تأثیر تنش فلز کادومیوم بر برخی صفات مورفولوژیک و فیزیولوژیک

گیاه داروئی ماریتیمال

(Silybum marianum)

نریا پورتژیری، شهرام پورسیمی، روح الله عبداللهی و نازی نادرزاد

گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید بهشتی، تهران

گروه پزشکی، دانشگاه شهید بهشتی، دانشگاه علوم پایه، دانشگاه شهید بهشتی، تهران

نویسنده مسئول: ایمان نادرزاد
نشانی پست الکترونیک: spseyedi@gmail.com

چکیده

کادومیوم یکی از فلزات سنگین است که در گیاهان تنش اکسیداتیو ایجاد می‌کند. در این پژوهش که در سال 94-95 در دانشکده کشاورزی دانشگاه شهید بهشتی کاسپیان انجام شد، اثرات این فلز بر گیاه داروئی ماریتیمال وارد بررسی قرار گرفت. تأثیر تیمار کادومیوم (سکروش شده)، 300 و 900 میکرومولار بر گیاه ماریتیمال با استفاده از یک طرح کلامی تصادفی با 15 تکرار بررسی گردید. نتایج محاسبه شاخص تنش تحلیل شده، شدت تنش وارد بر گیاه در سطوح مختلف تیمار تاپید کرد. کاهش وزن خشک اندام هوابی، سطح برگ، مقدار کلروفل و کلروفل کل در غلظت 900 میکرومولار معنادار بود. کلروفل a نیز در سطح تنش در مقایسه با شاهد به طور معناداری کاهش یافت. با این حال معنی‌داری کادومیوم نیز در پی افزایش نداد. غلظت مالون دانه‌های محتوا دهنده آنتوسیانین، ترکبات فنلی کل و فلورونیدها در سطح 900 میکرومولار کادومیوم افزایش یافت. میزان پروتئین کل در سطح 900 میکرومولار کاهش کرد. کاهش و میزان فعالیت آنزیم سیلیس آمینوتیلوزا در این سطح نسبت به شاهد افزایش می‌یافت. نتایج تاپید کردن گیاه داروئی دارای تکنیک‌های سنگین تعیین جیبی و سیستم‌های فیزیولوژیک و بیومیکروسنجی چهت کاهش خارجی ناشی از تنش کادومیوم است. سنجش فلزات با کادومیوم در پیت برگ و ریشه با استفاده از روش جذب آلیات پاک و کادومیوم در پیت گیاه تجمع و مقدار به روش باقی مانده که می‌تواند ماریتیمال را به عنوان گزینه مناسبی جهت مطالعات گیاه‌پالایی معرفی نماید.

واژه‌های کلیدی: آنزیم آنتیکاسدان، تنش کادومیوم، ماریتیمال، گیاه‌پالایی

مقدمه

در سال‌های اخیر استفاده از داروهای گیاهی به‌طورچرایی گیری در سراسر جهان افزایش یافته است. این رو سلامت و کیفیت مواد خام گیاهان داروئی و محصولات فارویی شده آنها یکی از نگرانی‌های عمده سازمان بهداشت جهانی است. آن‌چگونه‌ای ریست محسوب، از جمله فلزات سنگین یکی از

spseyedi@gmail.com
کاربردی از یک طرف و توسیع شهروندی و فعالیت‌های
صنعتی از سوی دیگر، ممکن است در مواردی این عنصر در
گیاهان درون‌الاین‌شته شوند (عصری لجیسی و همکاران،
۱۳۹۳). در بین فلزات سنگین، به کادمیوم توجه ویژه‌ای شده
چرا که طبق مطالعات نورانت آزاد و کنلیز (۱۳۹۳) به وسیله ریشه گیاه جذب می‌شود و سپس آن تا ۲۰ تا ۴۰ بیشتر از
سایر فلزات سنگین است. گزارش شده است که الک فلز
کلرژ و نکروز برگ‌ها می‌شود (Singh and Myhr, ۱۹۹۸).
کادمیوم امکان برای رشد گیاه ضروری نیست، اما براحتی از
طرح پوست ریشه چرب و سپس از راه میلیلانتی با
Sanita Aپوهلیت وارد بافت جوب می‌شود. مطالعات
کادمیوم مجوز به یک سیستم جاروبرده رادیکالهای آزاد می‌باشد.

ام سیستم شیالت آنی طریق اسید‌پاسیون ماندی‌کال‌و و نیز
سیستم آنی‌کی‌اسیدیان‌های آزمایشی می‌باشد. سیستم کادمیوم در
اثر افزایش این عنصر به احتمال رشد گیاه به شکل مختلط
دیده شده است که شام‌کاه‌عماید، کاهش رشد ریشه و
برگ‌، یازادندگی فعالیت‌برخی آزمایش، تولید موتاژ‌ها کاهش
سطح برگ و هم‌خنک گیاه می‌شود. مطالعات کووگان از
کادمیوم برای مقررا کلرفلیک اکسید، کلرفلیک a و کاروتئینیدا در
گیاهان علیه و نیز سیستم (Ramos و همکاران، ۲۰۰۱) توجه کادمیوم می‌باشد و اهمیت موضوع است. گیاه
ماریتیمال متعلق به تیره آسترئاسیا (Asteraceae)
گیاهی دارویی است که در مناطق مختلف کشور ایران از جمله
چالوس، گندزاووس، بابل، دشت مرگان، کرمانشاه، خوزستان و جهرم
به صورت خودروی می‌رود (صرفی و همکاران، ۱۳۹۱).

مطالعات (۲۰۰۳) Gupa نشان می‌دهد از این گیاه ماده‌ای به نام
سیلیت مارین با خواص درمانی فراوان استفاده شده که میزان
آن در بذر نسبت به سایر اندازه‌گیاه بیشتر است. در اثر
بیانات نشان‌داده ریوی زیست‌شناسی گیاهی دارویی برای
آگاهی از مکانیسم‌های مقاومت و ایجاد گیاهان به منظور

شده. در طول موج 100 نانومتر تغییر و از این مقدار سر گردید.

نتایج حاصل از اندازه‌گیری در حساسیت مکرویون بلکه از میان تغییر محسوسی گردید.

نشست میزان آنتی‌اپتیکین بر اساس روش Chl b = Lichtenthaler (1987) Wanner (انجام شد. 0/1 گرم از برگ‌های فزیر

شده. 15 میلی‌لیتر استون ۱۰۰ درصد سایبانیش و پیس از صاف

کنن جذب آنها با استیکتروفیومتر در طول موج‌های ۷۸۵/۷ و ۷۰۰ نانومتر خودانگیز و غلتک رگنیزه‌ها بر

حسب میکرویون بر گرم وزن تغییر محسوسی گردید. غلتکی بر

حسب میلی‌گرم بر میلی‌لیتر عصاره گیاهی تعیین و سپس نتایج

بر حسب میلی‌گرم بر گرم وزن تغییر محسوسی شد.

Chl a = ۱۲/۲۵ A ۶۶۳.۲ / ۷۰/۹ A ۶۴۶.۸

Chl b = ۲۱/۲۱ A ۶۴۶.۸ / ۵/۱ A ۶۶۳.۲

Car = (۱۰۰۰ A ۴۷۰ – ۱/۸ A ۶۴۶.۲ + ۸۵/۲۰ chl b) / ۱۹۸

در این رابطه Car و Chl T ، Chl a و Chl b از طریق کارولفیل به ترتیب کارولفیل و کل و کارولوئیسی می‌باشد.

Tolerance stress

شاخص میزان نش نهادیلیم. (Index) بنیت و معیار برای مقایسه وزن خشک کل، بخش هواپیم و رشد گیاهن دارک وشک نش با تیمار شاهد می‌باشد و فاقد واحده است. این شاخص در واقع نشان دهنده ح如果说 یک رش دان می‌باشد. در این تحقیق شاخص وارده به ادامه

یوپی با استفاده از فرمول زیر محسوسی شد (Ewaishe، 1997):

\[
T_i = \frac{Y_{p} - Y_{s}}{Y_{p}}
\]

وزن نهادیلیم وزن خشک اندازه‌گیری در شرایط بدون تنش

وزن نهادیلیم وزن خشک اندازه‌گیری در شرایط تش

اندازه‌گیری مولوی‌دند (MDA) (ب) روش و Heath

اندازه‌گیری (TCA) درصد سایبانیش. عصاره حاصل با استیکتروفیومتر به مدت ۵ دقیقه در ۱۰۰۰ ستریفیوز شد. یک میلی‌لیتر از محلول

روی حاصل از ستریفیوز ۴ میلی‌لیتر محلول

تکروستیکاسید (TCA) (۲/۰ درصد ۲/۸ هاری) ۱۵ دقیقه در دمای ۹۵ درجه سانتی‌گراد در حمام آب گرم

حرارت داده شده سپس بلافاصله به به سرد شد و دوباره

مخلوط به مدت ۱۰ دقیقه در ۱۰۰۰ ستریفیوز گردید.

شده ۱/۰ درصد از اندازه‌گیری شد.

Sonald و Laima

مرتیاکی شعله می‌باشند.

۱/۰ درصد از اندازه‌گیری شد.

۱/۰ درصد از اندازه‌گیری شد.

۵ میلی‌لیتر اتانول ۹۶ درصد سایبانیش و به مدت ۲۴ ساعت در

تارکی نگهداری شد. سپس به یک میلی‌لیتر محلول روی ۱ میلی‌لیتر اتانول /۵ آب یک میلی‌لیتر روی ۱ میلی‌لیتر اتانول /۵ آب مخلوط کرده و آب آمیخته نهادیلیم وزن خشک کل، بخش هواپیم و رشد گیاهن دارک وشک نش با تیمار شاهد می‌باشد و فاقد واحده است. این شاخص در واقع نشان دهنده ح如果说 یک رش دان می‌باشد. در این تحقیق شاخص وارده به ادامه

یوپی با استفاده از فرمول زیر محسوسی شد (Ewaishe، 1997):

\[
T_i = \frac{Y_{p} - Y_{s}}{Y_{p}}
\]

وزن نهادیلیم وزن خشک اندازه‌گیری در شرایط بدون تنش

وزن نهادیلیم وزن خشک اندازه‌گیری در شرایط تش

اندازه‌گیری مولوی‌دند (MDA) (ب) روش و Heath

اندازه‌گیری (TCA) درصد سایبانیش. عصاره حاصل با استیکتروفیومتر به مدت ۵ دقیقه در ۱۰۰۰ ستریفیوز شد. یک میلی‌لیتر از محلول

روی حاصل از ستریفیوز ۴ میلی‌لیتر محلول

تکروستیکاسید (TCA) (۲/۰ درصد ۲/۸ هاری) ۱۵ دقیقه در دمای ۹۵ درجه سانتی‌گراد در حمام آب گرم

حرارت داده شده سپس بلافاصله به به سرد شد و دوباره

مخلوط به مدت ۱۰ دقیقه در ۱۰۰۰ ستریفیوز گردید.

شده ۱/۰ درصد از اندازه‌گیری شد.

Sonald و Laima

مرتیاکی شعله می‌باشند.

۱/۰ درصد از اندازه‌گیری شد.

۵ میلی‌لیتر اتانول ۹۶ درصد سایبانیش و به مدت ۲۴ ساعت در

تارکی نگهداری شد. سپس به یک میلی‌لیتر محلول روی ۱ میلی‌لیتر اتانول /۵ آب یک میلی‌لیتر روی ۱ میلی‌لیتر اتانول /۵ آب مخلوط کرده و آب آمیخته نهادیلیم وزن خشک کل، بخش هواپیم و رشد گیاهن دارک وشک نش با تیمار شاهد می‌باشد و فاقد واحده است. این شاخص در واقع نشان دهنده ح如果说 یک رش دان می‌باشد. در این تحقیق شاخص وارده به ادامه

یوپی با استفاده از فرمول زیر محسوسی شد (Ewaishe، 1997):

\[
T_i = \frac{Y_{p} - Y_{s}}{Y_{p}}
\]

وزن نهادیلیم وزن خشک اندازه‌گیری در شرایط بدون تنش

وزن نهادیلیم وزن خشک اندازه‌گیری در شرایط تش

اندازه‌گیری مولوی‌دند (MDA) (ب) روش و Heath

اندازه‌گیری (TCA) درصد سایبانیش. عصاره حاصل با استیکتروفیومتر به مدت ۵ دقیقه در ۱۰۰۰ ستریفیوز شد. یک میلی‌لیتر از محلول

روی حاصل از ستریفیوز ۴ میلی‌لیتر محلول

تکروستیکاسید (TCA) (۲/۰ درصد ۲/۸ هاری) ۱۵ دقیقه در دمای ۹۵ درجه سانتی‌گراد در حمام آب گرم

حرارت داده شده سپس بلافاصله به به سرد شد و دوباره

مخلوط به مدت ۱۰ دقیقه در ۱۰۰۰ ستریفیوز گردید.

شده ۱/۰ درصد از اندازه‌گیری شد.

Sonald و Laima

مرتیاکی شعله می‌باشند.

۱/۰ درصد از اندازه‌گیری شد.

۵ میلی‌لیتر اتانول ۹۶ درصد سایبانیش و به مدت ۲۴ ساعت در
آسکوریبات ۱۰۰ میلی‌مولار، ۳۰ میکرو‌لیتر پراکسی‌هیدروژن ۱۵ میلی‌مولار، ۱۰۰ میکرو‌لیتر با شروع واکنش آنزیمی که در طول موج ناوتور دو دقیقه، نسبت به زمان شروع واکنش در بازه‌های زمانی یک دقیقه از شروع و فعالیت آنزیم بر حسب واحد آنزیم در مقدار پروتئین کل (میلی‌گرم) به سبب جذب هر نمونه در طول موج ۷۰۲۴؛ ناوتور اکسید و با استفاده از منحنی استاندارد غلظت ترکیبات فلیئی کل بر حسب میلی‌گرم و گرم وزنی محاسبه گردید. نتایج

فعالیت آنزیم فنی‌آتئ‌پال (PAL) (۱۹۸۵) (Ragg و Hahlbroock) بر میان میکرو‌لیتر ۰٫۵ میلی‌مولار از تری‌هی‌سی، (PH = ۷٫۵) Tris-HCl حاوی نت‌آمینوژاونیول ۱۵ میلی‌مولار سایه‌ده و سپس ۵ دقیقه با دور ۵۰۰۰ سانتی‌پیکوسیستم شد. مخلوط روبی جهت سنجش میزان فعالیت آنزیم استفاده شد. در یک لوله ۱ میلی‌لیتر از بافر استحجار به همراه ۱۰۰ میلی‌میکرو‌لیتر ۱۰۰ میلی‌مولار میکرو‌لیتر آب دیور تقطیر و ۱ میلی‌لیتر استاندارد مخلوط و ۵ دقیقه در دمای ۲۷ درجه سانتی‌گراد تغییراتی نبودند. و واکنش با استفاده از ۰٫۵ میلی‌لیتر تری‌کلوستیکاسیس ۴۰٪ پایان می‌پذیرد. غلظت سیتیکاسیسی‌مانی به قرار جدی ۲۹۰ نانومتر محاسبه شد. یک واحد از فعالیت آنزیم معادل ۱ میکرو‌مولار از سیتیکاسیسی‌دان شده در دقیقه است. جهت سنجش میزان پروتئین کل یک گرم بروز جهت در یک هاون چینی محتوی ۳ میلی‌لیتر بافر فسفات ۵۰ میلی‌مولار که در خاک توپیکا مدلی مولار، فنی‌سولفونیل‌نورنیز ۱ میلی‌مولار و پلی‌یرورین‌پروپیدین ۱ درصد بود، سایه‌ده. غلظت عصاره به مدت ۱۵ دقیقه در سانتی‌پیکوسیستم یکچاله دارا بود ۱۴۰۰۰ دور و دمای ۴ درجه قرار گرفت. جهت سنجش پروتئین‌کل از روش Bradford (۱۹۷۶) سنجش پروتئین کل از روش بین میزان آمین استفاده شد. به این منظور به لوله‌های آمیانی مقدار ۱۰۰ میلی‌لیتر عصاره پروتئینی، ۵ میلی‌لیتر مصرف باید از آزمایش و سریعاً ورتنگ کردن بود. این این در ۲ دقیقه و قبل از کی سایت و محلول آزمایشی در طول موج ناوتور ۴۵۰۰۰ فیکس و غلظت پروتئین با استفاده از منحنی استاندارد آبیورن و بر حسب میلی‌گرم گرم وزنی محاسبه گردید. برای سنجش فعالیت آنزیم آسکوریبات پراکسیداز (APX) (۱۹۸۱) (Asada و Nakano) مخلوط کل واکنش با حجم ۳ میلی‌لیتر شامل ۲/۹۰ میلی‌لیتر بافر فسفات‌پتاسیم ۵۰ میلی‌مولار ۷/۹۸. PH = ۷/۵ میکرو‌لیتر
پارامترهای مورفولوژیک: خارج کردن گیاهچه‌ها با خاک از گلدان نشان داد که حجم ریشه بطور کامل مخصوصی در سطح مختلف تیمار نسبت به شاهد کاهش یافته است. بعد از تست‌های فاکتوریال ایران و ملی، کاهش طول ریشه اصلی در سطح باال ۱/۰ تیمار کامل‌تر بود (شکل ۱). در حفظ کامیوبیوم از تقسیم سول‌های منطقه مرسوستی و رشد سول‌های منطقه رشد جلب‌کننده می‌کند و از طرف دیگر، نمایی‌زور وچینی و شاهد سلول‌های رشد درارسول‌های واقع در منطقه رشد طول سلول سول‌های دلایل دیگر کاهش رشد ریشه بوده‌اند. (Fusconi et al., 2007.)

وزن نقش آنی نواهی: مقایسه گیاهان تیمار شده با یک شاهد (شکل A) نشان داد که از افزایش غلتگی کامیوبیوم این وزن کاهش می‌یابد. وزن نقش آنی نواهی در غلتگی ۹۰۰ میکرومولار کامیوبیوم کاهش چشمگیری نسبت به گیاه شاهد داشت و اختلاف معناداری بین شاهد و این گیاه مشاهده شد (جدول ۲).

سطح پرگ: نتایج حاصل از این تحقیق نشان می‌دهد که در گیاهان تحت تنش سطح پرگ نسبت به گیاه شاهد اختلاف معناداری را نشان می‌دهد (شکل B).

رنگ‌بندی نمونه‌گیری: نتایج نشان داد که کامیوبیوم در غلتگی ۹۰۰ میکرومولار، اثر جدیدی بر مقادیر کُری‌کلریفیلدار کاریلوکلریت و کاریلوکلرین نداشته در حالی که توانسته میزان کاریلوکلریت ۱۰ همچون غلتگی‌های ۱۰۰ و ۹۰۰ میکرومولار کاهش دهد. کاهش کامیوبیوم کَرفیل ۴ و کاریلوکلرین در کامیوبیوم کَرفیل ۴ و کاریلوکلرین در سطح ۱۰۰ و ۹۰۰ میکرومولار منجر به است (شکل C). در این مطالعه، هیچ یک از سطوح تیمار علی رغم رو به افزایش، توانسته منجر به تغییر معناداری نسبت به شاهد در میزان کاریلوکلرین برگ ایگ گردد (جدول ۲).

مالون آلدهید: بررسی نشان داد مقادیر مالون‌آلیدید در برگ گیاهان تحت تیمار در غلتگی‌های ۹۰۰ و ۶۰۰ میکرومولار کامیوبیوم تفاوت زیادی با شاهد ندارد (جدول ۲). اما در غلتگی ۹۰۰ میکرومولار افزایش چشمگیری را نسبت به گیاه شاهد در سطح ۴ درصد نشان می‌دهد (شکل ۴).
فصل 1 - کاهش کل حجم ریشه (راست)، طول ریشه اصلی و رشد رویشی (چپ) در سطح مختلف تیمار کلریدکادمیوم (به ترتیب در هر شکل از راست به چپ: شاهد، ۲۰۰ و ۹۰۰ میکرومولار)

جدول ۲ - میانگین مربوطات صفات مختلف مورد بررسی در چهار سطح تیمار کلریدکادمیوم در گیاه مارپیچال

| تغییرات | درجه | وزن حکم | کلرید کادمیوم | کلریزه‌های کانوئی | کلریزه‌های کارونیئد | کارونیئد | نمونه‌های (٪)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ضریب تغییرات</td>
<td>۰.۰۴</td>
<td>۰.۴۸</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
</tr>
</tbody>
</table>

** و *** به ترتیب معنادار در سطح احتمال ۵٪ و غیر معنادار

ادامه جدول ۱ - میانگین مربوطات صفات مختلف مورد بررسی در چهار سطح تیمار کلریدکادمیوم در گیاه مارپیچال

| تغییرات | درجه | وزن حکم | کلرید کادمیوم | کلریزه‌های کانوئی | کلریزه‌های کارونیئد | کارونیئد | نمونه‌های (٪)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ضریب تغییرات</td>
<td>۰.۰۴</td>
<td>۰.۴۸</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
</tr>
</tbody>
</table>

** و *** به ترتیب معنادار در سطح احتمال ۵٪ و غیر معنادار
جدول ۲- مقایسه میانگین اثرات سطح کلریدکادمیوم برای صفات مختلف مورد بررسی در گیاه ماریپال

<table>
<thead>
<tr>
<th>مالون دالدید (mg/grFw)</th>
<th>جذب سطح کرمال (mg/kgDw)</th>
<th>رنگهای فتوستنی (mg/grFw)</th>
<th>S Efficiency</th>
<th>کرمال</th>
<th>سطح کرمال (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۳/۸۵۰</td>
<td>۰/۸۸۰</td>
<td>۰/۰۴۹</td>
<td>۰/۰۶۰</td>
<td>۴/۰۵۳</td>
<td>۳۶/۰۳۵</td>
</tr>
<tr>
<td>۲۰/۸۵</td>
<td>۰/۵۲</td>
<td>۱/۴۳</td>
<td>۰/۲</td>
<td>۰/۰۴۳</td>
<td>۰/۰۴۳</td>
</tr>
<tr>
<td>۲۰/۲۴</td>
<td>۰/۱۰۶</td>
<td>۱/۱۱</td>
<td>۰/۲</td>
<td>۰/۲</td>
<td>۰/۲</td>
</tr>
<tr>
<td>۲۰/۷۴</td>
<td>۰/۰۵۲</td>
<td>۰/۰۲</td>
<td>۰/۲</td>
<td>۰/۰۲</td>
<td>۰/۰۲</td>
</tr>
<tr>
<td>۲۰/۲</td>
<td>۰/۰۵۲</td>
<td>۰/۰۲</td>
<td>۰/۲</td>
<td>۰/۰۲</td>
<td>۰/۰۲</td>
</tr>
<tr>
<td>۲۰/۳۵</td>
<td>۰/۰۲</td>
<td>۰/۰۲</td>
<td>۰/۲</td>
<td>۰/۰۲</td>
<td>۰/۰۲</td>
</tr>
</tbody>
</table>

در هر ستون تفاوت بین میانگین‌هایی که دارای حروف مشابه هستند بر اساس آزمون دانکن در سطح احتمال ۵٪ معنی‌دار نمی‌باشد.

در هر ستون تفاوت بین میانگین‌هایی که دارای حروف مشابه هستند بر اساس آزمون دانکن در سطح احتمال ۵٪ معنی‌دار نمی‌باشد.

ناپای نشان داد که جذب و تجمیع کادمیوم در برگ در دو تیمار شاهد و ۲۰۰۰ میکرومولار تفاوت معنی‌داری ندارد. ولی در دو تیمار ۵۰۰ و ۲۰۰۰ این تفاوت در برگ اختلاف معنی‌دار نشان داد. نتایج آزمایش از عدم وجود اختلاف معنی‌دار بین کلیه سطوح تیمار از لحاظ جذب و تجمیع در ریشه حکایت دارد. وجود میزان اندک کادمیوم در ریشه گیاه می‌تواند از خصائص آزمایش به دست آید. حضور که در شکل ۸ مشاهده می‌شود با افزایش غلظت کادمیوم، مقدار جذب و تجمیع کادمیوم در برگ گیاه نیز افزایش می‌یابد (جدول ۱ و ۲).

بحث

نتایج حاصل از این مطالعه، نشان دهنده بروز واکنش‌های متعدد در گیاه ماریپال بود که افزایش رشد از مهم‌ترین اثرات سیستم کادمیوم به ویژه در غلظت‌های بالا از مورد مطالعه است. فلزات محسوب می‌شود که فلزات سنگین با کاهش شدید فتوستنی و اندازه‌گیری مواد فتوستنی و تغییرات سلولی، رشد گیاه را به شدت کاهش می‌دهند (Dalla et al., 2005). ابزارهای شدن کادمیوم در بستری از گیاهان باعث کمبود آهن، متریم و کلسیم می‌شود و سنگ‌زا کرمال را نتوانست کند و سرعت رشد و فتوستنی را به شدت کاهش می‌دهد (Khan., 2007). نشان داده شده که کادمیوم به غشا تیلاکونیکی کلربولاست آسیب می‌زند و تغییرات فتوستنی را به شدت کاهش داده و باعث توقف رشد و کاهش گسترش برگ نیز می‌شود (Vassilev and Yordanov., 1997). نتایج حاصل از این تحقیق نشان می‌دهد که موضوع است، زیرا در گیاهان تحت
فازآی یک کبرکزد گیبی، جلد 7، شماره 26، سال 1397

شکل 3- اثر سطوح مختلف کادمیوم بر مقدار کلروفیل (A) کلروفیل a و (B) کلروفیل b کاروتئنید، مقایسه میانگین‌ها (میانگین 5 تکرار) با استفاده از آزمون دانکن در سطح 5 درصد انجام شده است.

شکل 4- اثر سطوح مختلف کادمیوم بر محتواي مالون داکلیدن برگ‌های مارگاراکی. مقایسه میانگین‌ها (میانگین 5 تکرار) با استفاده از آزمون دانکن در سطح 5 درصد انجام شده است.

نتیجه آن که فشار تورگرگ الست، این کاهش همراه با کاهش قابلیت ارتجاعی دیووت و سلول باعث کاهش شدن سلول‌ها و سلول‌های کلروفیل نیست.
شکل 5- اثرات مختلف کادمیوم بر ترکیبات آنتوسیانین، فلاورونید و محتویات فلئ کل مقایسه میانگین‌ها (میانگین±تکرار) با استفاده از آزمون دانکن در سطح 5 درصد انجام شده است.

شکل 6- اثرات مختلف کادمیوم بر میزان فعالیت فیلآلاین امرابیلیز (A)، محتوای پروتئین کل برگ (B)، میزان فعالیت آنزیم آسکارپتاز (C) و فعالیت آنزیم آسکارپتاز (D) مقایسه میانگین‌ها (میانگین±تکرار) با استفاده از آزمون دانکن در سطح 5 درصد انجام شده است.
آزمون دانگن در سطح 5 درصد انجام شده است.

شکل 7- شاخه تش تحقیق شده که در واقع شدت تش وارد بر گیاه را نشان می‌دهد. مقایسه میانگین‌ها (میانگین ± تکرار) با استفاده از تحلیل واریانس استاندارد (ANOVA) و تی‌تکینگ در سطح 0.05 به کار برده شد.

شکل 8- میزان و روند جذب و تجمیع کادمیوم در برگ و ریشه گیاه شرکاف. مقایسه میانگین‌ها (میانگین ± تکرار) با استفاده از آزمون دانگن در سطح 5 درصد انجام شده است.

این به‌نظر می‌رسد که علت کادمیوم و تولید انواع مختلف اکسیژن واکنشگر سبب کاهش رنگ‌یزه‌های فتوستنزی و محدود کردن جذب عناصر غذایی از ارتفاع ساخته شدن و تولید کاروتئید می‌شود و در نتیجه زرد برگ‌ها دیده می‌شود. علاوه بر این فناوت سکین با بازدارندگی بیوعیز پروتئین‌ها در سطح روانی‌پی تغییر ای در کمپلکس LHCII مختل می‌شود که باعث فتوئکسید شدن کاروتئید نازه تغییر می‌شود (سلطانی و همکاران، 2013). الگای سنتر کاروتئیدها در شرایط نش نیاز می‌تواند به دلیل نقص حفاظی آنها در تشکیلات فتوسنتزی باشد زیرا انرژی‌های مسئول خاموش کردن اکسیژن یک‌کات و جلوگیری از پراکسیداسیون (Kayro, 2006).

پراکسیداز‌های در سلول در حضور بیون کادمیوم افزایش می‌باید. این وضعیت باعث برهم خوردن تغذیهای محدود کردن جذب عناصر غذایی را از ارتفاع ساخته شدن و تولید کاروتئید می‌شود و در نتیجه زرد برگ‌ها دیده می‌شود. علاوه بر این فناوت سکین با بازدارندگی بیوعیز پروتئین‌ها در سطح روانی‌پی تغییر ای در کمپلکس LHCII مختل می‌شود که باعث فتوئکسید شدن کاروتئید نازه تغییر می‌شود (سلطانی و همکاران، 2013). الگای سنتر کاروتئیدها در شرایط نش نیاز می‌تواند به دلیل نقص حفاظی آنها در تشکیلات فتوسنتزی باشد زیرا انرژی‌های مسئول خاموش کردن اکسیژن یک‌کات و جلوگیری از پراکسیداسیون (Kayro, 2006).

پراکسیداز‌های در سلول در حضور بیون کادمیوم افزایش می‌باید. این وضعیت باعث برهم خوردن تغذیهای محدود کردن جذب عناصر غذایی را از ارتفاع ساخته شدن و تولید کاروتئید می‌شود و در نتیجه زرد برگ‌ها دیده می‌شود. علاوه بر این فناوت سکین با بازدارندگی بیوعیز پروتئین‌ها در سطح روانی‌پی تغییر ای در کمپلکس LHCII مختل می‌شود که باعث فتوئکسید شدن کاروتئید نازه تغییر می‌شود (سلطانی و همکاران، 2013). الگای سنتر کاروتئیدها در شرایط نش نیاز می‌تواند به دلیل نقص حفاظی آنها در تشکیلات فتوسنتزی باشد زیرا انرژی‌های مسئول خاموش کردن اکسیژن یک‌کات و جلوگیری از پراکسیداسیون (Kayro, 2006).
مایه، بایناراین با انفیشیون از آنیک اسیدیسپان آکسیژن غلیظ سلطه تخریب شده و تنست غشا افق می‌افتد مول‌مای‌آکسیژن تشکیل‌دهنده آسیب در سطح سلول است و سطح مول‌مای‌آکسیژن تولید شده در طی این فرآیند به عنوان یک شاخص از آسیب اکسیدانی اندام‌گذاری می‌شود (نادرز، 1392). تاکنون تحقیق حاضر نشان می‌دهد افراش مول‌مای‌آکسیدین در غلظت 900 میکرو‌مولار کادوم در برگ به طور قابل توجهی نسبت به نوکی بیشتر است که این افراش احتمالاً با انفیشیون اکسیدزهای آزاد و اکسیدازهای اکسیدانی جلب مرتیع است و با گزارش افراش سطح مول‌مای‌آکسیدین در برگ و ریشه گیاه جو مطالبت می‌کند (Hedges et al., 2001). یکی از مکانیسم‌های مهم آنیک اسیدیسپان در مکانیسم‌های متابولیسم، ترکیب‌سازی و آنتی‌آژون‌ها می‌باشد. مطالعات نشان می‌دهد ترکیب‌های آنزیم‌های فیتیک در راه‌یافتن حفظ ویژگی‌های سلولی و ساختاری از آنیک اسیدیسپان تولید شده توسط آنزیم‌های مول‌مای‌آکسیژن سوپراکسیدارسپاران وارد عمل شد. نتایج مطالعات پراکسیداز و اثرهای آن (2002) نشان می‌دهد که اکسیدازات اکسیدان‌های آنزیمی در گیاه تاثیر کاملی از افراش اکسیدازیس به مخرب کردن اثرات تشکیل دهنده غلیظ سلطه در سلول‌های گیاهی می‌کند. هر چند روند کلی در جهت کاشت مزان کل پروتئین‌ها می‌باشد (Eicson and Alfinif, 1984). تصویر نشان می‌دهد که فازهایی که در چهار فاز افراشی در غلیظ سلطه پروتئین‌های کلی از بین رفته و تغییرات مختلف ساختاری و کارکردهای توسط وارسی‌شده، و قطعی‌تقریب شده پروتئین‌ها با یا با تاپا به گونه‌ی اندازه‌گیری. (John et al., 2009) پروتئین‌ها و چیزی‌های قیمتی معمولاً در سلول‌های مول‌مای‌آکسیدین باشند. گزارش شده است کادومیوم فیروئیزیکی و باسیول‌پروتئین‌ها

(195)
نتیجه‌گیری کلی

در طور کلی از نتایج به دست آمده وسیع استنباطهای می‌شود که گیاه دارویی کارثوسیوسیون در می‌تواند در گردش و رشد گیاه‌های مارپیچی‌الغی از وجود جذب اتم نیشان داد که غالب کادومیوم در برگ این گیاه تجمع و مقدر کمی در رشته‌باقی ماده‌ای بی‌رویاگرگر چه بر خلاف تصویر رایج از تجمع کادومیوم می‌باشد ولی در این گیاه رابطه اولین بار گزارش شده و بی‌رویاگرگری کادومیوم و محض‌زداه (1390) بر روی گیاه کاهو که از همین راسته و ترکیب می‌باشد مطالعات دارد که می‌تواند مارپیچی‌الغی را به عنوان گرنه مناسب جهت مطالعات گیاه‌پایی‌ای باشد.

منابع

اسمی، و. حداد، ر. (1392). نقش نگری‌های فوستنیزی و آنزیم‌های آنیت‌کسیدان در مقابله تنش اکسیداسیون. مجله بیوره‌های سلولی و مولکولی (مجله زیست‌شناسی ایران)، 26، 1-268.

بارنده، ف.، کاویسی، ج.، و پورسپینی، ش. (1390). فعالیت آنزیم‌های آنیت‌کسیدان، فنی آلائین‌آمیپالاز و میزان برلین، کاهو‌های عدس تحت تنش کارثوسیوسیون. اولین همایش اکتومی‌الغی ماهی نوین در محیط زمین و اکوسیستم‌های کشاورزی. دانشگاه تهران. تهران. ایران.

پورکری، لو، و اشتری، ر. (1390). آثر کادومیوم بر میزان تولید هیدروژن‌برکسیز و فعالیت بی‌پارامترهای آنزیم‌های آنیت‌کسیدان در گیاه ذرت. نشریه علوم دانشگاه تربیت معلم، 9، 181-194.

شریعتی‌نژاد، ح.، و ضیافری، ع. (1390). آثر کادومیوم بر برخی پارامترهای فیزیولوژی در Eucalyptus occidentalis. مجله علوم و فنون کشاورزی و منابع طبیعی. علم آب و خاک، 53، 154-162.

صباری‌نژاد، م.، زابلی، ح.، و خیابانی‌پور، غ. (1390). بررسی تاثیر و روابط بین پارامترهای سیتروزیکی در گیاه مارپیچی‌الغی. زینبیک نوین، 71، 124-129.

عسکری لازیجی، ح.، نجفی، ن.، و بیجو، ا. (1393). اثر آلودگی کاهو با فلزات سنگین بر تولید گیاهان دارویی. نشریه مدیریت اراضی (مجله زیست‌شناسی ایران)، 23، 112-119.

کرمی، ا.، (1390). تأثیر سمیت کادومیوم بر گیاه کاهو (Lactuca sativa). پایان‌نامه کارشناسی ارشد. دانشگاه تربیت مدرس. تهران. ایران.

میرزای‌افریز، ه.، سلیمانی‌وفبس، م.، صابری‌نژاد، حوریه، و میرانی‌دوست، ع. (1392). بررسی تاثیر کادومیوم چند اکتومی‌الغی کاهو دارویی مارپیچی‌الغی در ایران. مجله جامعه بیوهکولوژی سلولی و مولکولی (مجله زیست‌شناسی ایران) 12، 41-47.

نادری‌نژاد، ن. (1392). بررسی میزان فعالیت آنزیم فنی آلائین‌آمیپالاز و تولید ترکیبات فنی در گیاه پسته و اثر اکتوکمیوز در کاهوش UV-B. رساله دکتری. دانشگاه شهید بهشتی، کرمان. ایران.

تیموری‌نژاد، ح.، و کامیابی‌پور، ع. (1390). تأثیر سمیت کادومیوم بر رشد، قندگاه مخلوط، رنگ‌دهی فوستنیزی و برخی آنزیم‌ها در کنارک (Carthamus tinctorius L.).

