آثرات نوع و مقدار مختلف کود نیتروژن بر برخی صفات فیزیولوژیکی شبلیله (Trigonella foenum-graecum L.)

اسمالیل، ظهیری، مهدی صیدی و زهرا طهماسبی

گروه علوم باغبانی، دانشگاه ایلام، ایلام. گروه زراعت و اصلاح نباتات، دانشگاه شاهرود، ایلام

نویسنده مسئول، نشانی پست الکترونیکی: m.saidi@ilam.ac.ir

چکیده

بخصوص اثرات نوع و مقدار مختلف کود نیتروژن بر برخی صفات فیزیولوژیکی گیاه دارویی شبلیله (Trigonella foenum-graecum L.) آزمایش به صورت طرح بلورهای کامل تصادفی با چهار تکرار طی سال 1394 در مزرعه تحقیقاتی گروه باغبانی دانشگاه ایلام انجام شد. نتایج نشان داد که نوع و مقدار مختلف اثر تأثیر مثبتی بر کیفیت صفات و مقدار مطلعه داشت. بیشترین محتوای رنگی‌ها (کرولبل، کرولونیل) و مقدار نیترات کلسیم در گروه 100 کیلوگرم بر هکتار بود که کمترین مقدار نیترات کلسیم در گروه 0 کیلوگرم بر هکتار نتیجه گرفت. نتایج نشان داد که کودهای نوع و مقدار مختلف کودهای از (بخش‌های آبی) در بهره‌سازی فیزیولوژیکی شبلیله تأثیر مثبتی داشته و می‌توان مصرف آن را در راستای افزایش کیفیت این سبزی و گیاه دارویی توصیه نمود.

کلمات کلیدی: اسمالیل، ظهیری، مهدی، صیدی، میرزاینده، کرولونیل، کرولبل

مقدمه

یکی از گیاهان دارویی که در طب سنتی ایران و ملل مختلف سابقه مصرف داری بوده و در خواص درمانی چشمه کریپت برای آن ذکر شده، که شبلیله است. شبلیله با نام علمی Trigonella foenum-graceum L. گیاهی نهان‌دانه است. نشاستگی گیاه و ناحیه‌ای آفریدیکی شمالی و سواحل شرقی مدیترانه است (Dini, 2006). مدت زمان طولانی است که شبلیله به عنوان سبزی و محصول ادغامی در تمام بخش‌های ایران کشت می‌شد. توصیه می‌شود بر

شود و نواحی کشت شده در حدود 400 هکتار می‌باشد. تولید سالانه شبلیله در ایران 800 تن و عمکرکردن زمان آن 8/0 تن در هکتار می‌باشد (صادقزاده اهری، 1389). موارد و عناصر غایب مناسب در حال نقش عمده‌ای در افزایش عمکرکردن شبلیله دارد. در فصل پایان هفته‌های آماده سازی، ترک بافت به وسیله سمیر، درک، کیفیت کود به خاک اضافه شود که کنجدی مقدار از خاک یکی باشد. توصیه می‌شود بر
مواد و روش‌ها

تحقیق حاضر در قابل طرح پلک‌های کامل تصادفی با چهار گزارگر به منظور بررسی تأثیر نوع و مقادیر مختلف کود از طریق برخی صفات فیزیولوژیکی سبز، و گاز داروی شبیه‌سازی تا اینکه یک تصویر دقیق شناخت این امر بر یاری تحقیقات گروه علوم باغبانی، دانشگاه ایلام با عرض جغرافیایی ۳۳ درجه و ۲۷ دقیقه شمالی و طول جغرافیایی ۱۴ درجه و ۲۲ دقیقه شرقی و ارتفاع ۱۴۴۶ متر از سطح دریا اجرا شد. نتایج آزمایش شامل معاین کود از اروه نور اندیشی کمیسم (لک‌های در ۴ سطح، صفر، ۲۵، و ۱۰۰ کیلوگرم در هکتار) و اصولی سه دسته (در ۴ گلف‌های صفر، ۱، ۲، و ۴ کیلوگرم در هکتار) بود. همچنین با عملیات خاوری خود ۸۰۰ کیلوگرم کود دامی یکپارچه اضافه شد که مالک ۹۰ در هکارد بود. سپس کود (سفت‌های مایع و سفت) بیش از ۱۰۰ کیلوگرم کود در هکتار پس از معاین کود مورد نظر در همه کرت‌ها، قبل از کشت در سطح کرت‌ها خشش شدند. ابتدا بذرها به مدت ۲۴ ساعت داخل آب خیسندگی شدند و سپس روی داده خشش چرا در عملیات ۲ تا ۳ سالینا متر کاشته شدند. فاصله دریچه از هم حدود ۲۵ سانتی‌متر و فاصله روز دریچه ۱۰–۱۵ سانتی‌متر بودند. یک واحد از آزمایش شرکت یک کرت به ابعاد ۲۰۸ متر بود. به منظور حفظ رطوبت مزرعه و رشد مطلوب گیاه‌ها، پس از کشت بذرها، ابتدا برای صورت زراعت انجام شد. اما پس از آن این کشت به شرایط اقلیمی (درجه حرارت و شدت نور) آبیاری می‌شد. تفاصل دو با روژکی کرده مانند شرایط تیمار کود میده‌ها او نیترات کلسیم در سه مرحله انجام شد: یک سوم مقدار موردنیاز (بر حسب تیمار) در یک جایگاه در زمان کاشت یک سوم در زمان ۳-۲ برگی و یک سوم باقی مانده در زمان شروع رشد رضایتی به خاک افزوده شد. کود ایمونوسید تیره به صورت محلولی پاشیده شده سپس پاشیده در دو مرحله اعمال شد. مرحله اول در زمان ۳-۲ برگی و همچنین با مرحله دوم کود دادن اروه و نیترات کلسیم و مرحله دوم آن تیره هم میزان با مرحله سوم کود میده‌ها اروه و نیترات کلسیم انجام شد. عملیات تکن کردن نیترات طی چند مرحله تا زمانی که فاصله اساس نتایج تجدید خاک، در فصل بهار مقدار لازم از بسته موردنیاز در اختیار گیاه قرار گیرد (Bernat، ۱۹۹۳). از مهم‌ترین عوامل برای مقایسه می‌باشد که در ساختن مولکول‌های پروتئینی گوناگون، آزمایش، کارآزمایی، استفاده‌ها (Hasegawa et al، ۲۰۰۸) یک جزء لازم مولکول کرون‌فلسپ نیز می‌باشد. عرض کالی از درک با رش روش میزان و رنگ سبز سبب وجود ارتباط مستقیم دارد. در شرایط کرون‌فلسپ، رشد بیشتر متوسط و رنگ‌گر زرد می‌باشد. شوود (ملکوتی و همکاران، ۱۳۸۴).

کود میده‌ها از تیمار عملیاتی در تولید سافر، برگ و جوانه‌های دیدگاه در یک هزار دانشگاه و پژوهشگاه رشد رویش گیاهان را سرعت می‌بخشد (مایی، ۱۳۹۷). احتمالاً کود میده‌ها نزدیک از افزایش پروتئین در اندام‌های است که پروتئین ذخیره نموده و نسبت انداز هوایی به رهیزه افزایش می‌دهد (ملکوتی، ۱۳۷۹). شوود و همکاران (۱۳۹۲) نشان دادند که افزایش از موجب افزایش میزان کودکرون‌فلسپ های، استفاده آن در افزایش میزان ریزپوش‌ها و پیامدهای در شبیه‌سازی شده و با آن افزایش آن تا سطح ۵۰ کیلوگرم در هکار موجب افزایش محتوی کروپقدرات‌ها در شبیه‌سازی و برخودن از آن باعث کاهش کروپقدرات‌ها در شبیه‌سازی تیمار کود میده‌ها و شیا. تحقیقات نشان داده مخمل‌پایی اسیدهای آمیزه، رشد و محتوی پروتئین حیوانات را بهبود داده است (Tiemann، ۲۰۰۹). محققین نشان دادند که کود از طریق دارد سبب پاسخ تازه می‌باشد. (Tohidi Nejad et al، ۲۰۰۸) پس از یک نیروی معنی‌داری در سوپر‌افراش آلی (Maity و Thapa، ۲۰۰۳) بالاترین عملکرد دانه شبیه‌سازی با پشته ۵۰ کیلوگرم از هکار کودکرون‌فلسپ از موفقیت به مقدار و نوع مناسب از پخت بهبود در یک بیش می‌دهد (Lany و Thapa، ۱۹۹۹). مدیریت کارآمد کود میده‌ها از موجب افزایش رشد مطلوب به تعویق اندانتان زمان رسیدگی، تولید برگ‌های مطلوب، توزین سه و رنگ سبز توجه به شبیه‌سازی می‌گردد (Petropoulos، ۲۰۰۲).
محتوی کارولفیل A و کارولنیپا در نمونه‌های برگ بر
منی روش طیف‌سنجی و با استفاده از استانداردهای عایق‌رژیمی
اندازه‌گیری شد. عمل استخراج اساسی به روش تغییر در آب و
تتوسط دستگاه اندازه‌گیری شد. برای اندازه‌گیری درصد
فیشر، (Arlington, 1990) استفاده شد. درصد
برگ از روش AOAC استفاده شد (Arlington, 1991، 9.1)
با استفاده از SAS 9.1.1 به روش F-test به
آزمون LSD در مسنج احتمال کی درصد و پی‌نجبند
رسم نمودارشان در نمونه‌های Excel 2013

نتایج و بحث
نتیجه حاصل از تجزیه واریانس داده‌های نمونه که نوع و
میزان کود از بطری معنی‌داری کلیه صفات اندازه‌گیری شده
را تحت تأثیر قرار داد (جدول ۱)

محتوی کارولفیل و کارولنیپا مقایسه میانگین‌های نشان داد
که با افزایش غلظت از در معنی کارولفیل A
کارولفیل B کارولفیل C و کارولنیپا غلظتی و محتوی
کربوهیدرات‌ها که می‌باشد (شکل‌های ۱، ۲، ۳، ۴). افزایش
مقدار رنگ‌دهی‌گاهی در اثر کارولفیل متناسب تفاوت‌های کود از
تنش غیر قابل اندازه‌گیری در اثر کارولفیل A است ساختمان
می‌باشد که در حدود ۲/۳ درصد بستگی داشت

داشت.

تازه افزایش غلظت از در معنی کارولفیل A
کارولفیل B کارولفیل C و کارولنیپا مقایسه میانگین‌های نشان داد
که با افزایش غلظت از در معنی کارولفیل A
کارولفیل B کارولفیل C و کارولنیپا غلظتی و محتوی
کربوهیدرات‌ها که می‌باشد (شکل‌های ۱، ۲، ۳، ۴). افزایش
مقدار رنگ‌دهی‌گاهی در اثر کارولفیل متناسب تفاوت‌های کود از
تنش غیر قابل اندازه‌گیری در اثر کارولفیل A است ساختمان
می‌باشد که در حدود ۲/۳ درصد بستگی داشت

داشت.

کارولفیل A کارولفیل B کارولفیل C و کارولنیپا مقایسه میانگین‌های نشان داد
که با افزایش غلظت از در معنی کارولفیل A
کارولفیل B کارولفیل C و کارولنیپا غلظتی و محتوی
کربوهیدرات‌ها که می‌باشد (شکل‌های ۱، ۲، ۳، ۴). افزایش
مقدار رنگ‌دهی‌گاهی در اثر کارولفیل متناسب تفاوت‌های کود از
تنش غیر قابل اندازه‌گیری در اثر کارولفیل A است ساختمان
می‌باشد که در حدود ۲/۳ درصد بستگی داشت

داشت.

کارولفیل A کارولفیل B کارولفیل C و کارولنیپا مقایسه میانگین‌های نشان داد
که با افزایش غلظت از در معنی کارولفیل A
کارولفیل B کارولفیل C و کارولنیپا غلظتی و محتوی
کربوهیدرات‌ها که می‌باشد (شکل‌های ۱، ۲، ۳، ۴). افزایش
مقدار رنگ‌دهی‌گاهی در اثر کارولفیل متناسب تفاوت‌های کود از
تنش غیر قابل اندازه‌گیری در اثر کارولفیل A است ساختمان
می‌باشد که در حدود ۲/۳ درصد بستگی داشت

داشت.

کارولفیل A کارولفیل B کارولفیل C و کارولنیپا مقایسه میانگین‌های نشان داد
که با افزایش غلظت از در معنی کارولفیل A
کارولفیل B کارولفیل C و کارولنیپا غلظتی و محتوی
کربوهیدرات‌ها که می‌باشد (شکل‌های ۱، ۲، ۳، ۴). افزایش
مقدار رنگ‌دهی‌گاهی در اثر کارولفیل متناسب تفاوت‌های کود از
تنش غیر قابل اندازه‌گیری در اثر کارولفیل A است ساختمان
می‌باشد که در حدود ۲/۳ درصد بستگی داشت

داشت.

کارولفیل A کارولفیل B کارولفیل C و کارولنیپا مقایسه میانگین‌های نشان داد
که با افزایش غلظت از در معنی کارولفیل A
کارولفیل B کارولفیل C و کارولنیپا غلظتی و محتوی
کربوهیدرات‌ها که می‌باشد (شکل‌های ۱، ۲، ۳، ۴). افزایش
مقدار رنگ‌دهی‌گاهی در اثر کارولفیل متناسب تفاوت‌های کود از
تنش غیر قابل اندازه‌گیری در اثر کارولفیل A است ساختمان
می‌باشد که در حدود ۲/۳ درصد بستگی داشت

داشت.

کارولفیل A کارولفیل B کارولفیل C و کارولنیپا مقایسه میانگین‌های نشان داد
که با افزایش غلظت از در معنی کارولفیل A
کارولفیل B کارولفیل C و کارولنیپا غلظتی و محتوی
کربوهیدرات‌ها که می‌باشد (شکل‌های ۱، ۲، ۳، ۴). افزایش
مقدار رنگ‌دهی‌گاهی در اثر کارولفیل متناسب تفاوت‌های کود از
تنش غیر قابل اندازه‌گیری در اثر کارولفیل A است ساختمان
می‌باشد که در حدود ۲/۳ درصد بستگی داشت

داشت.
جدول 1- تجزیه و ارتباط صفات فیزیولوژیک مورد بررسی در شبیه‌سازی تحت تأثیر نوع و مقدار کود ازته

| میانگین مربوطات (MS) | درجه | کارولفیل b | کارولفیل a | کارولفیل کل | کاروندوی | اساس | پروتین | کربوهیدرات | پیغام
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>بلوک</td>
<td>3</td>
<td>0.63</td>
<td>0.74</td>
<td>0.67</td>
<td>0.49</td>
<td>0.00</td>
<td>0.49</td>
<td>0.39</td>
<td>0.63</td>
</tr>
<tr>
<td>تیمار</td>
<td>9</td>
<td>0.63</td>
<td>0.74</td>
<td>0.67</td>
<td>0.49</td>
<td>0.00</td>
<td>0.49</td>
<td>0.39</td>
<td>0.63</td>
</tr>
<tr>
<td>خط</td>
<td>27</td>
<td>0.63</td>
<td>0.74</td>
<td>0.67</td>
<td>0.49</td>
<td>0.00</td>
<td>0.49</td>
<td>0.39</td>
<td>0.63</td>
</tr>
<tr>
<td>CV</td>
<td>37</td>
<td>0.63</td>
<td>0.74</td>
<td>0.67</td>
<td>0.49</td>
<td>0.00</td>
<td>0.49</td>
<td>0.39</td>
<td>0.63</td>
</tr>
</tbody>
</table>

* و ** به ترتیب معنی‌دار در سطح پنج و یک درصد

شکل 1- اثر متابولیت‌های مختلف کود ازته بر محتوی کارولفیل a برگ شبیه‌سازی میانگین‌های دارای حروف مشابه در هر سطح با استفاده از آزمون چند دامنه ای دانکن در سطح 5 درصد تفاوت معنی‌داری ندارند.

شکل 2- اثر متابولیت‌های مختلف کود ازته بر محتوی کارولفیل b برگ شبیه‌سازی میانگین‌های دارای حروف مشابه در هر سطح با استفاده از آزمون چند دامنه ای دانکن در سطح 5 درصد تفاوت معنی‌داری ندارند.
اثزات نوع و مقدار مختلف کود نیتروژون بر برخی صفات فیزیولوژیکی...

شکل ۳- اثر منابع و مقدار مختلف کود ازته بر محتوی کلروفیل کل یک گرخ شیلیه. میانگین های دارای خرف مشابه در هر ستون با استفاده از آزمون چند دامنه ای دانکن در سطح ۵ درصد تفاوت معنی داری ندارند.

شکل ۴- اثر منابع و مقدار مختلف کود ازته بر محتوی کاروتئین بر یک گرخ شیلیه. میانگین های دارای خروف مشابه در هر ستون با استفاده از آزمون چند دامنه ای دانکن در سطح ۵ درصد تفاوت معنی داری ندارند.

شکل ۵- اثر منابع و مقدار مختلف کود ازته بر درصد پروتئین بر یک گرخ شیلیه. میانگین های دارای خروف مشابه در هر ستون با استفاده از آزمون چند دامنه ای دانکن در سطح ۵ درصد تفاوت معنی داری ندارند.
شکل ۶- اثر منابع و مقادیر مختلف کود ازه بر درصد فیر برگ شنلیله. میانگین های دارای حروف مشابه در هر ستون با استفاده از آزمون تکوین گیاها را منتشر نموده و در مراحل مختلف رشد، کرایه و کاربرد خاص خود را در اختیار گیاه قرار می‌دهند. در واقع تغذیه برگی اسیدهای آمینه آزاد می‌تواند یک منبع مهم برای سندرم پروتون در گیاهان باشد (رئیسی و همکاران، ۱۳۹۳).\]}

\]}

افراشی پایه و از نظر آماری با تیمار ۱۰۰ کیلوگرم نیترات کلیسیم اختلاف معنی‌داری نداشت. پیشرفت و کمترین محتوی کسر برگ به ترتیب از تیمارهای نیترات ۱۰۰ کیلوگرم در هکتار و نیترات۵۰ کیلوگرم در هکتار اوره به دست آمد. افراشی محیطی ویفر در اثر کاربرد نیترات کلیسیم احتمالاً به خاطر وجود کلیسیم در ساختار این منبع، کودی است که با افراشی غذای انقلاً به بخش‌های هواپیم، باعث استفاده دریار سلولی می‌شود. کاربرد کمترین میزان به‌طور کلی منبع کود ازه، اگرچه محیطی ویفر بافت برگ را نسبت به شاهد افراشی داد، اما بین سطح مختلف آن اختلاف آماری مشاهده نشد.

پیش از این، احتمال نور و همکاران (۱۳۹۱) نشان داد که بالاترین و پایین‌ترین نیترات کود در هکتار نیتره زون خالص و تیمار شاهد مشاهده شد. برعکس، احتمال و همکاران (۱۳۹۴) نیتره کردند که کاربرد کودهای ازه باعث کاهش محیطی ویفر خام در کلرا می‌شود.

افراشی کروهیدرات‌ها: نتایج مقایسه‌های میانگین داده‌ها (شکل ۷) نشان داد که با افراشی کروهیدرات‌ها از منابع مختلف، محیطی کروهیدرات‌ها کاهش می‌یابد. کمترین مقدار کروهیدرات از تیمار ۱۰۰ کیلوگرم در هکتار نیترات کلیسیم به تکوین گیاها را منتشر نموده و در مراحل مختلف رشد، کرایه و کاربرد خاص خود را در اختیار گیاه قرار می‌دهند. در واقع تغذیه برگی اسیدهای آمینه آزاد می‌تواند یک منبع مهم برای سندرم پروتون در گیاهان باشد (رئیسی و همکاران، ۱۳۹۳).

افراشی محیطی ویفر در اثر کاربرد نیترات کلیسیم احتمالاً به خاطر وجود کلیسیم در ساختار این منبع، کودی است که با افراشی غذای انقلاً به بخش‌های هواپیم، باعث استفاده دریار سلولی می‌شود. کاربرد کمترین میزان به‌طور کلی منبع کود ازه، اگرچه محیطی ویفر بافت برگ را نسبت به شاهد افراشی داد، اما بین سطح مختلف آن اختلاف آماری مشاهده نشد.

پیش از این، احتمال نور و همکاران (۱۳۹۱) نشان داد که بالاترین و پایین‌ترین نیترات کود در هکتار نیتره زون خالص و تیمار شاهد مشاهده شد. برعکس، احتمال و همکاران (۱۳۹۴) نیتره کردند که کاربرد کودهای ازه باعث کاهش محیطی ویفر خام در کلرا می‌شود.

افراشی کروهیدرات‌ها: نتایج مقایسه‌های میانگین داده‌ها (شکل ۷) نشان داد که با افراشی کروهیدرات‌ها از منابع مختلف، محیطی کروهیدرات‌ها کاهش می‌یابد. کمترین مقدار کروهیدرات از تیمار ۱۰۰ کیلوگرم در هکتار نیترات کلیسیم به تکوین گیاها را منتشر نموده و در مراحل مختلف رشد، کرایه و کاربرد خاص خود را در اختیار گیاه قرار می‌دهند. در واقع تغذیه برگی اسیدهای آمینه آزاد می‌تواند یک منبع مهم برای سندرم پروتون در گیاهان باشد (رئیسی و همکاران، ۱۳۹۳).
اثزات نوع و مقدار مختلف کود نیترات بر رشد صفات فیزیولوژیکی...

ناتای شکمگر و همکاران (۱۳۹۲) نیز نشان داد که افزایش نیترات نیترزون تا سطح ۵۰ کیلوگرم در هر هکتار موجب افزایش و سطح بیشتر از ۵۰ کیلوگرم باعث کاهش کربوهیدرات‌ها در سلول‌های برگ شیلیمه می‌شود. انتکشگی کربوهیدرات‌ها در سلول‌های رویشی سبب افزایش ضخامت آنها شده و جات‌چه ازت کافی به گیاه رسیده و شرایط رشد نیز مناسب باشد، کربوهیدرات‌ها صرف ساختن پروتئین می‌شوند (دارودی، ۱۳۸۶). نتاگ قبادی و همکاران (۱۳۹۰) نیز نشان داد که با افزایش مصرف کود

دست آمد. کم‌شدن کربوهیدرات در اثر افزایش از احتمال به دلیل ارتباط معمول آنها با محیط‌ای ازت در گیاهان باشد. ازت میزان ماهی خشک تتولیدی و ترکیب‌های ازت در نکته سبز گیاهان را افزایش داده و برخی از مقدار ماید قنды می‌کاهد. ناپایین، هر چه مقدار کربوهیدرات افزایش یابد، محیط‌پرورش کاهش می‌یابد و برخی با توجه به افزایش درصد پروتئین در اثر مصرف کودهای ازت، ذخیره کربوهیدرات‌های موجود در دانه کم می‌شود (قبادی، ۱۳۸۹).
های اثر، درصد کربوهیدرات‌های ذرت کاهش و محتوی پروتئین آن افزایش می‌یابد.

پژوهش اساسی: برگ تاره‌های منابع‌گی تهیه‌گری (شکل 8) نشان داد که تیمار آمینواسید 4 در هزار و 25 کیلوگرم نیترات سلسیس بیشتر از سایر تیمارهای بازدهی اساس گیاه شبیه‌ریسی را افزایش می‌دهد. از اینجایی که گیاه شبیه‌ریسی در کرتی و پرده‌های سطح بزرگ و اندام‌های آن دختره می‌شود، افزایش ماهده نشده در یک اسکلت از اندازه سلسله‌ور یا افزایش سطح بزرگ و اندام‌های هواپیمی می‌باشد. آمینواسید یا دیل جدید مستقیم، سرعت در مسیر پیوستن اسکلت وارد شده و به همین خاطر پیش‌بینی از سایر انواع کود افزایش حاصل می‌گردد.

در این مطالعه، نشان داد که بهترین تیمار جهت بهبود صفات فیزیولوژیکی شبیه‌ریسی گیاه 4 در هزار و آمینواسید یا دیل می‌باشد. برای تمام منابع کودی با افزایش میزان مصرف کود از محتوی کربوهیدرات‌ها کاهش شد و حداکثر میزان کربوهیدرات از تیمار شاهد به‌دست آمد.

نتیجه‌گیری کلی
نتایج این آزمایش نشان داد که بهترین تیمار جهت بهبود صفات فیزیولوژیکی شبیه‌ریسی گیاه 4 در هزار و آمینواسید یا دیل می‌باشد. برای تمام منابع کودی با افزایش میزان مصرف کود از محتوی کربوهیدرات‌ها کاهش شد و حداکثر میزان کربوهیدرات از تیمار شاهد به‌دست آمد.

منابع
احسانی‌پور، ا.؛ زینلی، ح.؛ رزمجو، ک. (1391). تأثیر مقادیر مختلف از بر عملکرد و کیفیت جمعیت‌های مختلف رزایانه مخلوط گیاهان دارویی. (Foeniculum vulgare M.) احمدی، م. (1389). بررسی تأثیر از و سولفات‌های ریز بر عملکرد و اجزای عملکرد دانه کلزا (Bassia napus L) در بوشهر. پژوهش‌های کنگره علوم زراعت و اصلاح نباتات. استقلال، س.؛ زارعی، غ.؛ مروتی، ا. (1392). تغییرات میزان پروتئین و روغن گیاه شبیه‌ریسی تحت تأثیر تیمارهای متفاوت از و س. اولین همایش کاربرد علوم و فناوری نوین در کشاورزی و منابع طبیعی. 15 اسفند ماه 1392. دانشگاه آزاد اسلامی واحد، میبد.
حاج سید هادی، م. و قلعه، ع. (1394). بررسی تأثیر مقادیر مختلف ورم‌کیسوس مخلوط‌پایشی ایجادی امپنی آمیزه و اوره بر عملکرد کمک و کیفیت بابنه آمیزه (Matricaria chamomilla L). (دوامه‌ای علی‌پژوهی تحصیلات گیاهان دارویی و معطر ایران. جلد 31 شماره 2. صفحه 107-120).

Downloaded from jispp.iut.ac.ir at 8:35 IRST on Tuesday December 11th 2018

جلد 29 شماره 3 صفحه 368-370.

قبادی، ر.، شیخ خانی غ.، گیزدانی، س. فاتحی. ک. (1390). بررسی اثرات سطوح مختلف نش خشکی و کود ازت بر محتوای نسبی آب برگ، درصد کربوهیدرات، پروتئین، چربی و وزن هکتویتر دانه در سنگل کراس 324. اولین همایش ملی مباحث نوین در کشاورزی و دانشگاه واحد آزاد اسلامی واحد سام. آیا.

محمودی ح. (1391). گزارش نهایی بررسی اثرات محلول پاشی اسیدهای آمینه آزاد بر عملکرد کمی و کیفی نخود (رقم جم) در شرایط دیم. انتشارات موسسه تحقیقات کشاورزی دیم. نشریه 1933. مراگه. نام.

Effects of different sources and quantities of nitrogen fertilizers on physiological parameters of Fenugreek (*Trigonella foenum-graecum* L.)

Esmaeel Zohrabi¹, Mehdi Saidi¹* and Zahra Tahmasebi²

¹ Department of Horticulture, College of Agriculture, Ilam University
² Department of Agronomy and Plant Breeding, College of Agriculture, Ilam University

(Received: 02/08/2016, Accepted: 02/11/2016)

Abstract

Today, due to positive effect of nitrogenous fertilizers on growth, yield and quality of agricultural crops, irregular use of fertilizers has been increased. In order to evaluate the effects of different sources and quantities of nitrogen fertilizers on some of physiological properties of Fenugreek (*Trigonella foenum-graecum* L.) medicinal plant, an experiment was carried out as a randomized block design with four replications at research farm, department of horticulture, Ilam University during summer 2015. Treatments included different levels of Urea (0, 25, 50 and 100 kg/h) and Calcium Nitrate fertilizer sources and Amino Acid with four concentrations: 0, 1, 2 and 4 g/l. Study traits included photosynthetic pigments content (Chlorophyll a & b, total chlorophyll and carotenoids) fiber percentage, Carbohydrates content, proteins percentage and essential oil yield of leaves. Results showed that sources and quantities of nitrogen significantly affected all studied parameters. The highest pigments’ content, protein and essential oil yield of leaves were obtained from 4 g/l amino acid treatment; the highest leaf fiber from 100 kg/h calcium nitrate and the highest leaf carbohydrate content obtained from control plants and increasing in nitrogen from all three sources led to decrease in carbohydrates content. The research revealed that using different sources and quantities of nitrogen fertilizers (especially amino acids) have positive effects on improvement of physiological traits of fenugreek and application of nitrogen can be recommended for increasing quality of the leafy vegetable and medicinal plant.

Key Words: Essential oil, Amino Acids, Protein, Carotenoids, Chlorophyll.

* Corresponding author: m.saidi@ilam.ac.ir