افتات تشخیص بر شاخص‌های فیزیولوژیکی و مورفولوژیکی گیاه کاسنی

جهت معرفی در فضای سیز شهری (Cichorium intybus L.)

الهام جزیزاده¹ و نرگس منتظری‌نژاد²

¹ گروه آموزش و پرورش دانشکده دانشگاه کشاورزی دانشگاه آزاد اسلامی واحد اصفهان (خوراک‌دانشگاه). اصفهان. ایران
² مرکز تحقیقات اصلاح و تولید بذر دانشگاه آزاد اسلامی واحد اصفهان (خوراک‌دانشگاه). اصفهان. ایران

تاریخ دریافت: ۲۴/۰۴/۱۳۹۵، تاریخ پذیرش نهایی: ۲۶/۰۶/۱۳۹۵

چکیده:

تشخیص وضعیت رشد گیاهان دارویی در شرایط مختلف آبیاری و تشخیص خشکی مهم‌ترین کشت گیاهان مقام در مناطق خشک با کم آب باشد. نشان‌های محیطی از قبیل نشان کم آبی یکی از موانع اصلی در تولید محصولات زراعی، بافتی و فضایی بسیاری از نقاط دنیا به ویژه مناطق خشک و نیمه خشک مانند ایران محسوب می‌شوند. ایجاد فضای سبز راهبردی با استفاده از گیاهان داروی مقاوم به خشکی در این شرایط به‌کار رفتن است. لذا تحقیقی به منظور ارزیابی اثر تشخیص خشکی بر شاخص‌های فیزیولوژیکی و مورفولوژیکی گیاه دارویی کاسنی جهت معرفی در فضای سیز شهری در سال زراعی ۱۳۹۳-۱۳۹۴ در قالب طرح گروه‌های کامل تصمیم‌گیری می‌شود که قبیل تشخیص شرکت‌کننده شدند. نتایج حاصل از تجزیه و تحلیل داده‌ها نشان داد که نشان‌های خشکی بر ترمیم صفات فیزیولوژیکی و فیزیولوژیکی مورد انداز گیری در این پژوهش در سطح احتمالی یک درصد معنی‌دار شد. نشان‌های خشکی در توجه به افزایش محتمل ترس نشان‌های بیماری و خشکی در سایر گیاهان تحت افزایش کاهش می‌شود. در مباحث تحقیقاتی و حاصل از پژوهش مورد نظر حاکی از مقاومت نسبی این گیاه به نشان‌های خشکی و تأمین کندنه اهداف مورد نظر در زیبا سازی فضاً سیز شهری بود.

واژگان کلیدی: نشان‌های خشکی، خصوصیات کمی و کیفی، فضای سیز، کاسنی.

است. بنابراین توزیع و پراکنش گیاهان در سرتاسر دنیا نا‌حدود

مقدمه:

خشکی شایع‌ترین نشان محیطی است که به طور تقریبی

موجود محدودیت تولید در ۲۵ درصد زمین‌های دنیا شده

نویسندگان: نشان‌های کیفیتی کاسنی

mortazaeinezhad@khuisf.ac.ir
بیماری‌زا یا باشند (2010) از اولین و اکثری به نشان آبی، گاهی گردید است. به طورکلی گیاهان به وسیله گاهی‌کارهای مورفولوژیکی و فیزیولوژیکی نکامل یا کرده‌اند. اما نشان‌های گیاهی را تحلیل کنید. با توجه به محدودیت‌های آب، شناسایی و کاشت گیاهان مقدار به گیاهی با پتانسیل عملکرد بالا از اهمیت زیادی برخوردار است. امروزه در فضای سبز، با توجه به شرایط اقلیمی مورد استفاده از گیاهان دارویی- زیست مقدار به نشانه‌های محیطی از جمله گیاهی در اولین قرار دارد. گرچه امتحان گیاهان دارد در بخش پزشکی و داروسازی بر همگان واضح و مشخص است، ولی استفاده از این گیاهان به عنوان گیاهان جدید در فضای سبز و دیگر زمانی است که اهمیت افتتح (جعفرا، امیری). (1981).

گیاهان در طول دوره رشد در معرض انواع نشانه‌های زندگ (آفات و بیماری‌ها) و نشانه‌های غیر زندگی (خشکی، شوری و گرم) قرار داشته که آنها را وارد به واکنش‌های فیزیولوژیکی می‌نمایند (2007). از نقطه نظر زراعی، نشان‌های شرایطی است که از آن نشان‌های مقدار بالقوه خود را تولید کند و این پدیده موجب آسیب به گیاه و محدودیت در بر روی پتانسیل زیستی عملکرد می‌شود (2011). تغییر صفات فیزیولوژیکی از مهم‌ترین مکانیسم‌ها برای سازگاری گیاه به شرایط نشان‌های امتحان است (Liu et al., 2017). گیاه‌های که تحت نشان‌های قرار می‌گیرند به شرایط نشان‌های باسابقه می‌دهند و با افزایش مقدار مورفولوژیکی و Wang and (2004). برای مثال نشان‌های پایه می‌شود سبک و فتوسنتز گیاه صندل‌های بسته به نت‌های قابل حساب کلمه کارولفیل در گیاه نسبت شرایط عدم می‌شود (Fu and Huang, 2001) (2009). این گیاه سازگاری عالی در خاصیت مخفی نشان‌گذاری و در تغییر خشکسالی، دمای بالا و بیماری‌ها مقدار است. همچنین می‌تواند نشان مهمی به نشان‌های اقلاوی سنتی بازیابی و افزایش می‌شود (Biglouie et al., 2010).

(Chalker-Scott, 2002) از راهکارهای مناسب گیاهان در پاسخ به نشان‌های، افزایش مواد محول و فعال اسنشی. در شرایط نشان، گیاه به میزان ادامه جذب آب، پتانسیل اسنشی خود را از طریق ترمیم تکانی اسنشی از جمله استروهای آبی، قندآ، برخی بین‌های معدنی، هورمون‌ها و پروتئین‌ها کاهش می‌دهد و یا با عبارتی تظیم اسنشی می‌گیرد. پرولین احتمالاً رایح‌ترین و کسترانت‌ترین اسماوتی است که در سبیل از گیاهان به عنوان پاسخ طبیعی و خاص گیاه به نشانه‌های اسنشی و خشکشی تولید می‌شود (Staden et al., 1999).

پرولین علاوه بر تظیم اسنشی به عنوان محافظ در بر اثر نشان‌های اپتیک که رشد به دنبال تمرکز که گاز اکسید و یا غیرمستقیم با مارک‌موکولاها اثر متقابل داشته و از این طریق به حفظ شکل و ساختار طبیعی آنها در شرایط نشان کمک می‌کند (Koc et al., 2010). به عنوان مثال، بررسی گیاه کاهه (Cichorium intybus L. Asteraceae) کاسی در نام علمی خانواده کاسی (Lactuceae) زیر تیره زبانه کلیه (Liguliflora) می‌باشد (Mozafarian, 2005) مؤثر از اهمیت به سرایی در صنایع دارویی برخوردار می‌باشد که از آن به عنوان تقویت‌کننده معدن، مدیر، صفارتی و مصرفگر و به همراه کننده خون استفاده می‌گردد. ترکیب اصلی موجود در انسان این گیاه دارویی اکسندرا نام دارد (1998). این گیاه علفی و دارای ساقه است که در حال حاضر ارتفاع شده، 0 طاها/ متر و اگر پورش بند بیش از 2 متر نیز جاری می‌باشد. این گیاه لجست خاک شامل تعداد زیادی گل‌های آبی رنگ و برگ‌های پایین ساقه پی‌برده و برگ‌های بالایی آن به‌صورت ساده و از نوع متناوب است (Bianco, 2009). این گیاه سازگاری عالی در خاصیت مخفی نشان‌گذاری و در تغییر خشکسالی، دمای بالا و بیماری‌ها مقدار است. همچنین می‌تواند نشان مهمی به
تغیهات توسط خطکی بز ضاخصیتی و میکروورشیتی گیاه (Di venere et al., 2009).

پایش بررسی‌های محقق آنها نشان دهنده، در زمینه کشت گیاهان دارویی، فضای سبب داتی بیشتر، با توجه به آنها. این امر سبب شده که کشت گیاه دارویی در سند چشم اندار ساله کشور در این تحقیق گیاه کاسی انتخاب. و به منظور معرفی آن با عنوان گیاه زینتی در منطقه مختلف کشور، اثر تنش خشکی بر خصوصیات فیزیولوژیکی و مورفولوژیکی آن در داشتگاه اصفهان مورد بررسی و تحقیق قرار گرفت.

مواد و روش‌ها

این پژوهش به منظور بررسی سنگاری و مقاومت به تنش خشکی گیاه کاسی جهت معرفی در فضای سبب داتی بیشتر اصفهان در سال‌های 94-95 انجام شد. تحقیقی در قالب طرح یک سطح کامل تصمیم‌گیری شد. دو گروه، از این 2 هزار صورت درصدی به عنوان محلول فنی (شکن) انتخاب گردید. در نهایت مقادیر کارولف a, b و کارولوئید بر حسب میلی‌گرم کروم از گروه بافت گیاه محاسبه گردید.

میزان کارولف و کارولوئید با دستگاه سبک‌و‌ستفاده مدل (UV-160 Shimadzu) در طول موج 190 تا 500 نانومتر (nm) با استفاده از روش Arnon از اندام‌های میکروورشیتی کریستال شد. برابر این کار از استاندards و درصدی به عنوان محلول بالاک (شکن) استفاده گردید. در نهایت مقادیر کارولف a, b و کارولوئید بر حسب میلی‌گرم کروم از گروه بافت گیاه محاسبه گردید.

محتوای پروپونیت بر اساسه از روایت یک مقاله محققان Bates و همکاران (1973) اندام‌های میکروورشیتی کریستال شد. به ترتیب که سبک‌و‌ستفاده در طول موج 200 نانومتر با توجه به منحنی استاندارد حاصل از غلظت‌های مختلف پروپونیت و بر حسب بیکرومول بر گرم وزارت محاسبه شد.

جهت اندام‌های مکانی (1974) Wagner از روایت جهت اندام‌های مکانی آنتوسیانین‌های پروپونیت و گل استفاده شد. 100 گرم از باغ‌تازه گیاه در هاوان پایه با 10 میلی‌لیتر مول آب اسیدی (مانول خاص و اسید کلریدیک خلو حجم به نسبت حجمی 1 به 1) به طور کامل سانیتژ و عصاره حاصل در لوله‌های آزمایش در دارت در ریختن شده و به مدت 24 ساعت در تاریکی و در دمای 25 درجه سانتی‌گراد قرار گرفت. سپس به مدت 10 دقیقه با سرعت 4000 دور در دقیقه سانتی‌فرانس گرگورد جذب

عنوان منبع غذا باید نماید و دارای ترتیبات آنی اکسیدان (Di venere et al., 2009).
با توجه به نوع گیاه، مرحله رشدی، طول دوره رشد و شدت نش النقاوت است (لودر، 1981).

در این پژوهش اثر نش شکسی بر میزان کارکرد a و b a کل و کارکرد عمیق در گیاه کاسی در سطح یک درصد میان کارکرد a و کارکرد a کل در تیمارهای نش ۶۰ و ۷۵ درصد طرفین زراعی به صورت معنی‌داری کمتر از تیمارهای ۹۰ و ۷۵ درصد بود (جدول ۲). به طوریکه با افزایش نش غلت کارکرد بی‌بیان قابل توجه کاهش یافت. این یکی از اثرات کاهش کارکرد طی نش شکسی را یکی از فلسفه‌های نوین بیان کرد که نش شکسی از یک طرف معنی توسط گونه‌های مختلف گیاهی می‌شود که این نیز به‌صورت جدید باعث توجه و در نتیجه کاهش رگدانه‌ها می‌شود.

طلنت شکسی کارکرد a در کل‌پلت که نش شکسی و ساختاری تیلابوکس نش می‌شود (Sairam et al., 1998) و هم‌اله (1383) انداره‌گیری محیطی کارکرد در گل‌کیوری با به عنوان شناختی از میزان تحلیل به نش شکسی انداره‌گیری و هم‌اله (2011) با مطالعه اثر نش شکسی بر محیطی کارکرد در یک شهر مختلف ارزیابی، بیان کردن که محیطی کارکرد در تمام ارقام کاهش معنی‌دار نشان داد و نسبت کارکرد افراش نشان داد. بررسی بر روی یکی از شناسنده کربنی آب از میزان کارکرد a کل و کارکرد عمیق در کاسی قابل مشاهده و در مورد کارکرد a و کارکرد عمیق دارد. رویکردی گریه با بررسی اثرات نش شکسی نشعلی و اثرات نش شکسی می‌گردد. بنابراین کاهش مقدار کارکرد مشاهده شده در این تحقیق احتمالاً می‌توانی به دلیل کاهش سنتر کارکرد و افزایش تحجه آن باشد. کارکرد عمیق با نش شکسی انداره‌گیری غیر آزمایی از طریق خشی خشی در نتیجه آزمایش در تحقیق حفظ کارکرد بی‌بیان تحت شرایط نش از جمله شناختی فیزیولوژیکی مقاووم به نش است. انداره‌گیری محیطی کارکرد در شرایط نش، میزان کاهش کارکرد می‌باشد. تغییر میزان کارکرد بی‌بیان تحت شرایط نش شکسی می‌باشد.
جدول 1- نتایج تجزیه واریانس اثر نش خشکی بر صفات فیزیولوژیکی گیاه کاسی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>نش خشکی</th>
<th>پروپلن گل</th>
<th>آنتوسیانتین گری</th>
<th>کاروتئین کل</th>
<th>کاروتئین b</th>
<th>کاروتئین a</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضریب تغییرات</td>
<td>40/60/30</td>
<td>1/11/3</td>
<td>3/11/2</td>
<td>0/75/3</td>
<td>0/65/3</td>
<td>0/65/3</td>
</tr>
<tr>
<td>خطا</td>
<td>0/09/3</td>
<td>1/11/3</td>
<td>1/11/3</td>
<td>0/99/3</td>
<td>0/65/3</td>
<td>0/65/3</td>
</tr>
<tr>
<td>نتیجه</td>
<td>کمتر</td>
<td>ایکن</td>
<td>آگاهی</td>
<td>کمتر</td>
<td>کمتر</td>
<td>کمتر</td>
</tr>
</tbody>
</table>

جدول 2- مقایسه میانگین اثرات نش خشکی بر صفات فیزیولوژیکی گیاه کاسی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>نش خشکی</th>
<th>پروپلن گل</th>
<th>آنتوسیانتین گری</th>
<th>کاروتئین کل</th>
<th>کاروتئین b</th>
<th>کاروتئین a</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mgkg<sup>-1</sup>)</td>
<td>(μmolg<sup>-1</sup>)</td>
<td>(mgkg<sup>-1</sup>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/65</td>
<td>0/65</td>
<td>0/65</td>
<td>0/65</td>
<td>0/65</td>
<td>0/65</td>
<td></td>
</tr>
<tr>
<td>0/66</td>
<td>0/66</td>
<td>0/66</td>
<td>0/66</td>
<td>0/66</td>
<td>0/66</td>
<td></td>
</tr>
<tr>
<td>0/75</td>
<td>0/75</td>
<td>0/75</td>
<td>0/75</td>
<td>0/75</td>
<td>0/75</td>
<td></td>
</tr>
<tr>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td></td>
</tr>
<tr>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
<td></td>
</tr>
</tbody>
</table>

در هر سنتن میانگینها با حروف پکسان در سطح 5 درصد آزمون داتنک اختلاف معنی‌داری ندارند.

تحقیقشناد داد که غلظت کاروتئین در تیمارهای نش 0 و 0 درصد طرفیت زراعی به صورت معنی‌داری بیشتر از 45 درصد طرفیت زراعی (0.01) به طوری که با افزایش نش خشکی میزان کاروتئین به میزان قابل توجهی افزایش یافته. افزایش کاروتئینها ترکیبات آنتی‌اکسیدانی می‌باشد که به عنوان گروههای فنوتیپی و غیرفتوسی نشانه‌ای در می‌شود.

Mohammadkhani and Heidari (2007) و Taiz و Zeiger (2006) مطالعات دارند که نش خشکی که غلظت کاروتئین در تیمارهای نش 0 و 45 درصد طرفیت زراعی به صورت معنی‌داری بیشتر از 45 درصد طرفیت زراعی (0.01) به طوری که با افزایش نش خشکی میزان کاروتئین به میزان قابل توجهی افزایش یافته. افزایش کاروتئینها ترکیبات آنتی‌اکسیدانی می‌باشد که به عنوان گروههای فنوتیپی و غیرفتوسی نشانه‌ای را می‌شود.
غلظت پرولین مربوط به تیمار ۷۵ درصد و بیشترین غلظت مربوط به تیمار ۴۵ درصد در تحقیق‌هایی می‌باشد (جدول ۱). این نتیجه با پیش‌بینی از گزارش‌های دیگر متفق است. عنوان مثال مشاهده شده است که مقادیر پرولین در گروهی که تحت تاثیر عوامل غلظت می‌باشند، نشان می‌دهد که افزایش نشان‌داری داشته باشد.

نگاهی به دستگاه‌های دگرگونی درگذشته کاسی در آزمونی (جدول ۴ و ۲). در اینجا ناقص هستی خطای آب در سطوح مختلف باعث افزایش میزان آنتی‌سیبیونترین دردی گردید. اما افزایش در میزان آنتی‌سیبیونترین همراه با کمبود آب استحکام دیده توانایی داشته باشد. بنابراین در میزان نشان‌داری در فاصله ۵۰ درصد بر حسب تیمار آزاد باشد. در این مورد نشان داده شد که داده برای نشان دادن طراحی برتری از ترکیبات، مانند مانگنیل‌ها، توانایی بالا داشته باشد. این نتایج به منظور توانایی بالا استفاده می‌شود. این نتایج همچنین در گروه مانگنیل‌ها به سمت زیاد افزایش نشان‌داری داشته باشد.

نگاهی به دستگاه‌های دگرگونی درگذشته کاسی در آزمونی (جدول ۴ و ۲). در اینجا ناقص هستی خطای آب در سطوح مختلف باعث افزایش میزان آنتی‌سیبیونترین دردی گردید. اما افزایش در میزان آنتی‌سیبیونترین همراه با کمبود آب استحکام دیده توانایی دیده توانایی بالا داشته باشد. در این مورد نشان داده شد که داده برای نشان دادن طراحی برتری از ترکیبات، مانند مانگنیل‌ها، توانایی بالا استفاده می‌شود. این نتایج به منظور توانایی بالا استفاده می‌شود. این نتایج همچنین در گروه مانگنیل‌ها به سمت زیاد افزایش نشان‌داری داشته باشد.
جدول 3- نتایج تجزیه واریانس ارتفاع گیاه در مخلوط ۹× بر فراز ارتفاع گیاه و طول برگ در هر یک از مراحل ۱، ۲ و ۳ در گیاه کاسنی

متغیر

ارتفاع گیاه

تغییرات

درجه آزادي

تکرار

تنش خشکی

۶

اطلاعات

ضریب تغییرات

۱/۱۴/۱۴

جدول ۴- مقایسه میانگین صفات ارتفاع گیاه، تعداد و طول برگ تحت تأثیر مخلوط مختلف تنش خشکی در گیاه کاسنی

ارتفاع گیاه (cm)

تعداد برگ

طول برگ (cm)

تنش خشکی (%)

در هر سرو، میانگین‌های که دارای حرکت کوچک مشترک هستند، در سطح پنجم درصد آزمون دانش اختلاف معنی‌داری ندارند.

گزارش شده است (Taheri et al., 2008:Soltani et al., 2006) در گیاهان سازگار با شرایط تشنج، هنگامی که سطح خشکی برخورد که به افزایش نشان داده که با افزایش درصد و کمترین طول و تعداد برگ در مخلوط نشان ۴۵ درصد ظرفیت زراعی مشاهده شد (جدول ۲ و ۳). محدودیت سطح برگ می‌تواند اولین خط دفاعی برای مقابله با خشکی مانند تنها بیانی که تهیه آن کاهش سطح بار بر گیاه شده که تنها آن کاهش سطح برگ کوچک شده است (Silva et al., 2010: Shao et al., 2008).

و یا بایان گذشته بیشترین طول و تعداد برگ مربوط به نیاز ۹۰ درصد و کمترین طول و تعداد برگ در مخلوط نشان ۴۵ درصد تغییرات باعث علائم کاهش فانته در فضای سیب مخلوط است. اینن که از دلالت کاهش طول ساقه در شرایط مخلوط در نتیجه کاهش با عدم انتقال مواد غذایی از بافت‌های ذخیره‌دار به گیاه ذکر می‌شود. (Taheri et al., 2008:Soltani et al., 2006)

در گیاهان سازگار با شرایط تشنج، هنگامی که سطح خشکی برخورد که به افزایش نشان داده که با افزایش درصد و کمترین طول و تعداد برگ در مخلوط نشان ۴۵ درصد ظرفیت زراعی مشاهده شد (جدول ۲ و ۳). محدودیت سطح برگ می‌تواند اولین خط دفاعی برای مقابله با خشکی مانند تنها بیانی که تهیه آن کاهش سطح بار بر گیاه شده که تنها آن کاهش سطح برگ کوچک شده است (Silva et al., 2010: Shao et al., 2008).

و یا بایان گذشته بیشترین طول و تعداد برگ مربوط به نیاز ۹۰ درصد و کمترین طول و تعداد برگ در مخلوط نشان ۴۵ درصد ظرفیت زراعی مشاهده شد (جدول ۲ و ۳). محدودیت سطح برگ می‌تواند اولین خط دفاعی برای مقابله با خشکی مانند تنها بیانی که تهیه آن کاهش سطح بار بر گیاه شده که تنها آن کاهش سطح برگ کوچک شده است (Silva et al., 2010: Shao et al., 2008).

و یا بایان گذشته بیشترین طول و تعداد برگ مربوط به نیاز ۹۰ درصد و کمترین طول و تعداد برگ در مخلوط نشان ۴۵ درصد ظرفیت زراعی مشاهده شد (جدول ۲ و ۳). محدودیت سطح برگ می‌تواند اولین خط دفاعی برای مقابله با خشکی مانند تنها بیانی که تهیه آن کاهش سطح بار بر گیاه شده که تنها آن کاهش سطح برگ کوچک شده است (Silva et al., 2010: Shao et al., 2008).

و یا بایان گذشته بیشترین طول و تعداد برگ مربوط به نیاز ۹۰ درصد و کمترین طول و تعداد برگ در مخلوط نشان ۴۵ درصد ظرفیت زراعی مشاهده شد (جدول ۲ و ۳). محدودیت سطح برگ می‌تواند اولین خط دفاعی برای مقابله با خشکی مانند تنها بیانی که تهیه آن کاهش سطح بار بر گیاه شده که تنها آن کاهش سطح برگ کوچک شده است (Silva et al., 2010: Shao et al., 2008).

و یا بایان گذشته بیشترین طول و تعداد برگ مربوط به نیاز ۹۰ درصد و کمترین طول و تعداد برگ در مخلوط نشان ۴۵ درصد ظرفیت زراعی مشاهده شد (جدول ۲ و ۳). محدودیت سطح برگ می‌تواند اولین خط دفاعی برای مقابله با خشکی مانند تنها بیانی که تهیه آن کاهش سطح بار بر گیاه شده که تنها آن کاهش سطح برگ کوچک شده است (Silva et al., 2010: Shao et al., 2008).

و یا بایان گذشته بیشترین طول و تعداد برگ مربوط به نیاز ۹۰ درصد و کمترین طول و تعداد برگ در مخلوط نشان ۴۵ درصد ظرفیت زراعی مشاهده شد (جدول ۲ و ۳). محدودیت سطح برگ می‌تواند اولین خط دفاعی برای مقابله با خشکی مانند تنها بیانی که تهیه آن کاهش سطح بار بر گیاه شده که تنها آن کاهش سطح برگ کوچک شده است (Silva et al., 2010: Shao et al., 2008).
جدول 5- نتایج تجزیه واربین اثرات تنش خشکی بر صفات قطر و تعداد گل در گیاه کاسئ

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>قطر گل</th>
<th>تعداد گل</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرحله 1</td>
<td>4/12m</td>
<td>10</td>
</tr>
<tr>
<td>مرحله 2</td>
<td>4/14m</td>
<td>11</td>
</tr>
<tr>
<td>مرحله 3</td>
<td>4/16m</td>
<td>12</td>
</tr>
</tbody>
</table>

جدول 6- مقایسه میانگین صفات قطر و تعداد گل تحت تأثیر سطح مختلف تنش خشکی در گیاه کاسئ

<table>
<thead>
<tr>
<th>قطر گل (cm)</th>
<th>تنش خشکی (FC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرحله 1</td>
<td>مرحله 2</td>
</tr>
<tr>
<td>5/79m</td>
<td>5/78m</td>
</tr>
<tr>
<td>5/78m</td>
<td>5/77m</td>
</tr>
<tr>
<td>5/77m</td>
<td>5/76m</td>
</tr>
<tr>
<td>5/76m</td>
<td>5/75m</td>
</tr>
<tr>
<td>5/75m</td>
<td>5/74m</td>
</tr>
</tbody>
</table>

در هر ستون، میانگین هایی که دارای جدول مشترک هستند، در سطح پنج درصد آزمون دانک اختلاف معنی‌دار دارند.

بنیشترین تعداد گل در تیمار 75 درصد و کمترین تعداد گل در تیمار 45 درصد طرفیت زراعی بدست آمد (جدول 5 و 6). نتایج حاصل از این پژوهش نشان داد که تیمار 45 درصد طرفیت زراعی بدست آمد در سطح پنج درصد معنی‌دار گردید (جدول 7 و 8).

نتایج این پژوهش نشان داد که تیمار آغاز ظهور گل در تیمارهای تنش ۳۰ و ۷۵ درصد زودتر از تیمارهای ۹۰ و ۱۵ درصد طرفیت زراعی بود. بطوریکه ظهور اولین گل در تیمار تنش ۴۵ درصد به‌طور زودتر ۸۰ روز پس از انتقال نشان می‌داد. به‌طوریکه با افزایش مدت زمان تنش، بیشترین طول دوره گل به‌طور متوسطه در تیمار ۹۰ درصد با Cabuslay و همکاران (۲۰۰۹) گزارش نمودند که گل تهیه نمود. است. بر اساس نتایج بدست آمده در این تحقیق، در مرحله تمام گل قطر میانگین گل در تمام تیمارهای حذف ۴ سانتی‌متر بود. در این تحقیق نشان داد که تیمارهای تنش خشکی مشاهده نگردید. ولی در ادامه با افزایش شدت تنش و رسیدن به مرحله پایان گل‌دهی، قطر گل کاهش یافت و به حدود ۶/۳ سانتی‌متر رسید. در کل در تمام تنش‌های خشکی، تغییر معنی‌داری بین مراحل متوان‌پذیری مشاهده نشد. نتایج حاصل از مقایسه میانگین اثر تنش خشکی بر تعداد گل کاسئ نبرد نشان داد که در مرحله تمام گل، شروع گل‌دهی در تیمار ۴۵ درصد زودتر از سایر تیمارهای آغاز شد و تعداد گل به صورت معنی‌داری از سایر تیمارهای پایین‌تر و کمترین تعداد گل در تیمار نش ۷۵ درصد بدست آمد. ولی در ادامه با گذشت زمان و افزایش شدت تنش و رسیدن به مرحله پایان گل‌دهی،
جدول 7- نتایج تجزیه و ارتباط اثرات تنش خشکی بر صفات زمان ظهور گل، تمام گل، طول دوره گلدهی، وزن اندام هوای و ریشه کاستی.

مادگی معبر	درجه	متغیرات	آزادی	ظهور	ظهور گلدهی	اندام هوای	اندام هوای و ریشه	ریشه	کل	تکرار	نش خشکی	زمان ظهور	تالیف	طول دوره	وزن خشکی	وزن توت	وزن توت	وزن خشکی	وزن خشکی	تنش خشکی (%/FC)		

در هر ستون، میانگین ها یک دارای حروف کوچک مشترک هستند. در سطح پنج درصد آزمون دانک اختلاف معنی‌دار ندارند.

تشکل خشکی قرار گرفت. با توجه به پیش‌ترین وزن و خشکتی اندام هوای در تیمار ۹۰ درصد و کمترین آن در تیمار ۴۵ درصد بسته آمده (جدول ۷)، روند عمومی که گیاهان در شرایط نسبت به روزرسانی هستند خشکی یا روزرسانی که تولید وزن و خشکت گیاه است (Farooq et al., 2009). روند می‌تواند به تنها خشکی شدید با فرآیندهای دسته‌بندی ماده و توزیع موقعیت پوپولاسیون (بسیار توده) مرتبط باشد (Kage et al., 2004). یکی از دلایل خشکی فستینت است به همین دلیل که فستینت آدنون ۸۵ روز بوده است که تحت تأثیر تنش خشکی قرار گرفت و وجوه اشباع بین تیمارها از این موارد می‌شود و فستینت را محدود می‌نماید. تنش خشکی ضمن کاهش متوسط وزن خشکی برگ، باید آنها را هم تسهیل نموده و بدن و سیله می‌تواند

متوسط ۹۵ روز و کمترین طول کل گلدهی مربوط به تیمار

تشکل ۴۵ درصد طول در زراعت با متوسط کل گلدهی ۲۴ روز

بسته آمده. اصلی و اختیاری (۱۲۹۱) در یادآوری که تنش

خشکی تأثیر معنی‌داری بر خصوصیات هسته‌پذیدیک و

خشکی به کاهش کاسی دارد. به این صورت که با افزایش تنش

خشکی، طول و وزن ریشه، سطح برگ، تعداد گل، طول دوره گلدهی، میزان پرورش محلول در کیا به

محتوای اساسی به طور معنی‌داری کاهش یافته و

بر اساس نتایج تجزیه و ارتباط، اثر تنش خشکی بر وزن

اعدام هوای و ریشه کاسی در سطح یک درصد معنی‌دار

بوده است. نتایج حاکی از مقایسه میانگین مشاهده‌های شان داد که تغییرات نسبت وزن خشکی بخش هوایی به ریشه تحت تأثیر
نبش دینی زنده‌داری، شرایط گیاهی و بیولوژیک گیاه دارویی اساسی در پاسخ به نش خشکی، همایش ملی علم و فنون کشاورزی، (1391) بررسی صفات مورفو-بیولوژیک گیاه دارویی کاسن در پاسخ به نش خشکی، همایش ملی علم و فنون کشاورزی، (1391) بررسی صفات مورفو-بیولوژیک و میزان تولید را پیشتر از آنچه یک علت اثر ناشی از کاهش نش می‌دانست (Taiz and Zeiger, 2006) همچنین در پاتوس حرکت شده بر در نتیجه تحقیق انجام شده بر روی آنیون نام توسط Bahreininejad و همکاران (2013) نشان داد که نش رطوبتی شدید باعث کاهش وزن خشک می‌گیرد (Leaf Area Index) اندام هوای و میزان سطح برگ گیاه (I) ترتیب مشابه می‌باشد.

نتیجه‌گیری:
فضای سبز نش موتری در کاهش آنات مخرب آلودگی هوا در شهرها ایفای می‌کند و باعث به‌هم‌بندی شرایط زندگی شهرنشینان به خصوص در شهرهای بزرگ می‌شود. وجود گیاهان دارویی در فضای سبز نش‌های از توانایی اقلیمی و احوار فرهنگی منطقه است. کاشت گیاهان دارویی در فضای سبز امکان آسان‌تر شده و افزایش آگاهی اجتماعی، نسبت به گیاهان دارویی را فراهم می‌کند. همچنین اختصاص فضای سبز می‌تواند به کشت گیاهان دارویی، زمره‌برای تحقیق در جنبه‌های مختلف گیاهان دارویی را ممکن می‌سازد و سازگاری این کونه‌ها را معمول می‌کند. یکی از راه‌های بسیار مؤثر در کنترل فرسایش خاک، بر جای گذاشتن بقایای گیاهان دارویی قبل از آش است. نباید گیاهان دارویی در ارائه خدمات يوم شناختی نیز سبب توانمند هستند. برخی گیاهان دارویی دارای حدود تحقیق می‌باشد.

منابع:
اخضری، د. و اصلانی، ف. (1391) بررسی صفات مورفو-بیولوژیک گیاه دارویی کاسن در پاسخ به نش خشکی، همایش ملی علم و فنون کشاورزی، (1391) بررسی صفات مورفو-بیولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول (Thymus vulgaris L.) در باغه‌نشین، زیر، میزاب، ع. و. جانی، ع. (1389) اثر تنش خشکی بر صفات M. نشان داد که نش رطوبتی شدید باعث کاهش وزن خشک می‌گیرد (Leaf Area Index) اندام هوای و میزان سطح برگ گیاه (I) ترتیب مشابه می‌باشد.

