بررسی اثر تیمارهای پاکلوپترژاول و چیپرلین بر تعیید تنش خشکی در

Stevia rebaudiana

شکوفه حاجی‌هاشمی و شکیبا رجب‌پور

(گروه زیست شناسی، دانشکده علوم، دانشگاه صنعتی خاتم الانبیاء، بهشهر، گروه زیست شناسی، دانشگاه پیام نور، تهران)

چکیده:
تنش خشکی بیش از عوامل محدود کننده رشد و تولید گیاهان در سراسر چشمان است. گیاهان پاراگوئه و دارای ترکیبات شیرین کننده است، استخوان گلیکوزیدها به ناحیه‌ی دارویی می‌پردازند. در این مطالعه کالوس‌های حاصل از گیاه Stevia rebaudiana تحت تیمارهای مختلف پلی‌اکسیدنگول، پاکلوپترژاول و چیپرلین کشت داده شدند و سپس بر خیال در خصوصیات رشد و تشکیل الیف مطالعات به گرفتندند. نتایج نشان داد که پلی‌اکسیدنگول سبب کاهش میزان وزنه حاصل در پاراگوئه و چیپرلین شد و کاهش اثرات منفی نش خشکی بر روی کالوس‌ها بود.

کلیات کلیدی:
گیاه Stevia rebaudiana، تنش خشکی، چیپرلین، کالوس

مقدمه:
استخوان گلیکوزیدهای دارای اسکلت

تاریخ دریافت: ۲۵/۰۴/۱۳۹۵، **تاریخ پذیرش نهایی:** ۲۸/۰۷/۱۳۹۵

نویسنده مسئول: نهایی پست الکترونیکی: hajihashemi@bkatu.ac.ir

References:

مرض دیوی منطقه پاراکونه استفاده می‌شوند. (Brandle and Telmer, 2007; Geuns, 2003)

در چندالسالگی کاری این بادگیر هیدروکسیل در یک مقاله وکیل آنها به ارتباط است
(Hatano et al., 1990; Halliwel and Gutteridge, 2015)

های دردماه‌ها با تنش‌های محیطی کاربرد دارد (2007; Sankar et al., 2007 می‌باشد. این کاست در
کاهش بدن-کانشهری این در تولید ان هورمون گیاهی
مانع‌کننده می‌باشد. پاک‌پویرزوال بکی قبیل بارگذاری
از ترازوهل است که به عنوان موادی کننده گیاه در برای
تش‌های محیطی ایزن شان‌شده است (2007).

Sankar et al., 2007) Arachis hypogaea
Phillyrea angustifolia, (Aly and Latif, 2011) aestival
Stevia rebaudiana (Fernandez et al., 2006)

Offer هوش و نگاه در می‌باشد. (Hajishemini and Ehsanpour, 2014)

فیتیلیا شده است. پاک‌پویرزوال بکی از افای النی گیاه
اکسیژن‌های آنزیمی و غیر آنزیمی و تجمیع مواد نظیم کننده
اسمزی افای مقاومت گیاهان به شرایط تنش مشود
(Hajishemini and Ehsanpour, 2014; Jaleel et al., 2007)

Brassica juncea, (Sheykhbaghal) Sorghum bicolor (Siddiqui et al., 2008)
Hordemum (Kaya et al., 2006) Zea mays, (et al, 2014

بر روی یلی‌پگی گیاه شایع افای
مقاومت گیاهن به عنوان می‌باشد. (ناصری و همکاران,

کشت بهافت و سلول گیاهی یک ابزار مفید برای
مقاومت گیاهن به تنش تنش تحت شرایط درون شیشه‌ای است
(Sutyavathi et al., 2004)

درون شیشه (in vitro)

Hajishemini and

دروی کاتا (2000)

سپک و ساز گیاهان به وجود می‌آید (2016:)

که به عنوان موادی کننده گیاه در برای

می‌گردد.

Anjem et al., 2011)

گیاهن در نشره‌های محیطی از قبل

فیتیلیا شده است. پاک‌پویرزوال بکی از افای النی گیاه
اکسیژن‌های آنزیمی و غیر آنزیمی و تجمیع مواد نظیم کننده
اسمزی افای مقاومت گیاهان به شرایط تنش مشود
(Hajishemini and Ehsanpour, 2014; Jaleel et al., 2007)

Brassica juncea, (Sheykhbaghal) Sorghum bicolor (Siddiqui et al., 2008)
Hordemum (Kaya et al., 2006) Zea mays, (et al, 2014

بر روی یلی‌پگی گیاه شایع افای
مقاومت گیاهن به عنوان می‌باشد. (ناصری و همکاران,

کشت بهافت و سلول گیاهی یک ابزار مفید برای
مقاومت گیاهن به تنش تنش تحت شرایط درون شیشه‌ای است
(Sutyavathi et al., 2004)
بررسی اثر تیمارهای پاک‌پوست‌زای و جیربی‌زای بر ترکیب نشان‌خشکی در...
فیزیکیت کارکرد گیاهی، جلد 6، پراید، سال 1396

20-10 دلیم دس حلب آه ٔشْ ٔه 30-25 دسخس دسخسی هدایتی ٔغبدَ ٔیبٜ هدایت (ثذٖٚ تیٕبس) ثبیث ٔسیبٞی ٔظیباٖ لٙذٞبی ٔحَّٛ وبِٛع ٌیبٜ

اثش تیٕبسٞبی ٔختّف ثش ٔیضاٖ لٙذٞبی ٔحَّٛ وبِٛع ٌیبٜ سبیث ٔبیش اص ٌیبٞبٖ هدایت ثبیث. ٘تبیح ٘ـبٖ داد وٝ، ٚصٖ خـه، ٔحتٛی هدایت سبیث، تیٕبسٞبی ٘ب٘ٛٔتش خٛا٘ذٜ هدایت.

ثش اػبع ٘تبیح حبکُ اص ثبفت سبیث ٔٙحٙی اػتب٘ذاسد حبکُ اص ٔیّی ٘ب٘ٛٔتش ابییذٜ هدایت ٚ ثٝ ٔذت. ٍشاد لشاس

ة ٔمغش اضبفٝ هدایت ٚ وٕتشیٗ ٚ وٕتشیٗ ٍشاد لشاس. ٔـبٞذٜ هدایت (ؿىُ 63 ٌشْ اص ثبفت)

٘ؼجی وبِٛع دس تیٕبس پّی دلیم دس تبسیىی،

1 ىشٚٔٛلاس اػتب٘ذاسد حبکُ اص

1 ىشٚٔٛلاس اػتب٘ذاسد حبکُ اص
بررسی اثر تیمارهای باکلوپترازول و پریلین بر تغییرات وزن‌نرخ (Fresh mass) و وزن خشک (Dry mass) در تیمارهای باکلوپترازول (PBZ) در Strevia rebaudiana کالوس (GA) و الیتین گلیکول (PEG) داد ه‌ای معیار ۳ عددی ± خطکی در حروف نام‌شده نشان داده، اختلاف معنی‌دار (0.05 ≤ P) اساس آزمون Duncan است.

![نمودار (a): وزن خشک]

![نمودار (b): وزن نرخ]

شکل ۱- تغییرات وزن‌نرخ (Fresh mass a) و وزن خشک (Dry mass b) در تیمارهای باکلوپترازول (PBZ) در Strevia rebaudiana کالوس (GA) و الیتین گلیکول (PEG) داد ه‌ای معیار ۳ عددی ± خطکی در حروف نام‌شده نشان داده، اختلاف معنی‌دار (0.05 ≤ P) اساس آزمون Duncan است.

![نمودار (a): وزن خشک]

![نمودار (b): وزن نرخ]

شکل ۱- تغییرات وزن‌نرخ (Fresh mass a) و وزن خشک (Dry mass b) در تیمارهای باکلوپترازول (PBZ) در Strevia rebaudiana کالوس (GA) و الیتین گلیکول (PEG) داد ه‌ای معیار ۳ عددی ± خطکی در حروف نام‌شده نشان داده، اختلاف معنی‌دار (0.05 ≤ P) اساس آزمون Duncan است.

![نمودار (a): وزن خشک]

![نمودار (b): وزن نرخ]

شکل ۱- تغییرات وزن‌نرخ (Fresh mass a) و وزن خشک (Dry mass b) در تیمارهای باکلوپترازول (PBZ) در Strevia rebaudiana کالوس (GA) و الیتین گلیکول (PEG) داد ه‌ای معیار ۳ عددی ± خطکی در حروف نام‌شده نشان داده، اختلاف معنی‌دار (0.05 ≤ P) اساس آزمون Duncan است.

![نمودار (a): وزن خشک]

![نمودار (b): وزن نرخ]

شکل ۱- تغییرات وزن‌نرخ (Fresh mass a) و وزن خشک (Dry mass b) در تیمارهای باکلوپترازول (PBZ) در Strevia rebaudiana کالوس (GA) و الیتین گلیکول (PEG) داد ه‌ای معیار ۳ عددی ± خطکی در حروف نام‌شده نشان داده، اختلاف معنی‌دار (0.05 ≤ P) اساس آزمون Duncan است.

![نمودار (a): وزن خشک]

![نمودار (b): وزن نرخ]

شکل ۱- تغییرات وزن‌نرخ (Fresh mass a) و وزن خشک (Dry mass b) در تیمارهای باکلوپترازول (PBZ) در Strevia rebaudiana کالوس (GA) و الیتین گلیکول (PEG) داد ه‌ای معیار ۳ عددی ± خطکی در حروف نام‌شده نشان داده، اختلاف معنی‌دار (0.05 ≤ P) اساس آزمون Duncan است.

![نمودار (a): وزن خشک]

![نمودار (b): وزن نرخ]

شکل ۱- تغییرات وزن‌نرخ (Fresh mass a) و وزن خشک (Dry mass b) در تیمارهای باکلوپترازول (PBZ) در Strevia rebaudiana کالوس (GA) و الیتین گلیکول (PEG) داد ه‌ای معیار ۳ عددی ± خطکی در حروف نام‌شده نشان داده، اختلاف معنی‌دار (0.05 ≤ P) اساس آزمون Duncan است.

![نمودار (a): وزن خشک]

![نمودار (b): وزن نرخ]

شکل ۱- تغییرات وزن‌نرخ (Fresh mass a) و وزن خشک (Dry mass b) در تیمارهای باکلوپترازول (PBZ) در Strevia rebaudiana کالوس (GA) و الیتین گلیکول (PEG) داد ه‌ای معیار ۳ عددی ± خطکی در حروف نام‌شده نشان داده، اختلاف معنی‌دار (0.05 ≤ P) اساس آزمون Duncan است.

![نمودار (a): وزن خشک]

![نمودار (b): وزن نرخ]

شکل ۱- تغییرات وزن‌نرخ (Fresh mass a) و وزن خشک (Dry mass b) در تیمارهای باکلوپترازول (PBZ) در Strevia rebaudiana کالوس (GA) و الیتین گلیکول (PEG) داد ه‌ای معیار ۳ عددی ± خطکی در حروف نام‌شده نشان داده، اختلاف معنی‌دار (0.05 ≤ P) اساس آزمون Duncan است.

![نمودار (a): وزن خشک]

![نمودار (b): وزن نرخ]

شکل ۱- تغییرات وزن‌نرخ (Fresh mass a) و وزن خشک (Dry mass b) در تیمارهای باکلوپترازول (PBZ) در Strevia rebaudiana کالوس (GA) و الیتین گلیکول (PEG) داد ه‌ای معیار ۳ عددی ± خطکی در حروف نام‌شده نشان داده، اختلاف معنی‌دار (0.05 ≤ P) اساس آزمون Duncan است.
شکل ۲- نتیجه‌گیری‌های آب (a: Water content) و رشد نسبی (b: Relative growth rate)، در تیمارهای
پاکلیترینزول (PBZ)، ژیلتراکسین (GA) و پلی‌اتیلن گلیکول (PEG) (DA) و در تاریخ‌های سال ۱۳۹۶ حروف نام‌شده‌های نشان‌دهنده اختلاف SD± و رضیی از این میانگین ۳ تکرار ۴1 (P≤ 0.05) بر اساس آزمون Duncan می‌باشد.

نتایج بررسی میزان فتن نشان داد که میزان فتن در کلاس استویا در تیمارهای مختلف در سطح معناداری ۴4% تفاوت معنی‌داری بین اینها ملاحظه نشد.

نتایج بررسی میزان افزایش ۴بیان داشت که کمترین میزان آب‌گیری کلاس استویا در گیاه شاهد و بیشترین میزان در گیاه تیمار شده با پاکلیترینزول مشاهده شد. (شکل ۵).
بررسی اثر تیمارهای پاکلیوتورتزول و جیریلین بر تغییرات بیولوژیکی در...
شکل ۵- تغییرات میزان آلنتولوفول کالسیس Stevia rebaudiana در تیمارهای پاکپوتروازول (PBZ)، جیرین (GA) و پلی‌اتیلن گلیکول (PEG) در واریپاکلتها (PBZ (GA))، جیرین (GA) و پلی‌اتیلن گلیکول (PEG) و حروف نامشیبی نشان‌دهنده اختلاف معنی‌دار (P≤0.05) بر اساس آزمون Duncan می‌باشد.

تیبسیت اتیلتی یا خیص‌پذیر یا فضایی داده (٢٧)٪ بیشتر از گیاه شاهد بود. تیمارهای مختلف پلی‌اتیلن گلیکول با جیرین و پاکپوتروازول باعث افزایش معنی‌دار فنگ شد در حالی که تفاوت معنی‌داری بین آنها مشاهده نشد.

بحث:
خیصی که از مه‌متنین تنش‌های محیطی است که تولید محصول را در قسمت‌های مختلف چهار به خصوص ایران که به عنوان یکی از کشور خیصی و نیمه‌خیصی شناسایی شده است، کاهش دارد (کوچکی و همکاران ۱۳۷۴). گیاه دارویی بومی منطقه نیمه‌مرطوب آمیزی Stevia rebaudiana Bertoni
مطالعات گذشته نشان داد که تیمارهای پاکلوپرترزول و جیبیرین بر تعیید نش خشکی در...
نامه‌ی (نامه‌ی و همکاران ۱۳۹۰) از کاهش مقادیر کربوهیدرات‌ها در
تشش خشکی جلگیبری نمو و میزان قند آن تقیدی معادل گیاه
شاهم (بندی تیمار) بود.
لیبریا یکی از فراوان‌ترین جزء غشا می‌باشد و نقش
مهمی در مقاومت سلول‌های گیاهان به نش‌های محيطی ایفا
می‌کند (Yordanov et al., 2000). کمبود آب سبب ایجاد
اختلاف در اثرات بین چربی‌ها و پروتئین‌های غشا و
فرآیندهای غشایی و همچنین انتقال مواد از خلال غشا
می‌شود (Rahdari and Hoseini, 2012). رادیکال‌های آزاد
ناشی از نش خشکی عامل پراکسیداسیون لیبریا و تحریب
غشا در گیاهان می‌گردد (Nair et al., 2009).}
پراکسیداسیون لیبریا نشان دهنده شدت نش خشکی در نظر
گرفته می‌شود. زیرا هرچه نش خشکی شدیدتر باشد میزان
پراکسیداسیون لیبریا افزایش می‌یابد (Jemai et al., 2008).
نتش خشکی سبب افزایش میزان پراکسیداسیون
لیبریا غشا در بافت کالوس استوایی شد در حالیکه تیمارهای
پاکلوتراژول و چربیرین در سطح معنی‌داری سبب تعلیل
ایرانی کاهش نش خشکی بیلی‌یاغی غشا کالوس استوایی
شد که می‌تواند منجر به حفظ ساختار طبیعی سلول‌ها در
کالوس و کاهش تک‌روزه شدن کالوس در تیمار بی‌ئقی
گیلگول شود. گزارشات مشابه با نتایج این تحقیق در غیاب
فلفل (لشام) (Anjum et al., 2012). اگرچه (Türkün et al.) Phasoeola vulgaris (Boldaji et al., 2012)
برنده (نامه‌ی و همکاران ۱۳۹۰)، از (نامه‌ی و همکاران ۱۳۹۱)، وجود دارد. نتایج این تحقیق نشان داد که
تیمارهای پاکلوتراژول و چربیرین در کاهش میزان پراکسیداسیون
در کالوس‌های تیمار شده با بی‌ئقی گیلگول مؤثر بودن.
از آمریکا به‌طور کلی بررسی شاخ‌هایی است. میزان
کربوهیدرات‌ها در بافت سبب نش خشکی در بافت کالوس
گام‌های اصلی از نمای در بای‌لاین گیلگول نشان داد که کالوس
این گیاه به نش خشکی حساس است که این مسئله نتایج
سایر تحقیقات بر روی گیاه استوایی را تأیید می‌نماید.
Türkün et al. 2012. (بای‌لاین گیلگول میزان کاهش میزان
پاکلوتراژول و چربیرین با فراخ پرسته رشد، بیوماس و محتوی
آب کالوس، میزان کربوهیدرات‌ها، فلزها و آلفاکاکتوفرول، و
کاهش میزان پراکسیداسیون لیبریا غشا در گیاهان تیمار
شده با بای‌لاین گیلگول سبب کاهش اثرات مشتری شدکه
نش خشکی شدند. نتایج این تحقیق با نتایج کارنامدهای
پاکلوتراژول و چربیرین در کاهش اثرات مشتری نش خشکی
Stevia rebaudiana به در سطح سلول‌های بافت کالوس و دستکاری‌های
زنبیکی فراهم نمود. (بای‌لاین گیلگول، پاکلوتراژول و چربیرین مشاهده شد. و همکاران ۱۳۹۰) بیان نمودند که رابطه مستقیمی
Shulka

