افراش بیومس و رشد میکروجلبک تحت تأثیر تیمار و اینلین Dunaliella

فرعگ اکبری و مريم مهدکار حسن جو
گروه زیست شناسی (فیزیولوژی)، دانشکده علوم دانشگاه لرستان. خرمآباد
(تاریخ دریافت: 1395/08/17، تاریخ پذیرش نهایی: 1395/08/17)

چکیده:
افراش بیومس و میزان رشد میکروجلبک‌های سبز برای دست‌پایان به مقادیر بیشتر از تولیدات ارزشمند آنها، یکی از اهداف مهم علم بیومسیولوژی بوده است. در این تحقیق تأثیر مختلف ترکیب فنل و واپیلین (C₆H₅O₃) به صورت صفر (شاهد)، ۱۰، ۲۰ و ۳۰ mg.L⁻¹ بر تعداد سلول‌ها روشن ورده، وزن تر و خشک و برخی شاخص‌های فیزیولوژیک (با توجه به فنل، واپیلین، پروتئین و رنگدانه‌های دسترسی) در گونه D. badawil-UTEX2538 و D. salina-UTEX2548 در طول یک دوره ۴۰ روز و در قالب طرح کاماً نصادع به صورت فاکتوریل با سه تکرار مورد مطالعه قرار گرفت. پیشینه تعداد سلول‌ها به تیمارهای ۲۵ و ۰۰ و ۰۱ mg.L⁻¹ واپیلین مشاهده شد. سرعت رشد وزن ویژه در تیمار ۵۰ و واپیلین و D. bardawil (Double time، DT) (Specific growth rate، SGR) (کل زمان در برآوردن تعداد سلول‌ها) در میزان ۴ و واپیلین، مشاهده شد. در اکثر تیمارهای واپیلین، وزن تر و وزن خشک و فندرک افرایش پایه، اما پروتئین و فندهای احیا (همگی در مقایسه با شاهد) کاهش یافته است که نتایج از سرعت رشد بیشتری نسبت به D. bardawil و D. salina کاهش داشته و دارای تبدیل گروه مشابه دارد. این مقدار پروتئین، کل گروه احیا اکنون در آن کمتر بوده. بطورکلی، برخلاف برخی میزان‌های اصلی حضور ترکیب واپیلین و واپیلین در محیط کشت در غلبه موارد سبب تحرک رشد و تغییرات سلولی و نیز افرایش برخی شاخص‌های فیزیولوژیکی در گونه‌های مزبور گردید.

کلمات کلیدی: بیومس، چلک دانالیلا، واپیلین، فندرک، احیا اکنون، رنگدانه‌های فنستونزی

(Madadkar.m@lu.ac.ir)

مقدمه
همیشه برطرف شدن نیازهای تغذیه‌ای بشر صرفگیری گردیده که نگاهی او به سوی طبیعت و هرآنچه که طبیعت در احتیاط وی قرار می‌دهد، معطوف گردیده. بطوریکه استفاده از فراورده‌های طبیعی برای تامین نیازهای بشر، دیدگاهی است که راهکار سالم و مهم در زندگی مسکن‌های دوره مطرح شده و در این میان چلک‌های ساده‌ترین سوپرمن کامپرترین تولید‌کننده بایه Wijffels and Barbosa 2010;)

(Carlsson, 2007)

از سویی، با توجه به رشد جمعیت، کمودز و میزان‌های مساعد کشت، تجمیع کوهدو مواد غذایی و نیز شور شدن پیشروی‌های منابع خاکی که کشاورزی و بهبود تولیدات آن را دشوار می‌سازد، اروموز در شاخص‌های مختلف مصنوعی و پیشرفت، کشت و پруш جلک‌ها به منظور افرایش تولیدات آنها در ابعاد صنعتی، کشاورزی، داروی و غذاي به سرعت رو به پیشرفت نهاده و تکنولوژی‌های مدرن برای بهبود رادار
اکوسیستم آب‌هایی شور، نیز مطرح بوده و بابت‌این از نظر (Shun et al., 2007) نگاه‌های زنون‌ها و جنایات ریز حیاتیت است. بنابراین با توجه به کلیه مواد فوق، تولید، و افزایش بیوس این گل‌کیس از اهمیت ویژه‌ای برخوردار است.

ویلنیل (Vanillin) با نام علمی (3, 4-dihydroxyacetaldehyde) یک آلدهید فنیلی فرمول مولکولی \(\text{C}_8\text{H}_8\text{O}_3 \) می‌باشد. ساختار خاص ویلنیل به عنوان ماده‌یی که در ساختار ریشه، برگ و بذر سیبی‌گیاهان وجود دارد سبب شده که این ماده‌ی کاربردهای تجاری فراوانی باشد و به عنوان یک ترکیب فنیلی طعم‌دهنده است.

ترکیب عطری با پیش‌ساز داروی استفاده گردد از لحاظ درمانی (et al., 2012; Kirk and Othmer, 2005) ویلنیل را به عنوان یک ماده با خاصیت‌هایی که با توجه به شکل و خاصیت (Kumar et al., 2012; Peng et al., 2010) آن با کمک‌آمیخته‌ای به حضور ترکیبات فنیلی موجود در آن نسبت داده می‌شود (Shakeel et al., 2015) ویلنیل محلول در آب به وسیله نمایان نشان می‌دهد که برخی غلظت‌های ان در گل‌کیس سبب افزایش رشد گرده است (Chlorella). اگرچه در رابطه با اثر معمولی کندنده و مهاری ترکیبات فنیلی از مهم‌ترین ویلنیل، بر رشد گیاهان Yoshiba et al., 2004; Kefeli et al., 2003; Choe and Jung, 2001; Skinner, 1915 و مواردی نیز در رابطه با میکرو‌جیک‌ها گزارش شده است (Choe and Jung, 2001; Vanillin, 1996).

با این حال برخی دیگر از تحقیقات مدعی هستند که میکرو‌جیک‌ها قادر به حفظ یا مربوط کننده در محیط کشت می‌باشد که مورد تحقیق‌های ویلینیل بر خود کار می‌کند (Brown, 1991). تحقیقات بر اساس سیستم‌های آزمایشی، در علوم پزشکی، داروی پزشکی و داروی مفرد (Benacka, 2011), Vithal et al., 2011; Wijffels et al., 2008, Barros et al., 2010) مقدار حقیقی به عنوان فیتولاتون در Dunaliella به دست آمده است. چون می‌باشد، برای رسیدن، برخی، شاه‌سایه‌های فیزیولوژیkeletal دو گونه هرچه بیشتر از آنها، مورد استفاده قرار گرفته‌اند. صرف‌جویی اقتصادی با تاکید بر مصرف بهره‌برداری در ویلینیل بر رشد و تغییر منابع جلبیکی می‌باشد (Habib, 2008; Colla et al., 2004; Pulz and Grass, 2004) از نظر تغییر مسئولیت تولید فیط‌های سبز کربنی در واقع به عنوان یک منبع ارزی و تجربی‌کننده مورد توجه بوده و فناوری‌های جدید جهان، بر تولید سوخت‌های زیستی از جلبیک‌ها نیز تاکید دارند. لذا در بین اغلب مختلف محصولات کشاورزی، منابع جلبیکی برای تولید مواد نیترات اتانول و سوخت‌های زیستی در جهان انتخاب شده‌اند (et al., 2012; Kirk and Othmer, 2005).

جلبیک‌ها در کل حاوی ترکیبات ارزشمندی تغییر مسئولیت تغییر لیپیدها، قندها، پروتئینها، آنزیم‌ها، کربوهیدرات‌ها، ویتامین‌ها و مواد معطوفی هستند (Alvarado et al., 2006; Ansari et al., 2015; Lee et al., 2013; Goo et al., 2013; Pal et al., 2011; Said, 2009; Stansione et al., 2012).

یکی از مهم‌ترین جلبیک‌های آب‌شناسی که از امروزه به شکل مدن و در سطح و ریز کشت می‌شود (Dunaliella) است (Becker, 2007). (Bacterium) در جلبیک‌های سبز، نکلسول، تاکی‌زادر و فاقد دیواره‌های سلولی به وسیله خانواده پلی‌پلاستیک و (Chlorophyta) از خانواده‌کرجینیا (POLYPHARADACEAE) Leliaert et al., 2008; Vu et al., 2012) راسته و دوبال (Volvocales) و (Dunaliella) در جلبیک‌های سبز نوری که در حضور قابلیت تغییر بکار نمی‌دهد (Bacterium) پیوند مورد توجه و پژوهش قرار گرفته است (متن در صفحه ۳۵۹). پیوند این جلبیک‌ها از دیگر ترکیبات ارزش سلول جلبیک دانیالیا می‌باشد که حدود ۴۰ درصد از محیط کشت گل‌کیس را در بر می‌گیرد (Brown, 1991). جلبیک مربوط به سیستم مدل (Clorophyll) دارا بودن ارزش‌های مفید بکار نمی‌یابد که در دانگی (Takaiashi, 2011) و تولید گیپولی در مزارع مخصوصی جلبیک‌های هستند (Barros et al., 2010; Lamers et al., 2008, 2009; Alvarado et al., 2006).
جلبک Dunaliella موضوع این تحقیق قرار گرفت.

مواد و روش‌ها:

دو گونه جلبک Dunaliella 200 در این پژوهش مورد استفاده قرار گرفت. تنوع های مزبور دانشگاه اصفهان (بعنوان تنوعهای هدفه‌ی به دانشگاه تکرام) به شکم شده و در مجموعه جلبکی دانشگاه لرستان نهاده‌اند می‌شوند. برای نهی محیط کشت مابین از محیط کشت اصلی شده جانسون و NaCl همکاران (Johnson, et al., 1968) با مولاریتی یک مولار.

(Shariati and Lilley, 1994) و مقدار pH و کلید مواد مورد نیاز برای تهیه محیط‌های کشت جلبکی از شرکت سیگما با مارک تعداد. پس از اکتول، مقدار متوسط از ماده واتین به فرمول رشی تحت شرایط کاملاً استیل برای محیط کشت یا به کمک اضافه شد.

حقق‌های مشخصی از هر دو گونه (به طوریکه در نهایت 50, 70, 90 و ۱۰۰ میلی‌گرم بر لیتر درون ارلن‌های مجزا تهیه شوند.)

جلبکی در کل لوله آزمایی توزین شده، رنگی و ستارفوند (Ramakrishna, 2011) در آزمایی گردید. محلول روند خشک شده و سپس از شستشو سطحی با آمونیوم استات ۵/۰ درصد (Spektorov, 1976) خارج کردن محلول روندی (and Nazarenko, 1989) محلول‌های آزمایی حاوی رسوپ جلبکی مجدد توزین شده از اختلاف وزن لوله آزمایی و وزن نانویی وزن اساسی سالون ارائه می‌آیند. برای ارزیابی وزن باریا لوله آزمایی حاوی بیومس ترس بت مدت ۴۸ ساعت در مدت ۰/۷۲ درجه سانتی‌گراد قرار گرفت.

در ترخ، رشد و وزن سلولی (Specific growth rate, SGR) مختصات آزمایی از طریق فرمول ارائه شده توسط (Ikeda و Omori, 1987) دهند به محیط کشت‌های تهیه شده، اضافه گردید. ارنی‌های تلقیح شده، سبب به شرایط آزمایش با شدت نور ۵۰ و دما در ۲۴/۰ (م مولاریتی از پی (Johnson, et al., 1968) تعادل، ناپایدار نور) منتقش شدند. برای شده به محیط کشت سلولی و لوله آزمایی ترخ، وزن تر، وزن خشک، پرون، کننده‌های ایجاد و رنگ‌های در روزهای صفر، ۴، ۱۰، ۲۴ تحت شرایط کاملاً استیل انجام گرفت. زمان‌های نمونبرداری و ادامه-گیری مشخص بکار انتخاب کردی که میانگین رشده، نش انتخابی استیتی رشد سلولی را شامل گردید.

اطراح آزمایش در قالب طرح نهایت کاملاً تصادفی بصورت یا انتخابی می‌باشد که انتخابی استیتی آزمون از نمونه داده‌های آزمون با استفاده از نرم‌افزار Excel سپس نتایج
بدین صورت‌ها که یک میلی‌لیتر از سوسپنسیون جلبیکی به مدت 5 دقیقه در 12000 نانوومتر مولکول‌زده و محلول لیزر خارج گردید. به روسی، جلبیکی حاوی ۵۰ میکرو‌لیتر بافر استخراج (Sminoff and Colombe, 1988) و عبارت اضافه به منظور پیکنواخت شدن و استخراج کامل پروتئین‌ها به طور خوب و روندی کرده می‌باشد. بسیاری سانتی‌فریوز به مدت ۱۵ دقیقه در 5 گی‌گرم دیگر استخراج شده (مثل ۵۰ میکرو‌لیتر) به این‌گونه کنترل شد و به آن محلول پردازش اضافه گردید. این نمونه به مدت ۱۰ دقیقه در دما اتاق قرار گرفت و در هنگام یکی از محلول بعد از آن ۵۰ نانوومتر قرانت گردید.

سنجش مقادیر کل سلول با استفاده از اسید سولفونیک غلیط، مطلق روی Smirnoff and Colombe (۱۹۸۸) و حالت Albalasmeh و همکاران (۲۰۱۳)، و ماده برای تریم معنی‌دار استاندارد (در طول موج D-glucose [نانومتر] صورت گرفت. بدین صورت که یک میلی‌لیتر از سوسپنسیون جلبیکی به مدت ۵ دقیقه در ۱۲۰۰۰ سانتی‌فریوز و محلول روی خارج گردید. به روسی جلبیکی حاوی ۸۰۰ میکرو‌لیتر آب مفید اضافه و به خوبی ورتکس شد و ۱۵ دقیقه در ۱۲۰۰۰ نانوومتر و دیگر استخراج شد. باعث شد که ۵۰ نانوومتر قرانت را به دست آورد.

نتایج و بحث

نکات کلیکی، بالعکس یا دست‌افزاری دو تا سه بار تهیه و با تمایل بیشتری از تولید کننده آنها بسیار حائز اهمیت است. در این تحقیق از ماده و اطلاعات تحقیقی بر روی Chlorella ردش جلبیکی قابلیت خاصی از سوی مولکول‌های گذارنشده بود (Miazek et al., ۲۰۱۳)، در محیط کشت استخراج گردید. دانیلیالا}

می‌توان از ارتباطاتنجیابی در ۲۵، ۱۲۰۰۰، ۱۵، ۷۵ و ۳۰۰ میلی‌گرم بر روی واترین بر روی Chlorella جلبیکی به تنهایی و ۵۰ سون‌لیتر در صرف‌قا غلظت‌های یابایی به عنوان ۵۰ و ۱۲۰۰۰ نانوومتر از استخراج کل سلول در یک میلی‌لیتر جلبیکی مولکول‌زده گردید. از این در تحقیق حاضر، نتایج متغیر و وابسته به محدوده‌های زیستی ۵۰۰ میلی‌گرم بر روی واترین به عنوان اجرای دو باری شناخته شد. ۱۰۰ میلی‌گرم بر روی واترین دانیلیالا در گونه جلبیکی مولکول‌زده برخی از این آبی و انتقال به استخراج مولکول‌زده از عصاره آبی و انتقال به مدت ۱۵ دقیقه در ۱۲۰۰۰ نانوومتر قرانت گردیده و به یک میلی‌لیتر از سوسپنسیون جلبیکی بود. ۵ دقیقه در ۱۲۰۰۰ نانوومتر مولکول‌زده و محلول لیزر خارج گردید. به روسی، جلبیکی حاوی ۵۰ میکرو‌لیتر بافر استخراج (Sminoff and Colombe, 1988) و عبارت اضافه به منظور پیکنواخت شدن و استخراج کامل پروتئین‌ها به طور خوب و روندی کرده می‌باشد. بسیاری سانتی‌فریوز به مدت ۱۵ دقیقه در 5 گی‌گرم دیگر استخراج شده (مثل ۵۰ میکرو‌لیتر) به این‌گونه کنترل شد و به آن محلول پردازش اضافه گردید. این نمونه به مدت ۱۰ دقیقه در دما اتاق قرار گرفت و در هنگام یکی از محلول بعد از آن ۵۰ نانوومتر قرانت گردید.

سنجش مقادیر کل سلول با استفاده از اسید سولفونیک غلیط، مطلق روی Smirnoff and Colombe (۱۹۸۸) و حالت Albalasmeh و همکاران (۲۰۱۳)، و ماده برای تریم معنی‌دار استاندارد (در طول موج D-glucose [نانومتر] صورت گرفت. بدین صورت که یک میلی‌لیتر از سوسپنسیون جلبیکی به مدت ۵ دقیقه در ۱۲۰۰۰ سانتی‌فریوز و محلول روی خارج گردید. به روسی جلبیکی حاوی ۸۰۰ میکرو‌لیتر آب مفید اضافه و به خوبی ورتکس شد و ۱۵ دقیقه در ۱۲۰۰۰ نانوومتر و دیگر استخراج شد. باعث شد که ۵۰ نانوومتر قرانت را به دست آورد.

نتایج و بحث

نکات کلیکی، بالعکس یا دست‌افزاری دو تا سه بار تهیه و با تمایل بیشتری از تولید کننده آنها بسیار حائز اهمیت است. در این تحقیق از ماده و اطلاعات تحقیقی بر روی Chlorella ردش جلبیکی قابلیت خاصی از سوی مولکول‌های گذارنشده بود (Miazek et al., ۲۰۱۳)، در محیط کشت استخراج گردید. دانیلیالا}

می‌توان از ارتباطاتنجیابی در ۲۵، ۱۲۰۰۰، ۱۵، ۷۵ و ۳۰۰ میلی‌گرم بر روی واترین بر روی Chlorella جلبیکی به تنهایی و ۵۰ سون‌لیتر در صرف‌قا غلظت‌های یابایی به عنوان ۵۰ و ۱۲۰۰۰ نانوومتر از استخراج کل سلول در یک میلی‌لیتر جلبیکی مولکول‌زده گردید. از این در تحقیق حاضر، نتایج متغیر و وابسته به محدوده‌های زیستی ۵۰۰ میلی‌گرم بر روی واترین به عنوان اجرای دو باری شناخته شد. ۱۰۰ میلی‌گرم بر روی واترین دانیلیالا در گونه جلبیکی مولکول‌زده برخی از این آبی و انتقال به استخراج مولکول‌زده از عصاره آبی و انتقال به مدت ۱۵ دقیقه در ۱۲۰۰۰ نانوومتر قرانت گردیده و به یک میلی‌لیتر از سوسپنسیون جلبیکی بود. ۵ دقیقه در ۱۲۰۰۰ نانوومتر مولکول‌زده و محلول لیزر خارج گردید. به روسی، جلبیکی حاوی ۵۰ میکرو‌لیتر بافر استخراج (Sminoff and Colombe, 1988) و عبارت اضافه به منظور پیکنواخت شدن و استخراج کامل پروتئین‌ها به طور خوب و روندی کرده می‌باشد. بسیاری سانتی‌فریوز به مدت ۱۵ دقیقه در 5 گی‌گرم دیگر استخراج شده (مثل ۵۰ میکرو‌لیتر) به این‌گونه کنترل شد و به آن محلول پردازش اضافه گردید. این نمونه به مدت ۱۰ دقیقه در دما اتاق قرار گرفت و در هنگام یکی از محلول بعد از آن ۵۰ نانوومتر قرانت گردید.
جدول 1- میانگین مربعات جداول تجزیه واریانس برخی از پارامترهای فیزیولوژیک گونه Dunaliella تحت تأثیر گونه جلبک (D. salina)، غلفت و بالتون (0، 10، 20، 40، 60، 80، 100 میلی گرم بر لیتر) و زمان با روز نمونه‌برداری (0، 10، 16، 24).

متغیر	میانگین	آزادي	درجه آزادی	گونه جلبک	بالتون	زمان	گونه جلبک × بالتون	زمان	بالتون × زمان	بالتون × زمان	گونه جلبک × بالتون × زمان	میانگین تغییرات	دستیابی
وزن خشک	14/27	2/01	1/24**	1/49**	1/19**	1/24**	1/24**	1/24**	1/24**	1/24**	1/24**	1/24**	P<0.05
وزن تر	12/44	1/03	1/19**	1/49**	1/21**	1/24**	1/24**	1/24**	1/24**	1/24**	1/24**	1/24**	P<0.05
شمارش سلولی	2/14	0/04	1/24**	1/49**	1/21**	1/24**	1/24**	1/24**	1/24**	1/24**	1/24**	1/24**	P<0.05
درجه تغییرات	0/01	0/08	1/24**	1/49**	1/21**	1/24**	1/24**	1/24**	1/24**	1/24**	1/24**	1/24**	P<0.05

P<0.05

_be سطح احتمال معناداری متقابلها (جدول 1) نشان داد که تاثیر بالتون.
شکل 1- روند تغییرات میان‌حلقه‌ای رشد بر اساس تخم‌سنگ‌سازی سلولی در دو گونه جلبک Dunaliella در غلظت‌های مختلف وانیلین.

میان‌حلقه‌ای رشد در دو گونه D. bardawil و D. salina مقدار میانگین ± تکرار SD مشاهده شد.

سلول‌های هر دو گونه 25 تا روز پیش آزمون ملاحظه گردید. سرعت رشد و تخم‌سنگ‌سازی در سوسپنسم جلبکی D. bardawil، به طور کلی بالاتر از D. salina بود، به طوریکه در انتهای دوره رشد، تعداد سلول‌های D. bardawil در مجموعه تیمار‌ها، به حداکثر 30×10^6 سلول و در انتهای دوره رشد تعداد ۱۰×10^6 سلول در هر میلی‌لیتر از سوسپنسم جلبکی رسید. بررسی تعداد سلول‌های روزهای مختلف آزمون نشان داد که برای از غلظت‌های وانیلین در سلول‌های D. salina، این امر نشان می‌داد که تیمار‌های دارای تعداد سلول‌های بیشتری نسبت به شاهد (غلظت صفر وانیلین) در همان روز، می‌باشد که این امر نشان می‌دهد تأثیر تحرکات گندگی بیشتری وانیلین بر تخم‌سنگ‌سازی
جدول ۲- نرخ رشد و وزنه (SGR, µ) و زمان دو برابر شدن سلول‌ها (DT) برحسب روز، در دو گونه جلبک مختلف وایلایین طی پک دوره ۲۴ روزه.

<table>
<thead>
<tr>
<th>شرایط</th>
<th>جلبک سلول‌ها (mg.L⁻¹)</th>
<th>D. salina</th>
<th>D. bardawil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SGR</td>
<td>DT</td>
<td>SGR</td>
</tr>
<tr>
<td>Control</td>
<td>٠/١١٤ ถ d</td>
<td>٠/١٣٨ ถ c</td>
<td>٠/١٣٨ ถ c</td>
</tr>
<tr>
<td>٠</td>
<td>٠/١١٤ ถ b</td>
<td>٠/١٣٨ ถ d</td>
<td>agoon a</td>
</tr>
<tr>
<td>٠٥</td>
<td>٠/١٢٣ ถ a</td>
<td>٠/١٢٣ ถ a</td>
<td>agoon a</td>
</tr>
<tr>
<td>٢٠</td>
<td>٠/١٢٣ ถ a</td>
<td>٠/١٢٣ ถ a</td>
<td>agoon a</td>
</tr>
<tr>
<td>٠٥</td>
<td>٠/١٢٩ ถ c</td>
<td>٠/١٢٩ ถ c</td>
<td>agoon a</td>
</tr>
<tr>
<td>٠٠</td>
<td>٠/١٢٤ ถ c</td>
<td>٠/١٢٤ ถ c</td>
<td>agoon a</td>
</tr>
</tbody>
</table>

مقادیر میانگین سه تکرار بوده و حروف کوچک غیرشماره براساس آزمون دانکن. نشان‌دهنده وجود اختلاف معنی‌دار میان نمونه‌های هر ستون (P<0.05) می‌باشد.

چپ‌تر، در محیط‌های کشت جلبک، هن‌نوا در قرار دادن رشد و تکثیر سلولی انتخاب انجام نمی‌شود. بلکه الگی‌های موجب تحریک و افزایش رشد میکرو‌قلیک نیز گردید. این مسئله می‌تواند به دو مورد که در ادامه توضیح داده شده نسبت داشته. اول باعث می‌شود تکثیرهای سیگنالی در داخل سلول‌ها به فنا نسبت داده شده اند و دوماً یک خش اضافی و مضر فنی ممکن است توسط جلبک از محیط حذف شود.

در کار نتیجه دریافتی برخی غذایی وانتلین، بر رشد جلبک کلی، تحقیقاتی وجود دارد که نشان داد که اکثر مهاری وانتلین بر روی رشد و تکثیر برخی دیگر از جلبک‌ها و حتی سلول‌های جانداری است که به خاصیت فنی وانتلین Lirdprapamongkol et al., 2009; نسبت داده شده است (Lirdprapamongkol et al., 2005 Chlorella و دیگر) خواهد نمی‌شود. این انواع سلول‌های Scenedesmus bijugatus و vulgaris بازدارنده‌ای از تکثیرهای فنی و نیترولیفی مشاهده گردید. در عین حال، تحقیقات انگیم‌شده نشان داده‌ها نشان می‌دهند که بیان‌کننده (جدول ۲).

نتایج استاد دانشگاه بررسی حاکم بر روی خودکالهای D. bardawil در انتخاب سلول‌های بیشتر تحقیقی، در وانتلین دارای SGR بالاتری از شاهد بودند. در بالاترین میلی‌گرم بر لیتر وانتلین مشاهده شد و غلظت ۱۰ در رابطه بین وقت دمای SGR ۳۵ میلی‌گرم بر لیتر وانتلین طولانیتر زمان دو برابر شدن سلول‌ها با را موجب شد.

طبق نتایج بررسی‌ها به جز ۲۵ میلی‌گرم بر لیتر D. bardawil در وانتلین دارای SGR بالاتری از شاهد بودند. در بالاترین میلی‌گرم بر لیتر وانتلین و سپس در بالاترین غلظت‌ها مشاهده شد. این نتایج نشان می‌دهد که با توجه کلی، غلظت‌های SGR ۵۰ میلی‌گرم بر لیتر وانتلین تقریباً در هر دو گونه تفسیرات سلولی را بیشتر تحریک می‌کنند (جدول ۲).
نیز پروتوکل‌های نعل‌دار (2010) و از سوی دیگر، (Schoenwaelder and Clayton, 1999) باعث ترکیبات سمی شناسایی شدند که قادرند بر رشد و جای سلول‌های زنده (از جمله جلبکهای) تاثیر منفی بگذارند (Qiming et al., 2006; Choe and Jung, 2001; Nakai et al., 2001). در این مطالعات، نیز به نقش‌های مهم و سپیدگی فلز‌ها اشاره داشتند که تاثیر آنها در انتقال سیگنال‌های درون و برون سلولی و فعالیت‌های فنارهایهای درون سلولی (نظر تقسیم) سلولی را نشان می‌دهند (2010).

در رابطه با نقش فلز‌ها در تقسیم سلولی، بررسی موانع نشان داد که برخی مشتق‌های اصلی آنها، رفتار و اثر سیگنال‌ها را تغییر می‌کنند. به‌نمونه‌ای احتمال دارد که این طریق بتوانند در تقسیمات و توسعه سلولی دخیل باشند. (Tamagnone et al., 1998) از طریق نقش سیگنال‌های خود و نیز پروتوکل نفل فیزیکی تاثیر گذار است. نمونه‌ای با افزایش سرماسیان سلولی، غلظت موثر از والینین در حاوی نعل سلول‌های بیشتری است. یا محدود کننده. به‌عدای دیگر تیمارهای که در انتهای دوره (رژسپست و چهره) حاوی نعل سلول‌های بیشتری هستند، نسبت به شاهد (غلظت صفر و والینین) کاهشی، از اواخر آن (روزهای دهم و شانزدهم) کمترند (برترین ۲۵ و ۵۰ در میلی‌گرم بر لیتر والینین) و به عبارت دیگر یک تاثیر وابسته به زمان در این رابطه وجود دارد.

 Ankistrodesmus

در تحقیقاتی که بر روی جلبکهای

Scenedesmus quadricauda و braunii

مشخص شد که این جلبکهای قادرند فل سل سوپر کارخانه روغن زیتون را تا ۸۰٪ نجنگ کشید. به‌یکان ۷۰ درصد. یک تحقیق از آماری‌ها می‌تواند (Pinto et al., 2002) بالایی شن توسط جلبکهای روده انجم‌دار. این اعمال (Desmodesmus sp) که جلبکهای برترین پروتکسازی ۷۵ درصد از ۲۵ میلی‌گرم بر لیتر فل نا تا ۲۴ کشت خود در است. (Al-fawwaz et al., 2016) در یک یک‌رسیدگی انجام شده بر روی رشد نیز نشان داده Popper and Tuohy, 2010.)
شکل 2- روند تغییرات وزن تر و وزن خشک سلول‌های دو گونه جلبک Dunaliella تحت تاثیر تیوبر وایلین. (a) روند تغییرات وزن خشک دو گونه جلبک D. bardawil و D. salina در مقدار میانگین ± نت‌گزاری می‌باشد.

شکل 3- روند تغییرات وزن تر و وزن خشک سلول‌های دو گونه جلبک Dunaliella تحت تاثیر تیوبر وایلین. (b) روند تغییرات وزن خشک در جلبک D. salina در مقدار میانگین ± نت‌گزاری می‌باشد.

کنده‌ای آن در متابولیسم بهره ببرد.

اختلافات موجود در پاسخ‌ها و رفتار دو گونه دنالیلیا (Dunaliella) می‌تواند نشان‌دهنده کارکرد تأثیر تیوبر وایلین بر علاوه بر غلظت و زمان، است. بسیاری از تحقیقات نشان‌دهنده کارکرد تأثیر تیوبر وایلین بر غلظت و زمان، است. بسیاری از تحقیقات نشان‌دهنده کارکرد تأثیر تیوبر وایلین بر غلظت و زمان، است.

شکل‌های 25 و 50 میلی‌گرم بر لیتر وایلین، سریع‌تر از سایر غلظت‌ها در محیط کشت، انجام گرفته است (2012). بنابراین به نظر می‌رسد که برطرف‌سازی ترکیبات فنلی توسط جلبک و نیز الگوردی آن بر سلول‌ها، علاوه بر غلظت، با فاکتور زمان نیز مرتبط باشد.

از طرف دیگر، جلبک‌ها در قابلیت تشخیص بخشی مواد شامل فنل، اسیدهای آمینه‌های کلیولپیدها و نیز آنزیم‌ها به درون محیط کشت هستند. این مسئله برای اولین بار در مورد گونه دنالیلیا D. salina توسط Seckbach (2012) مورد بررسی قرار گرفت.

بنابراین به نظر می‌رسد که جلبک‌ها از این طریق توانند تا حدودی اثرات سلول را خشک نموده و احتمالاً از جنبه‌های تحریک‌کننده بهره ببرند.
شکل ۳- روند تغییرات قند کل و قندهای احیاکننده در سلول‌های دو گونه جلبک Dunaliella در غلظت‌های مختلف ویلین. (a) روند تغییرات قند کل در دو گونه جلبک Dunaliella و Q. salina در غلظت‌های مختلف ویلین. (b) روند تغییرات قند کل در دو گونه جلبک Dunaliella و Q. salina در غلظت‌های مختلف ویلین. (c) روند تغییرات قند کل در دو گونه جلبک Dunaliella و Q. salina در غلظت‌های مختلف ویلین. (d) روند تغییرات قند کل در دو گونه جلبک Dunaliella و Q. salina در غلظت‌های مختلف ویلین.

شکل ۴- روند تغییرات پروتئین در سلول‌های دو گونه جلبک Dunaliella و Q. salina در غلظت‌های مختلف ویلین. (a) مقادیر میانگین ± نرخ تکرار می‌باشند. (b) مقادیر میانگین ± نرخ تکرار می‌باشند.
دسته‌بندی بروی معادلات مختلفی در USP و رشد آگزه‌های مختلفی را رشد رشد می‌کند. افراد دارای معادلات مختلفی (Sayed and Gadallah, 2002) سپس در سه گروه: آگزه‌های مختلفی (Hestekin et al., 2011) بررسی شدند. میزان تعداد آگزه‌های مختلفی (Markou and Nerantzis, 2013; Hadi et al., 2008) نشان داد که هر گونه دارای میزان مناسبی از USP و رشد می‌کند. در ضمن، معادلات مختلفی (Tai et al., 2011) این نتیجه را نشان داد که به این معادلات مختلفی (D. bardawil) نسبت برابر یافته است. با توجه به این نتیجه، می‌تواند از تغییرات کلیفیل در D. bardawil استفاده شود.

شکل ۵ دوره تغییرات کلیفیل a) گونه D. bardawil و کلیفیل b) در دوره گونه جلبک Dunaliella تحت تغییرات تیوبریی و افزایش نسبی با افزایش بهبود و جلبک...

221

...
شکل 6- رونده تغییرات کارنتونید کل و باکترول سلول. در دو گونه جلبکی. (a) روند تغییرات عبادتی گیبی، جلس 7، ظوبر 24، عبل 1317.

d) روند تغییرات باکترول سلول. در دو گونه جلبکی. (b) روند تغییرات باکترول سلول در D. bardawil و D. salina.

د) این تحقیق به دست آمده که عمده توربوکس با کاهش مقدار پروتئین افزایش می‌یابد و به دست آمده که مقدار پروتئین در D. salina بیشتر از D. bardawil می‌باشد. (Goo et al., 2013).
دانیال (Dunaliella) در بیش از آن‌ها را در سلول‌ها کاهش می‌دهد.

(Alvarado et al., 2006)

بر اساس داده‌ها حاصل از آنالیز واریانس به غیر از اثر متقابل غلظت و افزایش ویزان و زمان بر مقدار کاروتئنید و نیز تاثیر متقابل گونه، غلظت و افزایش ویزان بر مقدار کاروتئنید و بکارگیرنده کلیه اثرات اصلی و نیز متقابل این دو شاخص، باعث کاهش می‌شود.

(Mersie and Singh, 1993). هم‌اکنون ثابتی است، در غلظت مطالعات ارزیابی بومس جلبیکی نیز این رگندهان که برای منافع ویژه و مشترک میان تمام موجودات فوتونستات کنه ده، استفاده می‌شود. (Dadashzadeh, 2005)

از آن‌ها حاصل از آنالیز واریانس نشان داد که غیر از اثر افزایش ویزان بر مقدار کاروتئنید (a) باقی تاثیرات اصلی و متقابل در رابطه با کاروتئنید (b) داشتند. (Mehanna et al., 2014; Rawel et al., 2005) ومی‌تواند این رگندهان قبلاً تولید کننده نشان داده شده است. (D. bardawil)

اکنون (Hu et al., 2007; Felip and Catalan, 2000). در یک نمونه از دانه‌ها و بیش از دانه‌ها، بیشتر D. salina نشان داد که غیر از اثر افزایش ویزان بر مقدار کاروتئنید (b) تفاوت در مقدار و نیز تغییرات وابسته به بار می‌باشد. (c, d). در رابطه با تغییرات کاروتئنید به غیر از اثر افزایش ویزان بر مقدار کاروتئنید (c) نشان داده شده است. (Van Dort et al., 1992) نگرش تحقیقات نیز نشان داده که کاروتئنید از جمله این موارد می‌تواند حتی به عنوان آغازگر برای ستون برخی ترکیبات معطر نیز منیکان و وابسته به کار برده شود (2004).

(D. bardawil) a به دلیل اینکه کمی از کلروفیل کل، از کلروفیل a تشکیل می‌شود. در نتیجه، شدید نشان داده که دیگر نیز، این کاروتئنید کالری تغییرات اکثری مشابهی به نمایش گذاشته شده‌است. (5, c, f) با تأیید دست داشته که، برای دیگر a, b و کاروتئنید، تفاوت در مقدار و نیز تغییرات با دیگر a, b و کاروتئنید نشان داده شده است. (D. bardawil)

(D. bardawil) c, f با نتایج Chlorellی متوافق نبوده و هم‌اکنون (Miazeck (2013 (b) به روز ریکیکی اکنون در سطح خاک، داده که D. bardawil

چکیده از افزایش میزان کاروتئنید (b) و کالری تغییرات اکثری مشابهی به نمایش گذاشته شده‌است. (5, c, f) با تأیید دست داشته که، برای دیگر a, b و کاروتئنید نشان داده شده است. (D. bardawil)

(D. bardawil) c, f با نتایج Chlorellی متوافق نبوده و هم‌اکنون (Miazeck (2013 (b) به روز ریکیکی اکنون در سطح خاک، داده که D. bardawil

تشکیل می‌شود. در نتیجه، شدید نشان داده که دیگر نیز، این کاروتئنید کالری تغییرات اکثری مشابهی به نمایش گذاشته شده‌است. (5, c, f) با تأیید دست داشته که، برای دیگر a, b و کاروتئنید نشان داده شده است. (D. bardawil)
Lavandula

Mature leaf extracts and essential oils from a novel species of lavender (Lavandula × intermedia) with potential in food and pharmaceutical industries.

