزایش یافت. کاربرد اسید سالسیلبیک، با غلظت 300 میلی‌گرم در لیتر، توانست میزان افزایش این شاخص را با ترتیب به 131/6 و 7/48 یکی از شاخص کاهش دهد (شکل 6). کاربرد اسید سالسیلبیک، تأثیر مثبت بر کاهش میزان قند محلول ناشی از این نتایج. در مطالعه بی‌پروپتین، شوری، افزایشی باشد. زاستی این نتایج در طرح بالای شوری ضعیف‌تر بود، به طوری که در شوری 100 میلی‌مولار، قرار معنی‌داری از لحاظ آماری بر کاهش قند محلول، مشاهده شد. تجمیع قند محلول نش مثبت در نظام اسید باختنی گیاهی (Pessarakli, 1999). تهیه جذب آب، انقباض، نمودن تکه در شرایط نش، سنتر پیشتر قند محلول، می‌تواند به عنوان مکانیسمی در جهت کاهش پتانسیل آب باختنی و در نتیجه حفظ محیط آب گیاه باشد. بنابراین احتمال می‌دهم که در شرایط نش شوری، سنتر پیشتر قند محلول، می‌تواند به عنوان مکانیسمی در جهت کاهش پتانسیل آب باختنی و در نتیجه حفظ محیط آب گیاه باشد. بنابراین احتمال می‌دهم که در پژوهش‌های خود یان نمود که در باختنی یاگی تحت شرایط شوری، مولکول‌های پلمری قندی به مولکول‌های کوچکتر، شکسته می‌شوند. به عنوان مثال، نشانند که ساکارز و سبیس به مولکول‌های کوچکتر مانند کلورتر فرکور شکسته می‌شوند. بنابراین، تجمیع قند محلول در پاسخ به تنش شوری، نش مثبت در نظام اسید باختنی گیاهی باعثی دارد. در شرایط کمبود آب (ناتسی از نش شوری با خشکی)، تولید گونه‌های ناتسی (ROS) در گیاهان، افزایش می‌یابد. بنابراین در این گیاهان، تجمیع قند محلول، افزایش بافت پرولین‌ها را در مقابل آسیب‌های اکسیدی ناشی از رادیکال آزید محافظت نماید (Bohnert et al., 1995).
شکل ۵- مقایسه میانگین اثر منفی‌نشان شوری (میلی‌مولار) با اسید سالیسیلیک (میلی‌گرم در لیتر) بر میزان فندهای محلول بر گروه وزن‌گرایش در رنگ انگور تنب اسیدلس. ستون‌های دارای حروف مشابه در هر ستون از نظر آماری در سطح احتمال ۱ درصد طبق آزمون دانکن معنی‌دار نمی‌باشد.

شکل ۶- مقایسه میانگین اثر منفی‌نشان شوری (میلی‌مولار) با اسید سالیسیلیک (میلی‌گرم در لیتر) بر میزان پروتئین کل بر گروه وزن‌گرایش در رنگ انگور تنب اسیدلس. ستون‌های دارای حروف مشابه در هر ستون از نظر آماری در سطح احتمال ۱ درصد طبق آزمون دانکن معنی‌دار نمی‌باشد.

حاصل، کاربرد پروتئین اسید سالیسیلیک، احتمال دارد که از طریق مکانیسم‌های مانند افزایش فعالیت آنزیم‌های آن‌ها در کاهش دارد. خاصیت این پژوهش، حاکی از آن است که میزان فعالیت

۲۵ تا ۱۰۰ میلی‌مول، کاهشی بود. کاهش در میزان پروتئین کل، در سطوح شوری بالا، ممکن است ناشی از افزایش فعالیت آنزیم‌های پروتئاز و یا کاهش در سطح پروتئین باشد. برخی از پژوهش‌گران معتقدند که کم آب ناشی از شوری (خشکی فیزیولوژیکی) عامل مهمی در کاهش پروتئین‌ها محلول محصول می‌شود و Murata (Brey, 2003; Ibrahimy, 2003) همکاران (2007)، نشان دادند که رشد کلی آزاد اکسیژن، عامل از هم پاشیدن پروتئین‌ها در برگ می‌باشد. در پژوهش...
شاخص‌های مینی‌گی و رشد فیتیک سلیسیلیک در دو نسخه آنزیم کاتالاز آزمایش گردید. با توجه به نتایج، میزان مینی‌گی سلیسیلیک به سطح‌های مختلف افزایش یافته است. در نتیجه، اثرات مثبت آنزیم کاتالاز در کاهش مینی‌گی و افزایش رشد فیتیک سلیسیلیک مشاهده شد.

![Diagram](https://example.com/diagram1.png)

در شکل 6 نشان داده شده است که سطح‌های مختلف آنزیم کاتالاز به صورت ملی‌متری و میلی‌متری و افزایش میزان مینی‌گی و کاهش رشد فیتیک سلیسیلیک می‌باشد.

![Diagram](https://example.com/diagram2.png)

در شکل 7 نشان داده شده است که سطح‌های مختلف آنزیم کاتالاز به صورت ملی‌متری و میلی‌متری و افزایش میزان مینی‌گی و کاهش رشد فیتیک سلیسیلیک می‌باشد.
شکل 9- مقایسه معانگین اثر منفیال شوری (میلی مولار) با اسید سالیسیلاک (میلی گرم در لیتر) بر میزان فعالیت آنزیم آکسسوریات براکسیداز (بک-coloured در دچار در گرم وزن تر) در رقم انتگرنتانس سیدل. سودونیاهای دارای حروف مشابه در هر سوته از نظر آماری در سطح
احتمال 1 درصد طبق آزمون دانکن معنی دار نیست.

نتنش شوری افزایش می‌یابد، اما میزان افزایش فعالیت آنها، بین گونه‌های گیاهی و حتی درون گونه‌های مشابه، بیشتر در زاید منفیت است (Molassiotis et al., 2006). فاعل آنتی اکسیدانی، برای افزایش از این منطقه گونه‌های آکسیداز عالی وارد عمل می‌شود. گیاهان، سیستم‌های پخش‌هایی از خود را از تأثیر گونه‌های آکسیداز فعال به‌ویژه آنیمی هبی از قبیل سیروپاساکس دیسمونتاکس، کاتالاز، پراکسیداز، گلوتاتیون ریبدوکس، بلی فنل اکسیداز و آنتی اکسیدان‌های غیر آنزیمی نظیر آکسسوریات و گلوتاتیون محافظت می‌کند.

(Agarwal and Pandy, 2004)

در پژوهشی و همکاران (2003) به نمودند که در گونه‌های منحکم به شوری، میزان فعالیت‌های آنتی اکسیدان‌های آنزیمی و غیرانزیمی، در پایه شوری، میزان این فعالیت‌ها، ضعیف بوده که با نتایج این پژوهش همواره دارد. نتایج از تحقیق نیز در این مورد گزارش گردیده است. به طور مثال در پژوهشی، نشان داده شد که در شرایط نش، در زنن‌پری‌های حساس به شوری، میزان آنزیمی آنتی اکسیدانی می‌باشد (Munns and Tester, 2008). در شرایط نش، سیستم‌های آنزیمی آنتی اکسیدانی دفعی گیاه، از هم باشند، در نتیجه با صدهم شدید به ترکیبات و اندامکه‌ها درون پاشیده، باعث

۳۰۰ میلی گرم در لیتر، میزان فعالیت آنزیم کاتالاز در شوری
۴/۲ میلی‌مول/۷۵ میلی‌مول
۴/۲ میلی‌مول/۷۵ میلی‌мол
تأثير محول‌پاشی بر گیم اسید سالیسیلیک بپ بر یسرای مورفولوژیکی...\n\n۸۷\n\nدر این پژوهش، برای طراحی و ساخت یک سیستم مدل‌سازی روباتیک، ابتدا با استفاده از نرم‌افزار Matlab، برنامه‌نویسی کننده و تیم‌بندی کننده برنامه‌های فشرده‌سازی بود. سپس در استفاده از این نرم‌افزار، با استفاده از ابزار ویژه‌ای، برنامه‌های مدل‌سازی روباتیک به‌صورت خاص و آزمایشگاهی، برنامه‌نویسی شدند.

در حال حاضر، گزارش‌های محدود و متداولی از تأثیر اسید سالیسیلیک، بر سیستم آنی‌اکسیدانی و فعالیت آنی‌زی‌ها ارائه گردیده است. به‌طور مثال، برخی از مطالعات نشان داده که اسید سالیسیلیک تأثیرات مثبتی در حالت‌های مختلف، از جمله الکلاژیلیک و آسکوردیت‌های دیابتی و کبدی دارد. این تأثیرات به ویژه در حالت‌های مختلف قلبی و عروقی، به دلیل تاثیرات ضد سیروتی و ضد سرطانی این اسید، اثبات شده است.

در نهایت، تحقیق مشخص کننده تأثیرات مختلف اسید سالیسیلیک در مورد باعث افزایش فعالیت آنی‌زی‌ها، آنی‌اکسیدانی و سیستم آتی‌کسیدانی چیست. استفاده از اسید سالیسیلیک در این تحقیق، سبب شد تا تأثیرات این اسید در حالت‌های مختلف بدن، به عنوان یک مدل‌سازی روباتیک، مورد بررسی قرار گیرد. در نهایت، تحقیق به‌رغم این تأثیرات، احتمالاً به بررسی دردسرهای و جراحات مرتبط با اسید سالیسیلیک کمک می‌کند.

یتیجه‌گیری:\nافراش غلط‌گذاری کرده‌ها در خاکها و آب‌های ترویجی، تهیه‌کننده جدی در تولید انگور محصول می‌شود. میزان مقاومت انگور به شوری در حد مناسب به وسیله میزان این فعالیت افزایش یافته است. این روش بر اساس این افراش بیشتر به‌صورت تجربه جمع‌بندی که کلیه می‌گذارد. با وجود این، باعث سیگنال‌های شوری بستگی به عوامل می‌شود.
metabolism, oxidative stress and signal transduction. Annual
88 فزآیٌذ ٍ کبرکزد گیبّی،جلذ 7، ضوبرُ24، سبل 1397

ٔرتّفی اظ خّٕٝ تطویت پبیٝ - پیٛ٘سن، ؾیؿتٓ آثیبضی، ٘ٛؿ
ذبن ٚ ...
drought adapted Vitis hybrid Richter -110 (V. berlandieri × V. rupestris). Journal of Experimental Botany 60(8):

V. berlandieri

ular compartmentation of ions in salt
2+

-

ss by reducing the impact of

Flexas, J., Baron, M., Bota, J., Ducruet, J.M., Galle, A., Galmes, J., Jimenez, M., Pou, A., Ribascaro, M., Sajnan, C.,
drought adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris). Journal of Experimental Botany 60(8):
2361-2377.

