اثر شوری در شدت‌های مختلف نور بر خزی ویژگی‌های فیزیولوژیک

Haloxylon ammodendron

حسین علی‌فرد، آقای تابنده ساروی، و حسن دشتی

گروه چکیار، دانکه، منابع طبیعی، دانشگاه فردوسی مشهد. مقیاس‌گیری‌های ویژگی‌های فیزیولوژیک و جذب
عناصر یک سبب‌ساز به‌صورت کربن‌های خرد شده در قالب طرح ایپی‌کالی‌زدایی با 10 تکرار برشی شد. نتایج نشان داد که مقدار پرولین از نور ضعیف و متوسط به‌طور معنی‌داری کمتر از نور کامل بود. مقدار پرولین در نور کامل برابر با 42/0 میلی‌گرم در طبیعی و نتیجه‌گیری مخلوط شد. پیش‌ترین مقدار کلروفیل 0/8 و کل مقدار نتایج در نور ضعیف و متوسط و کمتری آن در نور کامل مشاهده شد. مقدار نتایج در نور ضعیف به‌طور معنی‌داری بیشتر از شاهد و نور متوسط بود. بر خلاف سایر عناصر مقدار نتایج در نور کامل به‌طور معنی‌داری نسبت به نور ضعیف و متوسط بیشتر بود. مقدار کلروفیل 0/8 و کلی از افزایشی که شاخص یافته. مقدار نتایج و پاتامز نیز با افزایش شوری کاهش یافته. مقدار پتاس و صکر خشک و در شاهد برابر با 11 میلی‌گرم در گیاه‌های کلروفیل هم بار نسبت به نتایج افزایشی که شاخص یافته. مقدار پتاس و صکر خشک و در شاهد برابر با 11 میلی‌گرم در گیاه‌های کلروفیل هم بار نسبت به نتایج افزایشی که شاخص یافته. مقدار پتاس و صکر خشک و در شاهد برابر با 11 میلی‌گرم در گیاه‌های کلروفیل هم بار نسبت به نتایج افزایشی که شاخص یافته. مقدار پتاس و صکر خشک و در شاهد برابر با 11 میلی‌گرم در گیاه‌های کلروفیل هم بار نسبت به نتایج افزایشی که شاخص یافته. مقدار پتاس و صکر خشک و در شاهد برابر با 11 میلی‌گرم در گیاه‌های کلروفیل هم بار نسبت به نتایج افزایشی که شاخص یافته. مقدار پتاس و صکر خشک و در شاهد برابر با 11 میلی‌گرم در گیاه‌های کلروفیل هم بار نسبت به نتایج افزایشی که شاخص یافته. مقدار پتاس و صکر خشک و در شاهد برابر با 11 میلی‌گرم در گیاه‌های کلروفیل هم بار نسبت به نتایج افزایشی که شاخص یافته. مقدار پتاس و صکر خشک و در شاهد برابر با 11 میلی‌گرم در گیاه‌های کلروفیل هم بار نسبت به نتایج افزایشی که شاخص یافته. مقدار پتاس و صکر خشک و در شاهد برابر با 11 میلی‌گرم در گیاه‌های کلروفیل هم بار نسبت به نتایج افزایشی که شاخص یافته. مقدار پتاس و صکر خشک و در شاهد برابر با 11 میلی‌گرم در گیاه‌های کلروفیل هم بار نسبت به نتایج افزایشی که شاخص یافته. مقدار پتاس و صکر خشک و در شاهد برابر با 11 میلی‌گرم در گیاه‌های کلروفیل هم بار نسبت به نتایج افزایشی که شاخص یافته. مقدار پتاس و صکر خشک و در شاهد برابر با 11
(Schachtman et al., 1991)

به شوری دارد (Grattan and Grieve, 1999)

یکی از راهکارهای مناسب گیاهان در پاسخ به نش شوری افزایش سبزیجات‌های سازگار در اندام‌های مختلف گیاه می‌باشد. این اسمنت‌های سازگار (مانند اسید آمینه‌ها، پروپون و آمین‌های تابنی و یا فنول‌های محلول) کارکرد گیاه را از جمله ترکیب اسمنت قفل کرده، جاهایی را از ساختار درون سلولی کاهش خسارت اسکیدانی به‌واسطه تولید رادیکال‌های آزاد در پاسخ به
De Lacerda et al., 2005 میانوز ون زن و انکله نیتریز و گرها افزایش و لینیز امکان شکسته و شوری را به‌بplacements می‌کود.

در بین مواد محلول سازگار شناخته شده، احتمالاً پروپون گسترده‌ترین نوع آنها می‌باشد و به‌نظر می‌رسد تجمع این در فرآیند سازگاری به‌منظور خوراک از شرایط سدیمی،(Sudhakar et al., 1993) رست‌ها دخالت دارد.
کاپیتال قابل حاصل در پاسخ به‌خانواده‌های محلول سلولی می‌شود. از طرف دیگر در پاسخ به اهان گیاهان، سدیم با ورود به داخل وکتورها نقش عمده‌ای دارد در تعیین اسپرمی بعوده در این نش شوری، بیشتر گیاهان، افزایش موثری سدیم در آویپولیاستار از راه افزایش مقدار آب‌پذیری موزولیف (مانند مقادیر آب وکتورها) حمل کننده لذا ممکن است بتوانند شکسته و ظروف

آمریکایی و بیوشیمیایی و به‌خوردن توان منابعی می‌شود.

(ب) نتایج آزمایش روزی گیاه et al., 2009; Christian, 2005

در شرایط شورا (نگا کاری سدیم) و شرایطی که گیاه‌ها در شرایت شورا نشان داد که گیاه‌ها پروپون یا شترالتی در شرایت شورا نسبت به گیاه‌ها در شرایت شورا کمتر داشته و این نشانه که گیاه‌ها کمتر پودرنگی کلیه‌ای و همکاران (1993) مطالعات روی گیاه Aloe vera نشان داد که کمتر پودرنگی کارولفیل بی‌افراشی
مواد و روش‌ها

این پژوهش در تابستان 1394 در دانشگاه یزد به اجرا درآمد. در این آزمایش، ابتدا تعداد 90 گلدانی از گونه سیاه‌تاغ در ناهار السلطنه داشتند. منابع طبیعی برند در قالب طرح کردهای خردشماری در قالب طلا پایه کاملاً تصادفی با 10 تکرار طراحی و اجرای آشیانه و در این آزمایش وابستگی به عوامل جغرافیایی و در هر کدام از اندازه‌گیری‌های شرایط روبه‌روی متابولیک مشابه بودند. آمار هاوئنسکی محاسبه انجام شده برای حساب نتیجه در سطح 0.01

راچی و نگان (1990)، ص 175 لیست می‌دهند. به عنوان یک گیاه مفید و مؤثر (Chenopodiaceae) بی‌پایی با تایزن آم، تحمیل شرایط سخت اقلیمی و قدرت مازگردی در مناطق خشک توانایی است تجربی ساسی در این یافته‌های زیاد داشته باشند. اما توجه به اینکه سیاه‌تاغ در بیستی‌های مرکزی ایران با مشکل تجدید حیات طبیعی می‌خواهد که و همچنین عوامل جغرافیایی اقلیمی مانند مقدار کمی بارش، گرمای، نشست‌های آب و شوری خاک مانند از جوانزی و استقرار اولیه گیاه می‌گذارد، لذا چهار ایان یا از طریق نهال-کاری‌یکی از راه‌های عمدید با سازش بیشتر برای تولید انگیزه از خوزستان در مناطق بی‌پایی به‌عنوان می‌رود (همه‌زاد و همکاران، 1394). پایتخت بررسی اثر تنش شوری بر جوانزی سیاه‌تاغ شبکه‌ای که در صورت جوانزی آن پیچش از اشتاقین، سفید‌تاغ، پریست، سیاه‌تاغ، تخت، و آرتی‌گیوان بویو و همکاران، 138. بررسی پایته به‌ین کشک شوری، دما و و شوری بر جوانزی بذر سیاه‌تاغ نشان داد که در صورت دربرگیری طول گیاهی جوانزی در دمای 30 درجه کاهش یافت. افزایش شوری هم‌اکنون معنی‌داری دارد بر صورت جوانزی داشت (قاندی و همکاران، 138).

تولید نهال سیاه‌تاغ جهت احیای اراضی زیر در منطقه خشک و کوچک اغلب به مصرف آب زیادی همراه است. با توجه به کاهش آب مطلوب در مناطق خشک، استفاده از بهبود شوری اهمیت به‌سرعت می‌کند. این تحقیق اثر تنش می‌رود بر شرایط آبی‌زا برای شاه‌خصائی‌های فیزیولوژی سیاه‌تاغ در شرایط آبی‌زا با آب شور را مورد بررسی قرار می‌دهد.

شادور در سطح‌های مختلف نور بر رشد و وزن گیاه‌های فیزیولوژیک...
جدول ۱- آمار هوایشاسی محل روش سباه تاغ در نهالستان دانشکده مهندسی طبیعی، دانشگاه یزد

<table>
<thead>
<tr>
<th>ماه</th>
<th>رطوبت نسبی (سنسور)</th>
<th>درجه حرارت (سنسور)</th>
<th>بارانگی</th>
<th>تبخیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>(میلی‌متر)</td>
<td>(میلی‌متر)</td>
<td>میزان‌گی</td>
<td>میزان‌گی</td>
<td></td>
</tr>
<tr>
<td>متوسط</td>
<td>متوسط</td>
<td>کمیه</td>
<td>مطلق</td>
<td>مطلق</td>
</tr>
</tbody>
</table>

فروردین	۱۶/۹	۲۷/۵	۶۴/۳	۱۰/۵
اردیبهشت	۱۹/۶	۲۴/۸	۷۰/۵	۱۱/۵
خرداد	۲۵/۷	۳۸/۱	۸۴/۶	۱۲/۶
تیر	۲۸/۴	۴۷/۱	۹۰/۵	۱۳/۵
مرداد	۲۴/۷	۳۷/۵	۸۳/۱	۱۱/۶
شهریور	۲۱/۷	۲۹/۵	۶۰/۵	۹/۱

عدد قرار شده با دستگاه استنک‌فروتن، حجم تولوئن T (میلی‌لیتر) و وزن تولوئن برگی Mودور استفاده (چهار میلی‌لیتر) و وزن تولوئن برگی Mورود استفاده (پنج میلی‌لتر) استفاده.

Mwater=|m_w−m_0|/m_0×100 (راطفه ۱)

در این رابطه: m_water وزن تولوئن T و m_0 وزن خشک هستند.

اندازه‌گیری میزان پرولین: مقدار ۰/۵٪ از افزایش تر ساکسی به را در ۱۰ میلی‌لیتر محلول سدیم سولفات و مخلوط یکنوایی تهیه گردد. سپس عصاره حاصل با استفاده از کاغذ صاف و خشک شده دو گلدان صاف شد. سپس دو میلی‌لیتر از محلول پرولین را برداشت و دو میلی‌لیتر از مخلوط یکنوایی ثانویه در دو گلدان ورود نمی‌کند و دو میلی‌لیتر اسیدپلاتین خاکس به آن اضافه و مخلوط کرده و به مدت یک ساعت در دمای ۱۰۰ درجه سانتی‌گراد، به ۲۴ ساعت می‌پردازند. های آزمایش به مدت ۵۰ ساعت در حمام گزار سپرس می‌پردازند و میزان جذب تغییرات در سه‌گاه آزمایش با استفاده از دستگاه استنک‌فروتن در طول موجب ۱۸۰ تاریخ، میزان جذب تعیین شده و بنابراین از منحنی استاندارد گذیور، بر حسب میلی‌گرم بر گرم وزن خشک با استفاده رابطه ۳ آزمایش گردید (Kochert, ۱۹۸۷).

\[Y = \frac{M \times T}{W} \times 10 \]

(راطفه ۲)

Mدر این رابطه: Mقدار مصرف محلول در میلی‌لیتر گیاهی.

روبرک (۱۹۷۳) می‌پرس: در این رابطه: Y=مقدار محلول در میلی‌لیتر گیاهی.

Mحلول شاهد T معدل محلول شاهد گیاهی.

میزان‌گی هفت میلی‌لیتر و وزن برگی مورد استفاده (۱۰/۵٪) می‌باشد.

اندازه‌گیری کلروفیل: ۱۰٪ گرم پات زنده ساکسی را با ۱۰ میلی‌لیتر محلول می‌پردازند. میزان محلول در میلی‌لیتر گیاهی.

Error! No text of specified style in (document.)
اثز ؽَریدر ؽذتّای ه المختلف ًَر بز بزخی ٍیضگیّای فیشیَلَصیک... 121

ٔيّيِيشط اؾشٖٛ 80 زضنس زاذُ ٞبٖٚ ثٝ ذٛثي ؾبئيسٜ ... ٚ زض
٘ٛض وبُٔ ثطاثط ثب 169/0 ٔيّيٌطْ ثط ٌطْ ٚظٖ سط ؾبلٝ ا٘ساظٜ
ٌيطي قس. ٔمساض فؿفط زض ٘ٛض فؼیگ ثٝعٛض ٔؼٙيزاضي ثيكشط

(Waling et al., 1989)

موج 700 ٘ب٘ٛٔشط ثب اؾشفبزٜ اظ زؾشٍبٜ فّيٓ فتومي ازادهگيي شد (غازان شاهي، 1736).

جھت تجريبه و تحليل ناجي، ابتدا نرمال ببون دادها توسط ازمون كلومتكروفس اسيمترور پربيسي، شد. سپس جھت بررسی اختلاف بین سطح مختلف تیمار، تجزیه و تحلیل واریانس از نظر کلی شاخص‌های مورد بررسی انجام شد و در نهایت (DMRT) معیاری‌های از ازمون چنددامت ای دانکن (Mianipk) و با استفاده از دستگاه فیلم فتومت، همگی‌ها به ترتیب در واریانس با اضطراب در پهلوی آزمایی از آزمون چنددامت ای دانکن دسته‌بندی گردید. تجزیه و تحلیل‌های با استفاده از نرم‌افزار آماری SAS رنگده شد.

رابطه (4)

\[
\text{زاوری گیا: مقدار 20٪ از نمونه خشکی کیسه مذکور را در یک بان کنگالام 100 میلی لیتری ریخته و مقدار یک گرم نمک کنانیوز و یک میلی لیتر اسید سولفوریک غلیظ به انی اضافه شد. سپس لوله‌های آزماین و در دستگاه هضم به مدت دو ساعت قرار داده شد. بعد از خشک شدن نمونه‌ها، آن‌ها را در دستگاه مغذیردهی به مدت بیشتری قرار داده و در این مرحله اسیدبوریک 100 و حجم 100 گرم سود را به حجم 100 پیش 20 گرم اسیدبوریک و 400 گرم سود به حجم 100 رساده و آماده شده است. در مرحله تیراسیون با اسیدسولفوریک 0/1 نرمال به زبان صورتی تمایل ییدا کرد و در نهایت با استفاده از رابطه 5 درصد نتیجه‌گیری محسوس گردید. (غازان شاهی، 1376).\]

رابطه (5)

\[
\frac{\text{YP}}{\text{XM}} = 12/5(A_{662.2} - 2/79(A_{664.8}) \times b/a
\]

بکر کروفل 2/79(A_{664.8})) = کروفل تیز

\[
\text{b} = 21/5(A_{662.2}) \times 5/1(A_{662.2})
\]

بکر کروفل تیز + کروفل = کروفل کل

A در روابط بالا مقدار عدد فرآیند شده دستگاه اسیدسولفوریک B براي کروفل a و b در این نمونه‌ها می‌باشد.

متن در متن الگو 100 میلی لیتری ریخته و مقدار یک گرم نمک کنانیوز و یک میلی لیتر اسید سولفوریک غلیظ به انی اضافه شد. سپس لوله‌های آزماین در دستگاه هضم به مدت دو ساعت قرار داده شد. بعد از خشک شدن نمونه‌ها، آن‌ها را در دستگاه مغذیردهی به مدت بیشتری قرار داده و در این مرحله اسیدبوریک 100 و حجم 100 گرم سود را به حجم 100 پیش 20 گرم اسیدبوریک و 400 گرم سود به حجم 100 رساده و آماده شده است. در مرحله تیراسیون با اسیدسولفوریک 0/1 نرمال به زبان صورتی تمایل ییدا کرد و در نهایت با استفاده از رابطه 5 درصد نتیجه‌گیری محسوس گردید. (غازان شاهی، 1376)
از شاهد و نور متوسط بود. بر خلاف سایر عناصر مقدار سدیم

جدول ۱- میانگین مربعات حاصل از تجاری و اریان شاخص‌های مورد بررسی در سپتابار

<table>
<thead>
<tr>
<th>سدیم</th>
<th>پلوئن</th>
<th>درجه آزادی</th>
<th>RWC</th>
<th>منابع تغییرات</th>
<th>پلوئن</th>
<th>درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارکردهای گیاهی</td>
<td>کارکردهای گیاهی</td>
<td>کارکردهای گیاهی</td>
<td>کارکردهای گیاهی</td>
<td>کارکردهای گیاهی</td>
<td>کارکردهای گیاهی</td>
<td></td>
</tr>
<tr>
<td>۰/۷</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
</tr>
<tr>
<td>۰/۹</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
</tr>
<tr>
<td>۰/۷</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
</tr>
<tr>
<td>۰/۷</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
</tr>
<tr>
<td>۰/۷</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
</tr>
<tr>
<td>۰/۷</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
</tr>
<tr>
<td>۰/۷</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۴۹</td>
<td>۰/۷</td>
</tr>
</tbody>
</table>

آدامه جدول ۲-

<table>
<thead>
<tr>
<th>ضریب تغییرات</th>
<th>منابع تغییرات</th>
<th>پلوئن</th>
<th>درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۷</td>
</tr>
</tbody>
</table>

جدول ۲- مقایسه میانگین شاخص‌های مورد بررسی تحت تیمار نور

<table>
<thead>
<tr>
<th>شاخص‌ها</th>
<th>نور ضعیف</th>
<th>نور متوسط (نور کامل)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پلوئن</td>
<td>(mg g⁻¹ fw)</td>
<td>(mg g⁻¹ fw)</td>
</tr>
<tr>
<td>کارکردهای گیاهی</td>
<td>کارکردهای گیاهی</td>
<td>کارکردهای گیاهی</td>
</tr>
<tr>
<td>۰/۷</td>
<td>۰/۷</td>
<td>۰/۷</td>
</tr>
</tbody>
</table>

حرف‌های مشابه در رنگ نشان دهنده تفاوت معنی‌داری بین میانگین‌ها با استفاده از آزمون دانکن می‌باشد.

در نور کامل به‌طور معنی‌داری نسبت به نور ضعیف و متوسط بیشتر بود(جدول ۳).
چندال - مقایسه میانگین شاخص‌های مورد بررسی تحت تیمار شوری

<table>
<thead>
<tr>
<th>شاخص‌ها</th>
<th>مشاهده (آب معمولی)</th>
<th>شاهد (آب معمولی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پرولین (mg g⁻¹fw)</td>
<td>۰/۱۲ b</td>
<td>۰/۱۰ a</td>
</tr>
<tr>
<td>شندره محلول (mg g⁻¹wd)</td>
<td>۰/۳۱ b</td>
<td>۰/۳۲ c</td>
</tr>
<tr>
<td>کلروفیل a (mg g⁻¹fw)</td>
<td>۰/۴۱ b</td>
<td>۰/۴۲ a</td>
</tr>
<tr>
<td>کلروفیل b (mg g⁻¹fw)</td>
<td>۰/۷۶ b</td>
<td>۰/۷۵ a</td>
</tr>
<tr>
<td>کلروفیل کل (mg g⁻¹fw)</td>
<td>۰/۴۱ b</td>
<td>۰/۴۰ a</td>
</tr>
<tr>
<td>نیترژن (٪)</td>
<td>۲/۹۹ b</td>
<td>۲/۹۷ a</td>
</tr>
<tr>
<td>پتاسیم (mg g⁻¹)</td>
<td>۷/۷۹ a</td>
<td>۷/۷۸ b</td>
</tr>
<tr>
<td>سدیم (mg g⁻¹)</td>
<td>۷/۸۰ a</td>
<td>۷/۷۹ b</td>
</tr>
<tr>
<td>نسبت پتاسیم به سدیم</td>
<td>۹/۸۰ a</td>
<td>۹/۸۱ b</td>
</tr>
</tbody>
</table>

شکل ۱ - پرهمکش نوره شوری بر مقدار محصول نسبت آب برگ. حروف متغیر در هر ستون نشان دهنده تفاوت معنی‌دار بین میانگین‌ها با استفاده از آزمون دانک می‌باشد.

شوروی در گیاه افزایش بافت به‌طوریکه مقدار سدیم در شوری ۲۴ برابر با ۱۲۶ میلی‌گرم بر گرم وزن تر ساله اندازه‌گیری شد. هم‌زمان با افزایش نسبت پتاسیم به سدیم در ساله، مقدار نیترژن و کلروفیل کاهش یافت و نسبت معنی‌داری بین دو شوری ۲۴ دسی‌زیمنس بر متر مشاهده شد. مقدار نیترژن و پتاسیم تیز با افزایش شوری کاهش یافت به‌طوریکه مقدار پتاسیم در شوری ۲۴ دسی‌زیمنس بر متر برابر با ۴/۸۰ و در شاهد برابر با ۷۱ میلی‌گرم بر گرم اندازه‌گیری شد. بر خلاف پتاسیم، مقدار سدیم با افزایش
کلسم در نمونه شاهد برای 59 میلی‌گرم گرم و وزن خشک

![نمودگری نمونه‌های شاهد (شکل 2) برای ضعیف و متوسط باعث بهبود جذب کلسم در شوری 24 دسی‌زیمنس بر متر شد. به‌همچنین نور شوری نشان داد که پیش‌ترین مقدار جذب میزیم در شوری 24 دسی‌زیمنس بر متر در نور کامل یافته باشد. (Garg et al., 1990).]

![نمودگری نمونه‌های شاهد (شکل 3) برای ضعیف و متوسط باعث بهبود جذب کلسم در شوری 24 دسی‌زیمنس بر متر شد. به‌همچنین نور شوری نشان داد که پیش‌ترین مقدار جذب میزیم در شوری 24 دسی‌زیمنس بر متر در نور کامل یافته باشد. (Garg et al., 1990).]

خاطر است که کلرید با افزایش جذب نیترات (NO₃⁻) رقابت می‌کند (Silberbush and Ben-Asher, 1987). کاهش ناشی از شوری در غلظت نیترات معقولًا با کاهش در فعالیت آنزیم نیترات‌دوکنار (NR) که مسئول کاهش اکسید می‌باشد، همراه می‌باشد (Garg et al., 1990). \[Hedari-Sharifabad and Mirzaie-\]

بحث

افراشی شوری باعث کاهش مقدار نیتروژن شد. مطالعات نشان می‌دهد که شوری باعث تجنیب نیتروژن در گیاهان را کاهش داده است (بهعنوان نمونه، اورگه و همکاران، 1388). این امر به‌ین
و زمانی (۱۳۸۲) روز سرودی با تحقیق حاضر، همسر می‌باشد.

نتایج نشان داد که افزایش شوری، میزان پرولین گیاه را افزایش داد. افزایش پرولین در گیاهان تحت نشان شوری در واقع نوعی واکنش از طرف گیاه به کاهش پاتنسل آب در محیط رشد است. این نتایج به‌منظور زمینپرولین با کم کردن پاتنسل بستگی سلول‌های ریشهی شرایط لازم برای جذب آب و عناصر غذایی را فراهم می‌کند (Caveie, et al., 1983). همچنین (Thorpe and Chaindler, 1987) نشان داد که پروسه به عون‌الیاً کاهش میزان پرولین گیاه در اثر افزایش شوری، میزان پرولین گیاه را افزایش می‌دهد که نشان می‌دهد که نشان می‌دهد تغییرات محتوا پرولین در نظر مقدار در گیاهان واقع در کلم بیش تر از گیاهان تحت نور کمتر می‌باشد. محتوا پرولین کم در گیاهان تحت سایه را متغیر ناشی از عوامل مختلف از جمله عوامل که دانسته از او روز نشان آب کاهش یافته و میزان پرولین پایین باتی Ibrahim و Aldesuquy (Wadhwa, et al., 2010) در پژوهشی که همبستگی منفی و مثبت از بین غلظت پرولین و آب ساله (به معنی درصدی از وزن تر ساله) برای گیاهان بوده که باعث تغییر نسبی آب در ناحیه دهنده کاهش اشعه آب و فشار اسپزی شده سلولی می‌باشند. افزایش سبب درگیری آب با تب و وضعیت آب گیاهان منجر به کاهش جمع پرولین در اندام‌های نوری می‌شود. در Aldesuquy و Ibrahim (2000) تأثیر زئیت‌های مختلف پروپتی و همکاران (2010) تأثیر زئیت‌های مختلف Wadhwa, et al. (2001) در پژوهشی و همکاران (1999) نویی را بر بی‌گونه جزئیت‌های مختلف که پرولین در گیاهان واقع در سایه کمتر از گیاهان موجود در نور کاملاً به کنار نیست. گاهی نشانه‌های داشت.

نتایج تحقیق حاضر نشان داد که افزایش میزان شوری منجر به افزایش معنی‌داری در میزان محتوای محلول شد. افزایش فرآیندهای محلول در سلول‌های گیاه سبب کاهش پاتنسل بستگی و با ذبیح آلی بیان شده و جذب آب به داخل سلول‌ها را آسان می‌کند. افزایش فرآیندهای محلول در پی افزایش و Wang (Nodoush, 2006) مشاهده این تحقیق، مطالعه (2004) روی گیاه سباهان نشان داد که این گیاه مقدار زیادی سدیم (ب تیتانیسم) را جذب و در بافت‌های هوایی ابتاشته می‌کند.

از طرف دیگر مقدار فسفر و نیکل که از عناصر مشابه مغذی و ضروری برای زیست گیاه می‌باشد، در شرایط نور کمتر، بیشتر از نور متوسط و نور کامل بودن. این موضوع نشان می‌دهد، نور کمتر موجب شرایط بهتر و رطوبتی هم در سطح ریشه و هم در سطح اندام هوایی شده و در نتیجه سبب جذب بیشتر این عناصر شده است. در شرایت نامحسوس روتوپی، در خاک فسفر پودر است که بیشتر از سایر پودر وای گیاه غیرقابل دسترس است، چون این پودر کاملاً به غرق روس و نسبت به خشک که از فسفات در خاک نیش در شرایط زیستی (کافی و بهره‌مند داغ‌باد) (1379).
غلظت شوری نشان دهنده پاکیه یا این از که شوری باعث به هم‌رویدن متابولیسم نتوانسته شده است. بنابراین اگر قد حملون زیاد شده باشد، دو حال رخ می‌دهد: ۱- نزوسترز زیاد شده- ۲- نقدنی برگ (نشانه) شکسته شده و به نقوص کوک (گلکر) نیلسن و اورکت (1996). از آنجا که با افزایش شوری مقدار کلروفیل تاغ کاهش بیدا کرد، افزایش مقدار متحول می‌تواند بیشتر با شکسته شدن قندهای بزرگ در این تحقیق مرتب باشد.

نتایج بررسی برهمکنش نور و شوری نشان داد که بیشترین مقدار منتقبی نسبت آب در دو تیمار ۲۶ و ۳۴ می‌تواند بیشتر باشد. در این تحقیق نسبت آب آمیزی به‌صورت كلولین می‌تواند کنترل شده و نیل سن و اورکت (1996) نشان دادند که میزان عضلات در این تحقیق مربوط به افزایش شوری، افزایش میزان گلکر و نیز افزایش مقدار به‌صورت کلروفیل می‌تواند باشد.

نتیجه‌گیری

در کل نتایج این مطالعه نشان می‌دهد که در کشت‌های آزمایش کاهش منتقبی نور باعث افزایش مقدار کلروفیل، افزایش جذب سلول و فضای سیستم شد که کاهش منتقبی نور جهت اندازه‌گیری باعث افزایش مقدار نسبت آب در شوری ۲۴،۲۴، ۲۴ و ۲۴ می‌تواند تاثیر مستقیمی در شوری داشته باشد. افزایش مقدار کلروفیل در شوری و افزایش مقدار منتقبی نور تحول از برخی نشانه‌های نسبت آب، دمای محیطی و دمای سیستم کلروفیل را از درون شبکه ای‌که سیستم‌ها در شرایط کشت‌های گیاهی ابزار و بررسی‌های مختلفی در آب و آبیاری، پایان‌نشده‌اند.

