اثرات نوع و مقدار مختلف کود نیتروژن بر برخی صفات فیزیولوژیکی

شبلیله

Trigonella foenum-graecum L.

اسمالعمر زهرا، فهیمی صیدی ۱۰ و زهرا طهماسبی۲

گروه علم باغبانی، دانشگاه ایلام، ایلام. گروه زراعت و اصلاح نهان، دانشگاه، ایلام، ایلام

نویسنده مسئول، نشاني پست الکترونیکی: m.saidi@ilam.ac.ir

چکیده

امروزه به دلیل تأثیر مثبت کودهای ازه بر رشد، عملکرد و کیفیت محصولات کشاورزی، مصرف یپروپی کودهای افزایش فاقد است. به‌منظور بررسی اثرات نوع و مقدار مختلف کود نیتروژن بر برخی صفات فیزیولوژیکی *Trigonella foenum-graecum* L. شبلیله، آزمایشی به‌صورت طرح بلکه‌های کاملاً تصادفی با چهار تکرار طی سال‌های ۱۳۹۴ در مزرعه تحقیقاتی گروه باغبانی دانشگاه ایلام انجام شد. تیمارها شامل کود اوره و نیتروژن کلسیم (کلم) در چهار سطح صفر، ۲۵، ۵۰ و ۱۰۰ کیلوگرم در هکتار و آمینواسید با چهار غلظت صفر، ۱ و ۴ گرم در لیتر بودند. نتایج نشان داد که نوع و مقدار مختلف از تأثیر مثبتی بر کیفیت صفات مورد مطالعه داشت. پیشینه محصول رنگ‌ها کلک گیاه (کلروفلای ۵، کلروفلای ۴، کلروفلای ۱، کلروفلای کل و کارتنیود) پروپین و سبزی برگ از تیمار چهار گرم در لیتر آمینواسید، پیشینه محصول رنگ‌ها ۱۰۰ کیلوگرم در هکتار نیتروژن و پیشینه محصول رنگ‌ها کربوهیدرات برگ از گیاهان شاهد به دست آمد. همچنین با افزایش مقدار از عصاره سراسری از هر سنج، محصولات کربوهیدرات کاملاً بیافر. نتایج این تحقیق نشان داد که کلیاهان نوع و مقدار مختلف کودهای ازه (نخستین آزمایش اسید) در به‌ود صفات فیزیولوژیکی شبلیله تأثیر مثبتی داشته و می‌توان مصرف اثر تا در راستای افزایش کیفیت این سبزی و گیاه دارویی توصیه نمود.

کلمات کلیدی: اسیدن، اسیدهای آمینه، پروپین، کارتنیود، کلروفلای

مقدمه

یکی از گیاهان دارویی که در طلب سنی ایران و ملل مختلف سابقه مصرف دریچه داشته و خواص درمانی چشم‌گیری بیای آن ذکر شده، گیاه شبلیله است. شبلیله با نام علمی *Trigonella foenum-graecum* L. گیاهی نهان‌دانه است. منشا این گیاه نواحی آفریقای شمالی و سواحل شرقی مدیتران است (Dini, ۲۰۰۶). مدت زمان طولانی است که شبلیله به‌عنوان سبزی و محصول ادویه‌ای در تمام بخش‌های ایران کشت می‌شود.

m.saidi@ilam.ac.ir
مواد و روش‌ها

تحقیق حاضر در قالب طرح پژوهشی کاملاً تصادفی با چهار گروه بر کربن به منظور بررسی تأثیر نوع و مقدار مختلف کود آهن بر برخی صفات فیزیولوژیکی سبزی و گیاه دارویی شنلیله در تابستان و پاییز ۱۳۹۴ در مزرعه تحقیقاتی گروه علوم باغبانی، دانشگاه ایلام با عرض ۴۵۰۰۰۰ درجه شمالي و طول جغرافیایی ۳۳ درجه و ۳۹ دقیقه شمالی متروس از سطح دریا اجرا شد. نتایج آزمایش شامل تأثیر کود آهن بر مواد منابع کود آهن از اوره و نیترات کلریم (۲۰۰کیلوگرم در هکتار) و آمونیاست (در ۴ گلف آمد و ۴ گرم در نماد) بودند. همچنین با عملیات خاکروی حدود ۸۰۰ کیلوگرم کود دامی پوسته اضافه گردید که مقدار ۴۰ تن در هکتار بود. فرسایش سطحی (سفرت آمونیاک) و یپاسه (سولو پاس) به هزار ۱۰۰ کیلوگرم کود و ۱۰۰ کیلوگرم آمونیاک از محبوبیت کود و مزرعه کود از هم در کشت و در سطح کربن‌ها خشش شدند. ایندکه درصد دفع ۲۴ ساعت داخل آب خشیابی شدند و سپس روی درف داخل کرتی‌ها در مقدار ۲ ساعت ۳۰ سانتی‌متر کاشته شدند. فاصله ریفی‌ها از هم حدود ۲۵ سانتی‌متر و یکساته‌ها ۱۵-۲۰ سانتی‌متر بودند. در این آزمایش شوائب یک کرت به ابعاد ۲۸۵ متر بود. به منظور حفظ رطوبت بذر و رشد مطلوب گیاهی‌ها، تا ۱۰ روز اول پس از کشت بذر، آبیاری بسته است. اما پس از آن بسته به شرایط اقلیمی (درجه حرارت و شدت نور) آبیاری با فاصله دو به سه روز کرده می‌شد.

تیمار کوده‌های اوره و نیترات کلریم در سه مرحله انجام شد: یک سه‌مقردار مورد نیاز (بر حسب تیمار) در زمان کاشت، یک سوم هفته می‌گذشت و یک سوم ماده‌ای در زمان شروع رشد زراعی به سه‌مقردار کود آهن انرژیزیز کرده و همچنین به صورت مخلوط با پاکت سپرخ خاک کنار انجام داد. شرایط محله اول در زمان ۰-۳ ماه برگ و همچنین به صورت مخلوط با پاکت سپرخ خاک کنار انجام داد. شرایط محله دوم کربن دانه اوره و نیترات کلریم و محله دوم آن نیز هم‌مانند با محله سوم کوده‌های اوره و نیترات کلریم انجام شد. عملیات نکردن نیز یکی توسط مرحله تا زمان‌های که فاصله اساسی نمی‌بایست نزدیک بهار دوران لزوم گردید (Bernat, 1993).

به‌صورت سرد در اختیار یکین قرار گرفته از مهم‌ترین عنصر غذایی برای نیازافزاری که در ساخته‌می‌ماند مولکول‌های پروتئینی گوناگون، آنزیم‌ها، کوآزمی‌ها، اسیدهای تونکلیک و سیتوئیده‌ها قرار دارد (Tohidi Nejad et al, 2008). از علاوه بر اینافای با تنکیل پروتئینی یک جزء لازم مولکول کروپتول نیز می‌باشد. عرض کمی از دار در خاک با رشد رویش زیاد و رنگ سبز تبیر ارتباط مستقیم دارد. در سایر کشورهای ازد، خرد، به‌مراتب بزرگ نشان داده‌های- شروع تحقیقاتی در سال ۱۳۳۸ (Shekarchi و همکاران.

۱۳۴۲) نشان داده که افزایش از موجب افزایش میزان کربوهیدرات‌ها یکی از بهترین روش‌های افزایش نشان داده و حذف‌های افزایشی کربوهیدرات با توجه به مشاهدات (Tahiti Nejad et al, 2008) و در سایر کشورهای آقایان در است (Maity et al, 2003) به روش‌های استفاده از مصرف ۵۰ کیلوگرم از هتکت در بسته آماده است. کاربرد مقادیر و نوع مناسب از بخش مهم از مدیریت کوده‌های شیمیایی را تنکیل می‌دهد (Lany et al, 1999). مدیریت کارآمد کوده‌های از موجب افزایش رشد مطلوب به ویژه اندماختان زمان رسیدگی، تولید بگرفته مطلوب، توسط ساقه و رنگ سبز بهتر از شنلیله می‌گردد (Petropoulos, 2002).
سپ درختی مطالعات داشت. شمخازنگ و همکاران (1392) نشان دادند که کاربرد افزایش قارچ‌های گیاهی، کارتوانیوند، مجموع رنگدانه‌ها و پاتامین در گیاه شمتی‌های می‌شود. ازد در تشکیل کارتوافیل، رشد روشی و پروتين گیاهی دخالت داشت و به همراه منی‌زم از اجزای باقی‌مانده کارتوافیل است (عمرداره، 1385). اسیدهای آمینه‌های می‌باشد افزایش نفوذپذیری غشاء سلول‌ها، موجب افزایش جذب مواد غذایی می‌شود (Fayek et al., 2011، افزایش تغذیه با افزایش پروتئین کاروتیلاست‌ها را نیز بهبود بخشیده و ارتجاعی که به عمدی از این پروتئین‌های کارتوافیل دار می‌یابند، تغییر می‌بیند. از این‌رو پروتئین‌های کارتوافیل و سایر رگنی‌ها را قوت‌گذاری کرده‌اند (Rabie et al., 2014) (کیک دیگر از فیرتودی کود افزایش سطح بگ).

در نتیجه تولید مواد فوتونزی پیشرفت‌یابی می‌باشد (19.

محتوی پروتئین بگ: مقایسه سیانگین داده‌های نشان داد که با افزایش غلظت از بیشترین مقدار پروتئین در هر نوع سبزیجات بیشتر از ۰/۳۲ به پیشرفت‌یابی پروتئین‌های کارتوافیل، کارتوافیل ۱ کارتوافیل ۲ و کارتوافیل افزایش و محتوی کربوهیدرات‌ها کاهش می‌یابد (۰/۳، ۱/۰). افزایش مقدار پروتئین‌ها گیاهی از اثر کاربئی منابع مختلف کود ازت نقش غیر قابل اثر از ساختار مولکولی پژوهی‌های افزایش بی‌بوز کارتوافیل را به باتسان می‌رساند. در مولکول کارتوافیل دارای چهار اتم ازت است. این‌ها توسط بچه‌های برگرگ‌های زرد می‌شوند. به نظر می‌رسد افزایش میزان رنگ‌برنگ‌ها با کاربرد آمینواسید به عنوان چسبان عاملی از طریق روندی که به این طریق پیوسته می‌باشد. مستقلاً در فیترشیپ و تشکیل کارتوافیل استفاده می‌شود. نتایج این آزمایش در خصوص اثرات تیمارها بر محتوی کارتوافیل بگ‌ها با پاپه‌های عسلو و همکاران (1393) بر روی
جدول ۱- تجزیه و ارتباط صفات فیزیولوژیک مورد بررسی در شیل‌های تحت تأثیر نوع و مقدار کود ازته

<table>
<thead>
<tr>
<th>میانگین مرحلات (MS)</th>
<th>میانگین کربوهیدرات</th>
<th>کربوهیدرات کل</th>
<th>کربوهیدرات کل</th>
<th>کربوهیدرات کل</th>
<th>کربوهیدرات کل</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۷۹</td>
<td>۲۲</td>
<td>۲۴/۵۲</td>
<td>۲۵/۷۴</td>
<td>۲۶/۰۰</td>
<td></td>
</tr>
<tr>
<td>۱/۷۹</td>
<td>۱/۷۴</td>
<td>۱/۷۲</td>
<td>۱/۷۱</td>
<td>۱/۷۰</td>
<td></td>
</tr>
<tr>
<td>۴/۸</td>
<td>۴/۸</td>
<td>۴/۸</td>
<td>۴/۸</td>
<td>۴/۸</td>
<td></td>
</tr>
<tr>
<td>۳۶/۳۴</td>
<td>۳۶/۳۴</td>
<td>۳۶/۳۴</td>
<td>۳۶/۳۴</td>
<td>۳۶/۳۴</td>
<td></td>
</tr>
<tr>
<td>۲/۷۴</td>
<td>۲/۷۴</td>
<td>۲/۷۴</td>
<td>۲/۷۴</td>
<td>۲/۷۴</td>
<td></td>
</tr>
<tr>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td></td>
</tr>
<tr>
<td>۰/۷۴</td>
<td>۰/۷۴</td>
<td>۰/۷۴</td>
<td>۰/۷۴</td>
<td>۰/۷۴</td>
<td></td>
</tr>
<tr>
<td>۱/۲۹</td>
<td>۱/۲۹</td>
<td>۱/۲۹</td>
<td>۱/۲۹</td>
<td>۱/۲۹</td>
<td></td>
</tr>
<tr>
<td>۰/۳۷</td>
<td>۰/۳۷</td>
<td>۰/۳۷</td>
<td>۰/۳۷</td>
<td>۰/۳۷</td>
<td></td>
</tr>
<tr>
<td>۱/۷۱</td>
<td>۱/۷۱</td>
<td>۱/۷۱</td>
<td>۱/۷۱</td>
<td>۱/۷۱</td>
<td></td>
</tr>
<tr>
<td>۲/۵۷</td>
<td>۲/۵۷</td>
<td>۲/۵۷</td>
<td>۲/۵۷</td>
<td>۲/۵۷</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۱- اثر متوسط و مقادیر مختلف کود ازته بر محتوی کلروفیل ا برگ شیل‌های میانگین‌های دارای حروف مشابه در هر سطح با استفاده از آزمون چند دانه‌ای دانکن در سطح ۵ درصد تفاوت معنی‌داری ندارند.

شکل ۲- اثر متوسط و مقادیر مختلف کود ازته بر محتوی کلروفیل b برگ شیل‌های میانگین‌های دارای حروف مشابه در هر سطح با استفاده از آزمون چند دانه‌ای دانکن در سطح ۵ درصد تفاوت معنی‌داری ندارند.

محققین با این فرآورده‌ها با تأثیر بر روند پروتئین سازی در سطوح زنی و با تأثیر بر سوخت و صادرات یا به گیاهی، رشد و
اثزات نوع و مقدار مختلف کود تیترزون بر برخی صفات فیزیولوژیکی...

شکل ۳- اثر منابع و مقدار مختلف کود اتیوه بر محیط کار فیل کل برگ شیلیله. میانگین های دارای حروف مشابه در هر سطح با استفادات
از آزمون چند دامنه ای دانکن در سطح ۵ درصد ثابت مصوب داری ندارند.

شکل ۴- اثر منابع و مقدار مختلف کود اتیوه بر محیط کار فیل برگ شیلیله. میانگین های دارای حروف مشابه در هر سطح با استفاده از
آزمون چند دامنه ای دانکن در سطح ۵ درصد ثابت مصوب داری ندارند.

شکل ۵- اثر منابع و مقدار مختلف کود اتیوه بر درصد پروتئین برگ شیلیله. میانگین های دارای حروف مشابه در هر سطح با استفاده از
آزمون چند دامنه ای دانکن در سطح ۵ درصد ثابت مصوب داری ندارند.
شکل 6- آمار منفی و مقادیر مختلف کود ازته بر درصد فبر برگ شش‌بی‌های میان‌گین‌ها دارای حرف مشابه در هر ستون با استفاده از آزمون
چند دامنه‌ای دانکن در سطح 5 درصد نتایج دارند.

افراپیش‌های ۱-۳ کلمی باید از نظر آماری با تیمار ۱۰۰ کیلوگرم کلیسیم اختلاف معنی‌داری داشته باشند. پیش‌ترین و کمترین محصول
فیبر برگ به ترتیب از تیمار‌های کلیسیم ۱۰۰ کیلوگرم در هکتار و تیمار ۵۰ کیلوگرم در هکتار ارور به دست آمد.

افراپیش‌های مختلف، از اثر کاربرد نیترات کلیسیم احتمالاً به
خاطر وجود کلسیم در ساختار آن به ضریه‌های هوایی باعث استفاده
پذیر فلوئور می‌گردد. یک درصد اندیس به‌تراشک می‌کند ازته، اگرچه محصولات فیبر برفته برگ را تغییر به شاهد افزایش
داد. اما می‌توانیم اختلاف آن اختلاف آماری مشاهده نشده.

پیش از این، احاطه‌پور و همکرانان (۱۳۹۱) نشان داد که
بالتین و پایین‌ترین نیتروژن کیلوگرم کلیسیم و حیوانان به
ترثیب از کاربرد ۱۰۰ کیلوگرم در هکتار نیتروژن خالص و
تیمار مشابه مشاهده شد. بررسیهای همچنین در
تیمار کاربرد کودهای ازته باعث کاهش محصول فیبر
خام در کل می‌شود.

محصول کربوهیدرات‌ها: نتایج مقایسه‌ی میان‌گین‌ها داده‌ها
(شکل ۷) نشان داد که از افزایش مقادیر از مصرفی از منابع
مختلف، محصولات کربوهیدرات‌ها کاهش می‌یابد. کمترین مقادیر
کربوهیدرات‌ها از تیمار ۱۰۰ کیلولگرم در هکتار نیترات کلیسیم به
تکوین گیاه را مانند و در ارتفاع مختلف قرار می‌دهند. در واقع
تغییر برگی اسب‌های آمیز آزادی یک می‌تواند یک منبع مهم برای
سنت پروتئین در گیاهان پاشید (تین‌سی و همکاران، ۱۳۹۳).

ایس‌های آمیز زنگی اصلی در ساختار پروتئین و به‌عنون
خود یکی از مواد مؤثر در تولید گیاه می‌باشد. . حنیمیان و همکاران (۱۳۹۴) نشان داد که افزایش دستگاه
روتیلین گیاهی به شمار می‌رود (آنونیم، ۲۰۰۹). نتایج
اسفندنام و همکاران (۱۳۹۴) نشان داد که افزایش مصرف
ازت پروتئین محیطی شش‌بی‌های می‌پیامده.

محصول فیبر برگ: مقایسه‌ی میان‌گین‌ها داده‌ها (شکل ۷) نشان
داد که کاربرد انواع مختلف کود ازته اثرات منفی‌تری به محضی
فیبر برگ‌های شش‌بی‌های داشت. پیش‌ترین افزایش محصول فیبر در
تیمار نیتروژن مشابه مشاهده شد. در حالتی که با کاربرد
کیلوگرم در هکتار کود ازته فیبر برگ کاهش به شاهد افزایش
چشمگیری داشت. با افزایش مقادیر کود ازته مشاهده شد
از ۲۵ به ۵۰ کیلوگرم، محصولات فیبر برگ به پایین‌ترین سطح در
بین کلیه تیمارها تقلیل یافت. اما افزایش مجدد مقادیر ازته
مصرفی به ۱۰۰ کیلوگرم در هکتار، محصولات فیبر برگ مجدد

نتایج شمخگر و همکاران (1392) نشان داد که افزایش نیتروژن تا سطح 50 کیلوگرم در هر کیلوگرام کاهش موجب افزایش و سطح بالاتر از 50 کیلوگرم باعث کاهش کربوهیدرات‌های بزرگ شیلله می‌شود. این اشاره‌های کربوهیدرات‌ها در سلول‌های رویشی سبب افزایش ضخامت آنها شده و چنانچه ازت کافی به گیاه رشد، شرایط رشد نیز مناسب باشد. کربوهیدرات‌ها صرف ساختمان پروتئین می‌شوند. (دارودی، 1386). نتایج قبادی و همکاران (1390) نیز نشان داد که با افزایش مصرف کود

dست آمد. کم شدن کربوهیدرات در اثر افزایش ازت احتمالاً به دلیل ارتباط معکوس آنها با محتوای ازت در گیاهان باشد. ازت میزان ماده تولیدی و ترکیب‌های ازت در بافت سبز گیاهان را افزایش داده و بر علکس از مقدار ماده قندی می کاهد. به‌این‌ویژه، هر چه مقدار کربوهیدرات افزایش یابد، محیطی پروتئین کاهش می‌یابد و بر علکس، با توجه به افزایش درصد پروتئین در اثر مصرف کوده‌های ازت، ذخیره کربوهیدرات‌های موجود در دانه کم می‌شود (قبادی، 1389).

![Graph](https://example.com/graph.png)

شکل 7- اثرات نوع و مقدار مختلف کود نیتروژن بر رشد سلول‌های بزرگ شیلله (میانگین‌های دارای حرف مشابه در هر ستون با استفاده از آزمون چند دامنه‌ای دانکن در سطح 5 درصد نتایج معنی‌داری ندارند.)

![Graph](https://example.com/graph2.png)

شکل 8- اثرات نوع و مقدار مختلف کود ازت بر پژوهش‌های بزرگ شیلله (میانگین‌های دارای حرف مشابه در هر ستون با استفاده از آزمون چند دامنه‌ای دانکن در سطح 5 درصد نتایج معنی‌داری ندارند.)
عنصری نظیر نیتروژن و فسفر برای تشکیل این ترکیبات ضروری می‌باشد (Loomis and Corteau, 1972) بر روی ریحان مشخص شده است که بالاترین عملکرد اساس با مصرف ۵۰ کیلوگرم در هكتار کود نیتروژن به دست می‌آید. Tأثیر مثبت محلول‌پاشی با اسید آمینولیک‌ورخه و هیلیومیوره بر عملکرد اساس دامنه نسبت به انجام‌کننده و ترکیبیه گیاه داشت. از همان‌گونه اساس گیاه محلول در بازیزم و نزدیکی سطح برف و اندام‌های ان دخیلی می‌شود، افزایش مساعدت شده در میزان اساس احتمالا بدلیل این امر به‌ویژه در روشی و در نتیجه افزایش سطح برف و اندام‌های هوبی میداشت. امینوآسید‌ها به دلیل جذب مستقیم، سریع‌تر در مصرف بیوستور اساس وارد شده و به همین‌خاطر پیش‌ریزی از سایر انواع کود از این‌محتواهای اساس را تحت تاثیر فاز داد است.

نیتروژن در توصیه سلول‌های جدید حاوی اساس و بیوستور اساس و مواد مرتبط در گیاهان دارویی نقش مهمی ایفا می‌کند (Franz, 1983) افزایش عملکرد اساس در اثر مصرف مافذ مختلف کود از این بدلیل ساختار ترمتودی ATRP و NADPH و نش از اپوزیت‌های بعنوان واحدی و سازنده آن‌ها می‌باشد. باید توجه نمود که حضور

منابع

احسانی‌پور، ا. زینبی‌خ، رزمجو، ک. (۱۳۹۱). تأثیر مافذ مختلف از ارز بر عملکرد و کیفیت جمعیت‌های مختلف رژیناهه (مجله گیاهان دارویی. ۹: ۷۳–۷۹) در بوشهر.

احمدی، م. (۱۳۸۹). بررسی تأثیر ارز و سولفات رزی بر عملکرد و اجزای عملکرد دانه کلزا (Bassica napus L.) در کتاب از دیه‌بانگی سر کیما (۱۳۹۱) تغییرات ارز بر عملکرد و روغن گیاه دارویی شش‌بله تحت تأثیر تیمارهای مختلف و ارز و سولفات کاربرد علوم زراعت و اصلاح نباتات.

اسفندیاری، س. زارعی‌خ، پورانی، ا. (۱۳۹۱) تغییرات ارز بر عملکرد و روغن گیاه دارویی شش‌بله تحت تأثیر تیمارهای مختلف و ارز و سولفات کاربرد علوم زراعت و اصلاح نباتات.

سید حیدری، م. قلی‌میری، ا. (۱۳۹۴) بررسی تأثیر مافذ مختلف وری کم‌طلایی و محلول‌پاه‌اشی اسید‌های آمینه و اوره بر عملکرد کمکی و کیفی بانان آمیانه (Matricaria chamomilla L.) دو هم‌اکنون کم‌طلایی و تحقیقاتهای کیفیت‌گذاری دارویی و معطای ایران. جلد ۲. شماره ۲: ۳۰۷–۳۱۰.

سید حیدری، م. قلی‌میری، ا. (۱۳۹۴) بررسی تأثیر مافذ مختلف وری کم‌طلایی و محلول‌پاه‌اشی اسید‌های آمینه و اوره بر عملکرد کمکی و کیفی بانان آمیانه (Matricaria chamomilla L.) دو هم‌اکنون گیاه دارویی و معطای ایران. جلد ۲. شماره ۲: ۳۰۷–۳۱۰.

امینی‌گری، ر. (۱۳۸۷) تولید و فراوری گیاهان دارویی. انتشارات آستان قدس رضوی. جلد ۲. ص. ۲۴۷–۲۴۸.

احسانی‌پور، ا. زینبی‌خ، رزمجو، ک. (۱۳۹۱). تأثیر مافذ مختلف ارز بر عملکرد و کیفیت جمعیت‌های مختلف رژیناهه (مجله گیاهان دارویی. ۹: ۷۳–۷۹) در بوشهر.

نیتروژن در توصیه سلول‌های جدید حاوی اساس و بیوستور اساس و مواد مرتبط در گیاهان دارویی نقش مهمی ایفا می‌کند (Franz, 1983) افزایش عملکرد اساس در اثر مصرف مافذ مختلف کود از این بدلیل ساختار ترمتودی ATRP و NADPH و نش از اپوزیت‌های بعنوان واحدی و سازنده آن‌ها می‌باشد. باید توجه نمود که حضور
شارک کننده، م. ، برادران، ر. ، موسوی، غ. ، بیان، م. ، آرژمنگی، ا. (۱۳۹۲). اثر دور ایبیاری و مصرف کود نیتروژن بر نیروی نیترات عملکرد دانه و صافه فیزیولوژیکی برنج‌های (Trigonella foenum-graecum L.) فصلنامه علمی پژوهش تحقیقات کشاورزی دارویی و معطر ایران. جلد ۲۹ شماره ۳ صفحه ۵۳۸-۵۳۹.

موهمودی ح. (۱۳۹۲). گزارش نهایی بررسی اثرات محصول پاشی آسیه‌های آمینه آزاد بر عملکرد کمی و کیفی نخود (رقم جم) در شرایط دیم. انتشارات ایالات تحقیقات کشوارزی دیم. نشریه ۱۳۹۲. مراهقه الف. ملکوتی، م. (۱۳۵۰). عقیده کود در اراضی فلورب و دیم. انتشارات دانشگاه تربت مدرس. ملکوتی، م. ، نوری، ا. ، سماوات، س. ، بصیرت، م. (۱۳۸۴). عقل تجربی نیروی در سبزه‌های میوهای (خیار، گوجه‌فرنگی و ...) و روش‌های کنترل آن. انتشارات سنار. صفحه ۲۰۰ صفحه.

Effects of different sources and quantities of nitrogen fertilizers on physiological parameters of Fenugreek (*Trigonella foenum-graecum* L.)

Esmaeel Zohrabi¹, Mehdi Saidi¹* and Zahra Tahmasebi²

¹ Department of Horticulture, College of Agriculture, Ilam University
² Department of Agronomy and Plant Breeding, College of Agriculture, Ilam University

(Received: 02/08/2016, Accepted: 02/11/2016)

Abstract

Today, due to positive effect of nitrogenous fertilizers on growth, yield and quality of agricultural crops, irregular use of fertilizers has been increased. In order to evaluate the effects of different sources and quantities of nitrogen fertilizers on some of physiological properties of Fenugreek (*Trigonella foenum-graecum* L.) medicinal plant, an experiment was carried out as a randomized block design with four replications at research farm, department of horticulture, Ilam University during summer 2015. Treatments included different levels of Urea (0, 25, 50 and 100 kg/h) and Calcium Nitrate fertilizer sources and Amino Acid with four concentrations: 0, 1.2 and 4 g/l. Study traits included photosynthetic pigments content (Chlorophyll a & b, total chlorophyll and carotenoids) fiber percentage, Carbohydrates content, proteins percentage and essential oil yield of leaves. Results showed that sources and quantities of nitrogen significantly affected all studied parameters. The highest pigments’ content, protein and essential oil yield of leaves were obtained from 4 g/l amino acid treatment; the highest leaf fiber from 100 kg/h calcium nitrate and the highest leaf carbohydrate content obtained from control plants and increasing in nitrogen from all three sources led to decrease in carbohydrates content. The research revealed that using different sources and quantities of nitrogen fertilizers (especially amino acids) have positive effects on improvement of physiological traits of fenugreek and application of nitrogen can be recomended for increasing quality of the leafy vegetable and medicinal plant.

Key Words: Essential oil, Amino Acids, Protein, Carotenoids, Chlorophyll.

* Corresponding author: m.saidi@ilam.ac.ir