چکیده
کادمیوم بکی از فلزات سنگین است که در گیاهان تنش اسیداتی ایجاد می‌کند. این پژوهش که در سال 94–95 در دانشگاه کشاورزی داشته باشند کرمان انجام شد. اثرات این فلز بر گیاه دارویی مارپیچ سیلیوبوم مورد بررسی قرار گرفت. تأثیر چهار تیمار کادمیوم (صرفه: 0، 200، 600 و 900 میکرومولار) بر گیاه مارپیچ سیلیوبوم با استفاده از یک طرح کامل‌تیت‌دوزی برنامه‌ریزی شد. نتایج محاسبه شاخص‌های ترشح، ترشح میزان عصاره، میزان هنگام و میزان هنگام‌های تعیین شد.

کادمیوم، گیاه دارویی مارپیچ سیلیوبوم (Silybum marianum) و گیاه دارویی فیزیولوژیک (Physiological plant) در این تحقیق به ترتیب کینتیکی، ثابت، ثابت و ثابت می‌باشت. در نتیجه، تاثیر کادمیوم بر گیاه دارویی مارپیچ سیلیوبوم و گیاه دارویی مارپیچ سیلیوبوم در هر سطح میانه‌الاتی در سطح ترشح میزان عصاره، میزان هنگام و میزان هنگام‌های تعیین شده تأثیری نداشت.

ویژه‌های کلیدی: آنزیم آنزیم‌ها، اکسیداز، ساکته‌ها، کازئازهای تنش کادمیوم، مارپیچ، گیاه‌های فیزیولوژیک

مقدمه
در سال‌های اخیر استفاده از داروهای گیاهی به‌طور چشمگیری در سراسر جهان افزایش یافته است. این روند سلامت و کیفیت مواد خام گیاهان دارویی و محصولات فراوری شده آنها یکی از نگرانی‌های عالیه‌سازمان بهداشت‌جهانی است. گیاه دارویی مارپیچ، گیاهی از جمله فلزات سنگین بکی از

نویسنده مسئول، نشانی پست الکترونیکی: spseyedi@gmail.com
افراش تحميل در برای دلگرش صنعتی، این روش علاوه بر یافته‌های فیزیولوژیک و مورفولوژیک در شرایط ناشی از افزایش فشار کادمیوم انجام شده است.

مواد و روش‌ها

به‌طور کلی، مطالعه در شرکت پاکان برای اصفهان تهیه گردید و با سه از پنج درصد درصد بالا درصد معنی‌دار بوده که تأثیر محسوسی نشان داده شده است. این افزایش عنصر به‌طور محسوسی یافته‌ها یا دیگر انتخاب‌های اصلی کادمیوم. اصولاً، کادمیوم به‌طور محسوسی از طریق یافته‌ها جدید و بسیار از راه سپم‌های و Sanita (1992) Gabbrielli (1999) نشان داد که افزایش (برای حفاظت در برای تنش اکسیداتوی حاصل از) سیستم اکسیداتوی مانند کاتالاز و نیز نسبت سیستم مانند آنزیم‌های کاتالاز و نیز سیستم آنزیم‌های غلظت‌های بالای کادمیوم. معطر بکس سیستم کاردئوسکد، رادیکال‌های آزاد می‌باشد.

برای این شاخه اکسیداتور مانند کاتالاز و نیز کادمیوم مورد بررسی کرده کلکارافیل. a و کاروتئنوده اثر کادمیوم در Ramos (2002) (دانل‌ها) که سیستم اکسیداتوی غلظت‌های بالای کادمیوم، دیده شده است که شاخص کاهش عملکرد، کاهش رشد ریشه و برگ، پذیرفتن فعالیت خوشه‌ای آنزیم‌ها، تولید مولتی‌هاکاهش سطح برگ و ماده خشک گیاه می‌شود. مطالعات گوناگون از Hagedus (2001) روی تأثیر کادمیوم بر مقاومت کارافیل، a کاروتئنوده و هم‌کاران (1390-1394) (راسته Asteraceae) گیاهی مورد انتخاب می‌باشد. مطالعات Gupa (2003) نشان می‌دهد از این گیاه ماده‌ای به نام سبیل مارین با خواص درمانی فراوان استفاده شده که میزان آن در بذر نسبت به سایر اندام‌های گیاه بیشتر است. شناخت اثرات نشان‌های مختلف روی فیزیولوژی گیاهان دارویی برای آگاهی از مکانیسم‌های مقاومت و فنا گیاهان به منظور
شده ۱۵ میلیلتر استون ۵۰ درصد سانتی‌متر و پس از صاف کردن جذب آنها با استپروتونتر در طول موج‌های ۴۹۷ / ۴۸ و ۷۶۸ / ۷۵۰ نانومتر خوانده شد و غلظت رنگ‌زه‌های حسب میکروگرم بر گرم وزن تر محاسبه گردید. غلظت بر حسب میلی‌گرم بر گرم لیتر عصاره گیاهی تعیین و سپس نتایج بر حسب میلی‌گرم بر گرم وزن بر توان محاسبه شد.

\[\text{Chl } a = \frac{A_{663.2} - 0.79}{A_{448.79}} \]

\[\text{Chl } b = \frac{A_{664.8} - 0.45}{A_{448.79}} \]

\[\text{Car} = \frac{A_{400} - 0.25}{A_{250} + 21} \]

\[\text{TCA} = \frac{470 - 20}{200} \]

\[\text{chl } a = \frac{A_{663.2} - 0.79}{A_{448.79}} \]

\[\text{chl } b = \frac{A_{664.8} - 0.45}{A_{448.79}} \]

\[\text{Car} = \frac{A_{400} - 0.25}{A_{250} + 21} \]

\[\text{chl } a = \frac{A_{663.2} - 0.79}{A_{448.79}} \]

\[\text{chl } b = \frac{A_{664.8} - 0.45}{A_{448.79}} \]

\[\text{Car} = \frac{A_{400} - 0.25}{A_{250} + 21} \]

\[\text{TCA} = \frac{470 - 20}{200} \]

\[\text{chl } a = \frac{A_{663.2} - 0.79}{A_{448.79}} \]

\[\text{chl } b = \frac{A_{664.8} - 0.45}{A_{448.79}} \]

\[\text{Car} = \frac{A_{400} - 0.25}{A_{250} + 21} \]

\[\text{TCA} = \frac{470 - 20}{200} \]

\[\text{chl } a = \frac{A_{663.2} - 0.79}{A_{448.79}} \]

\[\text{chl } b = \frac{A_{664.8} - 0.45}{A_{448.79}} \]

\[\text{Car} = \frac{A_{400} - 0.25}{A_{250} + 21} \]

\[\text{TCA} = \frac{470 - 20}{200} \]

\[\text{chl } a = \frac{A_{663.2} - 0.79}{A_{448.79}} \]

\[\text{chl } b = \frac{A_{664.8} - 0.45}{A_{448.79}} \]

\[\text{Car} = \frac{A_{400} - 0.25}{A_{250} + 21} \]

\[\text{TCA} = \frac{470 - 20}{200} \]

\[\text{chl } a = \frac{A_{663.2} - 0.79}{A_{448.79}} \]

\[\text{chl } b = \frac{A_{664.8} - 0.45}{A_{448.79}} \]

\[\text{Car} = \frac{A_{400} - 0.25}{A_{250} + 21} \]

\[\text{TCA} = \frac{470 - 20}{200} \]
امکانات ۵۰ میلی‌میلار، ۳۰ میکرو‌لیتر براکسیدهیدروژن ۱۵ میلی‌میلار، ۳۰ میکرو‌لیتر و ۱۵۰ میلی‌میلار خاصیت آنیزومی بود. شرود واکنش آنیزومی و به دنبال اکسید شدن آمکانات، جذب در طول موج نانومتر، دو دقیقه پس از شرود واکنش نسبت به زمان شرود واکنش در بازه‌های زمانی یک دقیقه خواندن و فعالیت آنیزومی بر حسب واحد آنری در مقدار پروپتیکن کل (پیگ‌آم) گزارش شد.

جهت اندازه‌گیری فعالیت آنیزومی سلولیتیک (GR) به وسیله اکسیداسیون از روش Halliwell و Foyer و NADPH از روش Ragg و Hahlbrock استفاده شد. در این روش، محلول واکنش با حجم کل ۳ میلی‌لیتر حاوی ۲/۴۳ میلی‌میلار NADPH (GSSG) و ۷/۸ میلی‌میلار HCl، ۵ میلی‌میلار NADPH و ۱۰۰ میکرو‌لیتر خاصیت آنیزومی بود. واکنش با اضافه کردن NADPH شروع شد. جدید نمونه‌ها به مدت ۳ دقیقه در طول موج نانومتر خواندن شد. سنجش غلظت بین کادمونیوم در گیاه در بافت ریشه و برگ از ایجاد از روی جذب جدید آنری اندازه‌گیری شد. بهترین حساسیت گیاهی در کره با دمای ۵۰۰ درجه سانتی‌گراد سوزانده شد و در ۱۰ مسی اسید هیدروکلریدیک ۲ ترمال ریخته شد. سیس محلول حاصل کردن در گیاه خارج شود. بعد از أن حجم محلول را به ۱۰۰ میلی‌لیتر رسانده و از کاغذ صافی عبور داده شد. محلول به دست آمده برای سنجش غلظت از استفاده از دسته‌گاه طیف نگار جذب Atomic Absorption Spectrometer انوی AA مدل Spectra AA ۲۲۰ استفاده شد.

تجزیه و تحلیل داده‌های حاصل از مراحل مختلف این تحقیق با استفاده نرم‌افزار آماری و تجزیه واریانس SAS و تجزیه واریانس ANOVA انجام و برای مقایسه گرایش‌های مختلف کادمونیوم بر پارامترهای مورد بررسی از آزمون‌داکتک و ضریب اطمینان ۹۵٪ استفاده شد.

نتایج

سپس جذب هر نمونه در طول موج ۲۷۰ نانومتر خوانده و با استفاده از منحنی استاندارد غلظت ترکیبات فیتی کل بر حسب میلی‌گرم وزن تر محسوب گردید.

فعالت آنری روش آنتی‌آمیتی‌بال (PAL) (۱۹۷۶) Ragg و Hahlbrock روش واکنش سریان حرارتی PH=۸/۸ Tris-Hcl (۰/۵ میلی‌میلار حاوت با بازی ایام‌زال۱۵ میلی‌میلار سایده و سپس ۳ دقیقه با دور ۵۰۰۰، سانتی‌فیوز شد. محلول روی جهت سنجش میزان فعالیت آنری استفاده شد. در یک لوله ۱ میلی‌لیتر از بافر استحکار به همراه ۵۰ میلی‌لیتر آنتی‌آمیتی‌بال ۱۰ میلی‌میلار، ۲ میلی‌لیتر آب دیازوتالکسیتر ۱ میلی‌لیتر ضریب آنری مخلوط و ۷ دقیقه در دمای ۹۵ درجه سانتی‌گراد تغییراتی شد. واکنش با اضافه کردن ۵۰ میلی‌لیتر تری کاریوساکسیسید/۱۰ بایان از پذیرده غلظت سیمیانیکسید با قرار جدید ۲۳۰ نانومتر محسوب شد. یک واحد از فعالیت آنری معادل ۱ میکرو‌مولار از سیمیانیکسید تولید شده در دقیقه است.

جهت سنجش میزان پروتئین کل یک گرم بریزی شده در یک هاون چینی محیط ۳ میلی‌لیتر بافر ضریب فسفات ۵ میلی‌میلار که دارای تیتان دی‌آمین تری‌المین‌سید ۱ میلی‌میلار، فسفات سولفورین فلورید ۱ میلی‌میلار و یلوپین پیرولیدن ۱ درصد بود، سیبی از دمای حاصل به مدت ۱۵ دقیقه در سانتی‌فیوز بی‌کمک دارا با ۱۵۰۰ دور و دو دچار قرار گرفت. جهت سنجش پروتئین کل از روش Bradford (۱۹۷۶) گرفت. جهت سنجش پروتئین کل از روش این انتخاب مشترک هر لوله آمیتی تغییر مقدار ۱/۰ میلی‌لیتر عصاره پروتئینی، ۵ میلی‌لیتر معرف بوره افزوده و سریعاً ورکرک گردید. پس از دو دقیقه و قبل از یک ساعت جذب محلول گرفته یا طول موج ۵۰۵ نانومتر فعالیت پروتئین با استفاده از منحنی استاندارد آلبومین و بر حسب میلی‌گرم بر گرم وزن تر محسوب گردید.

برای سنجش فعالیت آنری آمکانات براکسیداز (APX) با استفاده از روش Asada و Nakano (۱۹۸۱) مخلوط کل واکنش با جاح ۳ میلی‌لیتر شامل ۲/۴۹۰ میلی‌لیتر بافر فسفات بناهی‌بند ۵۰ میلی‌میلار PH=۸/۸.
پارامترهای مورفولوژیک: خارج کردن گیاهچه‌ها با خاک از گلدان نشان داد که حجم ریشه بطور کامل محوسب در سطح مختلف تیمار نسبت به شاهد کاهش یافته است. بعد از تست‌شماری خاک و جدا کردن ریشه‌های فرعی، کاهش طول ریشه اصلی در سطح باقی تیمار کامل‌تر محسوس بود (شکل 1). در حیطه‌های کادومون از تقسیم سلول‌های منطقه‌مرسمی و رشد سلول‌های منطقه رشد جلوگیری می‌کند و از طرف دیگر نمایندگی و مناسب نیروی سلول‌های واقع در منطقه رشد طولی سلول‌های دوند و دلایل دیگر کاهش رشد ریشه ناشده است.

(Fusconi et al., 2007.)

واژه‌نامه: مقایسه گیاهان تیمار شده با یکدیگر

 وزن نشدگان هواپی: مقدار معیاری در بین نشان داده شده و در گیاهان اخلاقی طبق این تحقیق می‌گذرد که در واقع معیار داری نشان می‌دهد. (شکل 6.)

سطح فرم: نتایج حاصل از این تحقیق نشان می‌دهد که در گیاهان تحت سطح فرم بند نسبت به سایر گیاهان با توجه به تجربه اکسترف و چندانی بر مقدار کلروفیل کل و کاروتئین نشانه‌های کاملی که توانسته‌های یک هفتم گیاه و 900 میکرومولار کاهش دهد. کاهش نحوه کلروفیل‌ها، کلروفیل گیاه و کلروفیل گیاه کاهش معیار و کلروفیل 900 میکرومولار دارد (شکل 3.) در این مطالعه، لیپید از سطح تیمار علی رغم روند نفوذ به افزایش، توانسته می‌باشد به تغییرات معیار داری نسبت به شاهد در میزان کاروتئین بدرک یک گردید (جدول 2.)

مالون‌آدلزین: بررسی نشان داد مقدار مالون‌آدلزین در بدرک گیاهان تحت تیمار در غلظت‌های 900 و 600 میکرومولار کاهش تفاوت زیادی با شاهد ندارد (جدول 1.) اما در غلظت 900 میکرومولار افزایش چشمگیری را نسبت به گیاه شاهد در سطح 5 درصد نشان می‌دهد (شکل 4.)

شکل 1: نتایج تحقیق که نشان می‌دهد که کاهش رشد ریشه در تیمارهای کلام‌محمودی در سطح مختلف تیمار نسبت به شاهد کاهش یافته است.

شکل 2: نتایج تحقیق که نشان می‌دهد که کاهش رشد ریشه در تیمارهای کلام‌محمودی در سطح مختلف تیمار نسبت به شاهد کاهش یافته است.

شکل 3: نتایج تحقیق که نشان می‌دهد که کاهش رشد ریشه در تیمارهای کلام‌محمودی در سطح مختلف تیمار نسبت به شاهد کاهش یافته است.

شکل 4: نتایج تحقیق که نشان می‌دهد که کاهش رشد ریشه در تیمارهای کلام‌محمودی در سطح مختلف تیمار نسبت به شاهد کاهش یافته است.
شکل ۱- کاهش کل حجم ریشه (راست). طول ریشه اصلی و رشد رویشی (چپ) در سطح مختلف تیمار کلریدکادیوم (به ترتیب در هر سطح از راست به چپ: ۳۰۰، ۶۰۰ و ۹۰۰ میکرومولار).

شکل ۲- اثر سطح مختلف کادیوم بر وزن خشک انادام هوايی (A) و سطح برق (B) (گیاه مارپیچی) مقایسه میانگین‌ها (مینگینکار) با استفاده از آزمون دانکن در سطح ۰ درصد احتمال شده است.

جدول ۱- میانگین مربوطات مختلف مورد بررسی در در سطح تیمار کلریدکادیوم در گیاه مارپیچی

| درجه انریخت | وزن خشک | سطح برق | کاردیوم | سطح برق | کاردیوم | منابع تغییرات | ادرای | *
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>کاردیوم کاردیوم</td>
<td>۱۰/۱۸</td>
<td>۲۶/۵۰</td>
<td>۲۴/۴۶</td>
<td>۲۸/۷۹</td>
<td>۲۴/۴۶</td>
<td>۲۸/۷۹</td>
<td>۲۴/۴۶</td>
<td>۲۸/۷۹</td>
</tr>
<tr>
<td>۶۰۰</td>
<td>۱۳۸/۹۰۹</td>
<td>۱۴۵/۸۰۸</td>
<td>۱۵۰/۸۰۸</td>
<td>۱۵۰/۸۰۸</td>
<td>۱۵۰/۸۰۸</td>
<td>۱۵۰/۸۰۸</td>
<td>۱۵۰/۸۰۸</td>
<td>۱۵۰/۸۰۸</td>
</tr>
<tr>
<td>۹۰۰</td>
<td>۲۱۱/۰۰۰</td>
<td>۲۱۱/۰۰۰</td>
<td>۲۱۱/۰۰۰</td>
<td>۲۱۱/۰۰۰</td>
<td>۲۱۱/۰۰۰</td>
<td>۲۱۱/۰۰۰</td>
<td>۲۱۱/۰۰۰</td>
<td>۲۱۱/۰۰۰</td>
</tr>
</tbody>
</table>

** ادامه جدول ۱- میانگین مربوطات مختلف مورد بررسی در در سطح تیمار کلریدکادیوم در گیاه مارپیچی

| درجه انریخت | فعالیت ریشه | کالیپس ریشه | آسکوربات | پروفیل‌ها | فعالیت ریشه | کالیپس ریشه | آسکوربات | پروفیل‌ها | منابع تغییرات | ادرای | *
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰۰</td>
<td>۱۴۸/۹۸۷</td>
</tr>
<tr>
<td>۹۰۰</td>
<td>۱۹۲/۳۸۳</td>
</tr>
</tbody>
</table>
جدول 2- مقایسه میانگین اثرات سطح کلرید کادموئوم برای صفات مختلف مورد بررسی در گیاه ماربيلی

<table>
<thead>
<tr>
<th>ماده دانلید (mg/grFw)</th>
<th>گذاب جذب (mg/kgDw)</th>
<th>وزن خشک ادامه تیمار (gr)</th>
<th>سطح برگ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارونی</td>
<td>کارونی</td>
<td>کارونی</td>
<td>کارونی</td>
</tr>
<tr>
<td>21/85</td>
<td>0/7</td>
<td>0/06</td>
<td>5/06</td>
</tr>
<tr>
<td>20/8</td>
<td>0/7</td>
<td>0/06</td>
<td>5/06</td>
</tr>
<tr>
<td>18/11</td>
<td>0/7</td>
<td>0/06</td>
<td>5/06</td>
</tr>
<tr>
<td>16/07</td>
<td>0/7</td>
<td>0/06</td>
<td>5/06</td>
</tr>
</tbody>
</table>

در هر ستون تفاوت بین میانگین هایی که دارای حروف مشابه هستند بر اساس آزمون دانکن در سطح احتمال 5% معنی‌دار نیست.

Tabla 2- Comparación de los medios de diferentes características de Cr (mg/gr Fw) en planta de Melilotus melilotus en diferentes tratamientos. El factor Cr fue aplicado en diferentes tratamientos.

<table>
<thead>
<tr>
<th>Medio aplicado (mg/gr Fw)</th>
<th>21/85</th>
<th>20/8</th>
<th>18/11</th>
<th>16/07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso de Cr (mg/kg Fw)</td>
<td>0/7</td>
<td>0/06</td>
<td>5/06</td>
<td>4/05</td>
</tr>
<tr>
<td>Nombre de ensayos</td>
<td>36/359</td>
<td>4/334</td>
<td>36/359</td>
<td>4/334</td>
</tr>
</tbody>
</table>

Los resultados muestran que la aplicación de Cr en diferentes tratamientos no tiene efecto significativo en las características del tallo de Melilotus melilotus en un nivel de confianza del 5%.

بحث

نتایج حاصل از این مطالعه، نشان داده که پروباز و کاهش هسته‌ای متعدد در گیاه ماربيلی‌ای و کلر و کاهش رشد از مهم‌ترین آثار سمتی کادمیوم به ویژه در غلظت‌های بالا در مورد گیاه مورد مطالعه محسوب می‌شود. گزارش سنجینگی با کاهش شدید فوتونستر و انتقال مواد فوتونستری و اسیدولیکی، رشد گیاه را به شدت کاهش می‌دهند (Dalla et al., 2005). ابزارهای شدید کادمیوم در بیماری از گیاهان باعث کمبود آهن، مینیزیم و کلسیم می‌شود و کلر و کارونی را متأثر می‌کند و سرعت رشد و فوتونسترا به شدت کاهش می‌دهد (Khan., 2007).

نتایج نشان داد که جذب و تجمع کادمیوم در برگ و دو تیمار شاهد و 200 میکروملتر تفاوت معنی‌دار دارد، ولی در دو تیمار 40 و 400 یکی از نتایج در برگ اختلاف معنی‌دار نشان داد. نتایج آزمایش از عدم وجود اختلاف معنی‌دار بین کلیه سطوح تیمار از ناحیه ظرفیت جذب و تجمع در رنگ حکایت دارد و وجود میزان اندک کادمیوم در رنگ گیاه می‌تواند نشان از حالت آزمایش بوده است. همانکنون پژوهش که در شکل (۸) نشان‌داده می‌شود با افزایش غلظت کادمیوم، مقدار جذب و تجمع کادمیوم در برگ گیاه نیز افزایش می‌یابد (جدول ۱ و ۲).
شکل ۳- اثر سطوح مختلف کادمیوم بر مقدار کلروفیل و کاروتئنید برگ گیاه مارتینگال. (A) کلروفیل a، (B) کلروفیل b، (C) کلروفیل كل کاروتئنید. مقایسه میانگین‌ها (میانگین ۵ تکرار) با استفاده از آزمون دانک نشان می‌دهد که است.
شکل 6- اثر سطوح مختلف کادمیوم بر تیمار آنزیم‌های آنزیم‌آمینات (A) و فعالیت آنزیم آسکوربیک سید از (B). مقایسه میانگین‌ها (میانگین±تکرار) با استفاده از آزمون دانکن در سطح 5 درصد انجام شده است.

شکل 5- اثر سطوح مختلف کادمیوم بر ترکیبات آنتوسیانین، فلاونونیید کل و محتویات فیل. مقایسه میانگین‌ها (میانگین±تکرار) با استفاده از آزمون دانکن در سطح 5 درصد انجام شده است.
این به نظر می‌رسد سمیت کادمیوم و تولید انواع مختلف اکسیژن واکنشگر بسب کاهش رنگی‌های فتوسنتزی و محدود کردن ژل عناصر غذایی لازم برای ساخته شدن و تولید کاروپت فیل می‌شود و در نتیجه زردی برگ‌ها دیده می‌شود. علاوه بر این فلورات سکین با پادکست پروتئین‌های LHCII در سطح رونوپسی تغییر در کمپلکس را ایجاد می‌کند که باعث فتواسید شدن کاروپت تازه تشکیل شده می‌گردد (سلطانی و همکاران، 1385). اگر سنتر کاروپت‌نیدهای در شرایط شدید کادمیوم به دلیل نقص حفاظی آنها در تکامل‌های فتواسید زیرا این رنگ‌بر کمی‌رسول خاموش کردن اکسیژن بهتر و جلوگیری از پراکسیداسیون (Kayro, 2006) لیبیده و نهایتاً نش اکسیدازی می‌باشد.

پراکسیداسیون چربی که اولین علائم نش اکسیدازی است، در آزمون‌های گذشته استفاده شده که در فاصله تولید برگ‌ها را نشان می‌دهد. مقایسه میانگین‌ها (میانگین ± نرخ) با استفاده از آزمون دانکن در سطح 5 درصد انجام شده است.

شکل 7- شاخص نش تحمیل شده که در فاصله تولید برگ و ریخت گیاه ماریتفال. مقایسه میانگین‌ها (میانگین ± نرخ) با استفاده از آزمون دانکن در سطح 5 درصد انجام شده است.

شکل 8- میزان و روند ژلپی و تجمیع کادمیوم در برگ و ریخت گیاه ماریتفال. مقایسه میانگین‌ها (میانگین ± نرخ) با استفاده از آزمون دانکن در سطح 5 درصد انجام شده است.

یک پراکسیداسیون در سلول در حضور بیون کادمیوم افزایش می‌یابد. این وضعیت باعث برهم خوردن تغذیهای سلول شده که این یکی از مهم‌ترین دلایل کاهش وزن گیاه می‌باشد (Sanita and Gabbrielli, 1999). در این مطالعه کاهش وزن شکوک این‌داده‌ها و ریشه می‌تواند در اثر اختلال در فرآیند فتوسنتز و متادیپسیز نیتروژن باشد و در اثر کاهش رنگی‌های فتوسنتزی، تولید بیوماس و رشد در گیاه مورد مطالعه کاهش یافته است. تأیید پذیری حاضر نشان داد که میزان کاروپت برگ‌ها با افزایش غلظت کادمیوم در محیط رشد کاهش یافته که در نهایت منجر به کاهش فتوسنتز و رشد شده و علائم کم‌سیسی به صورت کاروز در برگ‌ها بروز کرده. کاهش میزان رنگ‌بر کمی‌رسول در گیاهان تحت تیمار می‌تواند به دلیل انسپیسی اکسیدازی و پرادیپسیز مراحل مختلف سنتر کاروپت باشد (Hegedus et al., 2001).
از طریق هزار جذب **K** و **mg** و حضور مولتیپلیتی و انتقال **K** و **mg** و گلوگریپر از فعالیتی (Romero et al., 2007) (Muthuchelian et al., 2001) و چشمگیر پروتئین کل در سطح 300-500 میکروملار و نمونه کاکروم در محدوده مثبت می‌شود که نشان‌گرانه‌ای اکسیژن را از الکتریسیون و عامل‌های پروتئین‌ها و کاهش محدودیت پروتئین‌ها ناپدیده شده که رشد می‌شود. نتایج مشابهی در لولی تخش سرب و کادوم لیو و چو تحت شرایط (Bharadwaj et al., 2009) (Glaris et al., 2015) آزمایشی دافعی هستند که چگونه در ایستگاه تنش های زیستی و غیر زیستی کلوتروند که از طریق ذرات آزمایشی-گلوتابان تجربی می‌باشد. افزایش در فعالیت این آنزیم در گیاه‌های ماریتالیبال قابل اندازه‌بردن، چرا که با پاس‌هایی در راستا، حفظ وضعیت راکس سلولی و سمت‌داری پردرک و گیاه‌های همچون سوپراکسیدسموئار وارد عمل شد. نتایج مطالعات بروکاب و اشکی (1990) نیز نشان داد که در خاک تهیه کامل کادوم افزایش پیدا می‌کند. گلوتابان درکت نیز یکی از آنزایه‌ای بالقوه GSH سیستم آنتی‌کنداکتور آنزایی است که حالت احیای‌کننده را از طریق جرخه آکسیداسیون-گلوتابان حفظ کرده و یک Tactics حیاتی در حفاظت از گلولسولفید داشته و به عنوان سوپراکسید-گلوتابان-اس- ترانسلفری است. این آنزای را سوپراکسید و رادیکال هیدروکژن واکنش داده و باعث از رفتار رادیکال آزاد می‌شود که افزایش غافلی این آنزای نیز در این تحقیق تأیید شد که می‌توان از شاخص است و تایید مشابهی مطالعات پاردم. که مهکاری (1942) روی کیفیت عدس کادوم شده است. اندازه‌گیری شاخص تنش تحمیل شده، تنش وارد: تکیه‌گری با افزایش پراکسیداسیون چربی غشای سلول تخشی شده و نشست غشا افزایش می‌آورد مولتیپلیتی. البته روی پراکسیداسیون الکتریسیون توسط شرکت نشان‌گردیده آسیب در سطح سلولی است و سلنیوم مولتیپلیتی تولید شده در طی این رابطه با عنوان یک شاخص از آسیب اکسیژن اندازه‌گیری می‌شود (نادرلتس، 1392). نتایج تحقیق حاضر نشان می‌دهد افزایش مولتیپلیتی در غلظت 900 میکروملار کادوم در برك‌های مولتیپلیتی افزایشی چرب مربوط است و با واکنش‌پذیری و پراکسیداسیون اسیدهای خراشی که در برک وجیوهای جو مطالعات دارد (Hegedus et al., 2001) یکی از مکانیسم‌های مهم گیاهی است که افزایشناشتهای پیش از مرگ با اعتیاد ایجاد رادیکال‌های آزاد و اکسیداسیون می‌باشد. مطالعات نشان می‌دهد گیاهی که در زمان مولتیپلیتی گیاهی به عنوان مولتیپلیتی افزایشی ضروری برای دفاع علیه گیاهی فعال اکسیژن (ROS) عمل می‌نماید. نتایج نشان‌های از این تحقیق با تایید بارندگی و همکاران (1392) در گیاه‌های مولتیپلیتی کاکروم (PAL) یا تغییرات مقدار ترکیبات فنلی در شرایط کاکروم ماریتالی بالقوه دارد. با توجه به نقش آنتی‌کنداکتور آنتی‌کنداکتور این اثرات نشانه‌گر بارندگی که در مولتیپلیتی با افزایش این پارامتر سعی در کاهش اثرات خوب می‌کند. گیاهی که دارای تهیه کامل کادوم افزایش نیز غیر زیستی ست، برخی پروتئین‌ها را به‌طور نوینی تولید می‌کند و در برخی دیگر تحریک‌ها می‌کند، که چند روند کلی در جهت کاهش میزان کل پروتئین‌ها می‌باشد (Eriscon and Alfinford, 2004). تهیه این می‌تواند در محدودیت پروتئین محلول کل تحت شرایط قاچوسین ممکن است به‌طور افزایشی در فعالیت پروتئین. تغییرات مختلف ساختارهای نور از کارکردهای نوسان و سرعت پدیده رشد پروتئین‌ها (Plasma et al., 2002) (Karir et al., 2009) و با تعامل با این مولتیپلیتی پلو (John et al., 2009) پروتئین‌ها و ژاکی‌دانی آنها با عناصر مولتیلستیک در انتقال‌رسان‌های بالقوه. گزارش شده است کادوم فرد است (Pal et al., 2006)
تبیه‌گیری کلی

به‌طور کلی از نتایج به دست آمده چنین استنباط می‌شود که گیاه دارویی کارثاموس در زمان‌های مختلفی مفاهیم‌های مختلفی داشته است. این نتایج نشان داد که گیاه کارثاموس در تاریخ این گیاه تخم و فیبری کمی در ریشه به‌رد می‌باشد. این نتایج چه برمختلف شکوهی را از تخم کارثاموس داشته و در این گیاه در ناحیه‌ای از رگنی‌ها کارثاموس و تولیدی رادرکالی‌ها آزاد کسب‌یافته می‌باشد که آسیب‌های به دنبال دارد. این گیاه با تخم کارثاموس در برگ‌های می‌تواند کاندید مناسبی جهت مطالعات گیاه‌پژوهی باشد.

شیوع

بیشترین سیستم‌های فوتوسنتزی و آنزیم‌های آن‌ها اکسیدان در مقابل تنش اکسیدانی می‌باشد. جمله بروه‌سازی در سلول و مولکولی

Eucalyptus occidentalis

کشاورزی و منابع طبیعی، علم آب و خاک: 131-150.

ساختنی، ف، ب، (1385) پیام‌های آنزیم‌های آنتی‌اکسیدان، فیل‌آلبالیسیک و میزان پرولین گیاه‌های عدس تحت تنش کارثاموس. اولین هم‌ماده‌کنونی یافته‌های نوین در میزان و کارکردهای کشاورزی. دانشگاه تهران. تهران. ایران.

برنرک، ل، ایرانی، (1390) اثر کارثاموس بر میزان تولید هیدروژن‌برکسی و فعالیت آنزیم‌های آنتی‌اکسیدانی در گیاه درخت. نشریه علوم دانشگاه تربیت علمی: 9-184-183.

شیرینی‌آفرین، م، فیزیولوژی، 1389 اثر کاردامون بر خواص پارامترهای فیزیولوژی در

併]

Eucalyptus occidentalis

کشاورزی و منابع طبیعی، علم آب و خاک: 131-150.

ساختنی، ف، ب، (1385) پیام‌های آنزیم‌های آنتی‌اکسیدان، فیل‌آلبالیسیک و میزان پرولین گیاه‌های عدس تحت تنش کارثاموس. اولین هم‌ماده‌کنونی یافته‌های نوین در میزان و کارکردهای کشاورزی. دانشگاه تهران. تهران. ایران.

برنرک، ل، ایرانی، (1390) اثر کارثاموس بر میزان تولید هیدروژن‌برکسی و فعالیت آنزیم‌های آنتی‌اکسیدانی در گیاه درخت. نشریه علوم دانشگاه تربیت علمی: 9-184-183.

شیرینی‌آفرین، م، فیزیولوژی، 1389 اثر کاردامون بر خواص پارامترهای فیزیولوژی در

併]

Eucalyptus occidentalis

کشاورزی و منابع طبیعی، علم آب و خاک: 131-150.

ساختنی، ف، ب، (1385) پیام‌های آنزیم‌های آنتی‌اکسیدان، فیل‌آلبالیسیک و میزان پرولین گیاه‌های عدس تحت تنش کارثاموس. اولین هم‌ماده‌کنونی یافته‌های نوین در میزان و کارکردهای کشاورزی. دانشگاه تهران. تهران. ایران.

برنرک، ل، ایرانی، (1390) اثر کارثاموس بر میزان تولید هیدروژن‌برکسی و فعالیت آنزیم‌های آنتی‌اکسیدانی در گیاه درخت. نشریه علوم دانشگاه تربیت علمی: 9-184-183.

شیرینی‌آفرین، م، فیزیولوژی، 1389 اثر کاردامون بر خواص پارامترهای فیزیولوژی در

併]

Eucalyptus occidentalis

کشاورزی و منابع طبیعی، علم آب و خاک: 131-150.

ساختنی، ف، ب، (1385) پیام‌های آنزیم‌های آنتی‌اکسیدان، فیل‌آلبالیسیک و میزان پرولین گیاه‌های عدس تحت تنش کارثاموس. اولین هم‌ماده‌کنونی یافته‌های نوین در میزان و کارکردهای کشاورزی. دانشگاه تهران. تهران. ایران.

برنرک، ل، ایرانی، (1390) اثر کارثاموس بر میزان تولید هیدروژن‌برکسی و فعالیت آنزیم‌های آنتی‌اکسیدانی در گیاه درخت. نشریه علوم دانشگاه تربیت علمی: 9-184-183.

شیرینی‌آفرین، م، فیزیولوژی، 1389 اثر کاردامون بر خواص پارامترهای فیزیولوژی در

併]

Eucalyptus occidentalis

کشاورزی و منابع طبیعی، علم آب و خاک: 131-150.

ساختنی، ف، ب، (1385) پیام‌های آنزیم‌های آنتی‌اکسیدان، فیل‌آلبالیسیک و میزان پرولین گیاه‌های عدس تحت تنش کارثاموس. اولین هم‌ماده‌کنونی یافته‌های نوین در میزان و کارکردهای کشاورزی. دانشگاه تهران. تهران. ایران.

برنرک، ل، ایرانی، (1390) اثر کارثاموس بر میزان تولید هیدروژن‌برکسی و فعالیت آنزیم‌های آنتی‌اکسیدانی در گیاه درخت. نشریه علوم دانشگاه تربیت علمی: 9-184-183.

شیرینی‌آفرین، م، فیزیولوژی، 1389 اثر کاردامون بر خواص پارامترهای فیزیولوژی در

併]

Eucalyptus occidentalis

کشاورزی و منابع طبیعی، علم آب و خاک: 131-150.

ساختنی، ف، ب، (1385) پیام‌های آنزیم‌های آنتی‌اکسیدان، فیل‌آلبالیسیک و میزان پرولین گیاه‌های عدس تحت تنش کارثاموس. اولین هم‌ماده‌کنونی یافته‌های نوین در میزان و کارکردهای کشاورزی. دانشگاه تهران. تهران. ایران.

برنرک، ل، ایرانی، (1390) اثر کارثاموس بر میزان تولید هیدروژن‌برکسی و فعالیت آنزیم‌های آنتی‌اکسیدانی در گیاه درخت. نشریه علوم دانشگاه تربیت علمی: 9-184-183.

