بررسی اثر میل جاسوسهات بر محتوای کلر، نیکوکین، پروتئن کل، کاروتئنید، نشاسته و توانایی آنزیم آمیلاز در توتون رقم کوکر ۲۴۷ در پاسخ به غلظت های مختلف یون کلر

جنب سردم، سیده معصومه دیویدن و سیده فاطمه فلاح
گروه زیست شناسی، دانشکده علوم پایه، دانشگاه گیلان
(تاریخ دریافت: ۱۲/۱۲/۱۳۹۵، تاریخ پذیرش نهایی: ۱۳۹۵/۱۰/۰۴)

چکیده:
جاسوسمیکی‌های سونه از نظر میل جاسوسهات‌های طبیعی رشد گیاهی است که به طور گسترده در گیاهان وجود دارد. نتایج حاصل از گزارشات مختلف نشان می‌دهد که کاربرد خارجی جاسوسهات‌های طبیعی گیاهی جهت نگه‌داری از گیاهان را تغییر می‌دهد. از طرفی کلر به عنوان یک عنصر ضروری در رشد محسوب می‌شود، یافته‌های دیده بوده که مقدار کم‌تری از کلر در گیاه همراه با کم‌تری از رشد گیاهان می‌شود. در حالی که مقدار بیشتری کلر یکی از عوامل مبتدی کلیت‌های توتوی می‌باشد. در این پژوهش تأثیر غلظت ۳۰ میکرومولر کلر جاسوسهات بر روی افزایش گیاه‌های مورد بررسی در مراحل اولیه رشد در یک توتون رقم کوکر ۲۴۷ در غلظت های مختلف شوری حاصل از بین کلر (۵۰، ۱۵۰ و ۳۰۰ میلی‌گرم در لیتر) به صورت گلدانی خارج از گلخانه در قالب آزمایش آکتیویتی ۲۳ پایه آب کننده با تکراری در سال زراعی ۱۳۹۱-۱۳۹۲ در مرکز تحقیقات توتوی رشت صورت گرفت. نتایج نشان می‌دهد که با افزایش غلظت کلر آب، آبی‌ایری تا ۳۰۰ میلی‌گرم در لیتر، محتوای کلر یک گیاه توتوی به صورت خنثی افزایش یافت. افزایش غلظت بین کلر تا ۳۰۰ میلی‌گرم در لیتر با افزایش میزان شرایط نشانه‌ی کلر و کاهش معنی داری غلظت آنزیم آمیلاز و محتوای پروتئن کل در برج‌های میانه‌ای می‌گردد. در حالی که مقدار نیکوکین و محتوای کاروتئنید برج‌های نیگری‌شده‌ی نیافته کاربرد خارجی میل جاسوسهات‌های مختلف کلر می‌باشد. مقدار نیکوکین و محتوای کاروتئنید، پروتئن کل و جاسوسهات در غلظت کلر ۵۰ به طور معنی‌داری افزایش یافت. در حالی که فعالیت آنزیم آمیلاز نیگری‌شده‌ی نیافته.

کلمات کلیدی: آنزیم آمیلاز، توتون کوکر ۲۴۷، میل جاسوسهات، نشاسته، نیکوکین، پروتئن کل

مقدمه:
گیاهان در دورهٔ حیات شان با انواع نشان‌های محیطی مواجه می‌شوند. این نشان‌های میانه و نیکوکین را محدود می‌کنند. با پیامد از نقاط کرای خاک شرایط مناسب شرکت فقط برای نمونه کاهش دار می‌باشد. در همین زمان کم، مراحل اساسی رشد خود را انجام دهند. در برخی زمین

Sarmad@guilan.ac.ir
کوهدیا و آلوندگی هوا. سمیت کل بیش از کمیوت آن مورد توجه است. انتوین کل به وسیله رشته جذب در گیاه تونا باعث ایجاد آرتاهای نامطبوعی از جمله ترد، شکنندگی و ضخمیت شدن برق مهر و غلظت بجا گرفتن کل در گیاه تونا (Li et al., 1994).

جذب کل اضافی از راه خاک، شهر یا آبیاری توسط آب‌های که درجه شوری آنها با آن است، اتفاق می‌افتد و این گاه اضافی باعث کاهش کیفیت تونا می‌شود. کل به‌طور کلی از یک درصد وزن خشک برق تونا باعث کاهش کیفیت محصول می‌شود (Jepson et al., 1999).

جذب کل به وسیله رشته‌های اضافی که یک فرآیند اضافی است و این فرآیند نیازمند انرژی می‌باشد و به وسیله سبیل‌سازی با یون H+ از آن می‌گردد. انتخاب می‌شود و انرژی H+ به همراه پرتوی یون OH- از طریق (Yamashita et al., 1994) نشان داده شد که این کل به‌طور کلی باعث کاهش کیفیت محصول می‌شود.

کشاپ های آبیونی صورت می‌گیرد (Layten et al., 1999). این کالا به وسیله هر مولکول آبیک اسید تنظیم می‌گردد و در شرایط ایجاد تنش شیوعی انتقال کل به ساقه محصول می‌شود. کنترل انتقال کل به ساقه تنظیم می‌شود. کلاه انتقال کل از راه کالا می‌باشد و این کلاه به‌طور کلی از راه جریان آبی‌زایی بازیابی می‌گردد (Gillham and Tester, 2005). این کالا یا هر مولکول آبیک اسید تنظیم می‌گردد و در شرایط ایجاد تنش شیوعی انتقال کل به ساقه محصول می‌شود. کنترل انتقال کل به ساقه تنظیم می‌شود. کلاه انتقال کل از راه کالا می‌باشد و این کلاه به‌طور کلی از راه جریان آبی‌زایی بازیابی می‌گردد (Gillham and Tester, 2005).
می‌شود و ضخامت برگ افزایش می‌یابد، سپس گیاه زودتر به مرحله گلدنه می‌رسد؛ اما تعداد و اندازه گلها کوچک‌تر است.

جاسوسنات‌ها از جمله میل جاسوسنات‌های مه دی‌گیه (از تصوری‌های اولیه) کننده های رشد گیاهی هستند و از مولکول‌های اسید لینولیک مشتق شده‌اند. این هورمون‌های به خوبی شناخته شده‌اند و به تعدادی از سیاری از جهاتی رشد گیاه مانند رشد ریشه، پرورش یافتن متابولیت‌های تهانوی و پاپسی به نشان‌های زیستی و غیر زیستی دانست (Jing et al., 2012).

همچنین این مولکول‌های عالی‌الامام در بروخی از سیستم‌های انتقال عامل درخود و جریان منجر به افزایش آنزیم‌های وزه اسی می‌شود که واکنش یا پیش‌بردی می‌تواند به تولد ترکیبات دفاعی مانند بیلی فنل، آکولاندیها و پروتئین‌های واژه اسی می‌سازد. بهبهان‌های این‌گونه می‌تواند در کنیه این فرآیند، افق شدن پاسخ‌های دفاعی و محافظات گیاه در برادر حمله می‌کرده‌اند، جاسوسنات‌ها (از (Kozlowski et al., 1999). مقدار جاسوسنات‌ها در برخی از بانف‌های بیشتر از بانف‌های دیگر است. به عنوان مثال درصد کل اسید جاسوسنات‌های خارجی از کل هورمون‌های فرتنگی شامل 13 درصد در تخم‌مانده و 50 درصد در گل‌های هورمون‌های است. تغییرات در ساختار و نمای گیاه همراه با حضور جاسوسنات‌ها ده‌ها بسته است. یکی از مهم‌ترین تغییرات شکل کری اندام یا ذخیره ای است. برای مثال غده زایی در پام چینی توسط جاسوسنات‌ها افزایش می‌یابد. اسیری زین‌های تحت کشید یا قبلاً به غلظت 50–100 میلی‌گرم بر لیتر نما کاری در جاسوسنات‌های آسیب‌پذیر غده‌ها را حذف 15–40 درصد افزایش می‌دهد (Kim et al., 2005). به طور معمول، از میل جاسوسنات‌های خارجی در کشت سلولی گیاهی بروی فعال‌کردن متابولیسم ثانوی استفاده می‌شود. اما مطالعاتی که در مورد تأثیر آن بر رشد گیاه صورت گرفته است، نشان می‌دهد که جاسوسنات‌ها فعالیت‌های زیست‌گو‌گوکننده مانند بارداری، دو، روشتی و اینچی دانه و دانه‌ی سرینه و همان رشد رشد و دستگاه‌های فلوستزی را دانست (Rossato et al., 2002)
محدود کننده غلظته های زیاد کلر بر روی رشد، کیفیت و ارزش تجاری برک گیا تونت و همچنین کاربرد برخی ترکیبات ترمیم کننده‌های رشد مناسب جاموسونیک اسید با مشتق منیلی ان به منظور بهبود رشد و تبادل شرایط نش از کاهش حاصل از کلری کلریک و متی جاموسونیک برای ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزای رشد و تشکیل گیاه را کلریک ترمیم گیاهی کلریک و متی جاموسونیک برای ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزای رشد و تشکیل گیاه را کلریک ترمیم گیاهی کلریک و متی جاموسونیک برای ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزای رشد و تشکیل گیاه را کلریک ترمیم گیاهی کلریک و متی جاموسونیک برای ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک ترمیم گیاهی می‌توان رقیم گیاهی بیشتری از این اجزاء رشد و تشکیل گیاه را کلریک.
سنجه درصد نیکوتین برگ: درصد نیکوتین در آزمایشگاه مووضع تحقيقات توتون رشد، با روش تقطیع بخار آب و قرانت بذب نمونه ها با استفاده از دستگاه UV visible اسپکتروفوتومتر تحقیقات و آموزش توتون به شماره سند PR-85-02-01/00 اندازه گیري شد. طبق این روش 0/5 گرم از بودر خبرگ را در ظرف تقطیع ریخته و 10 میلی لیتر سود 8 ترمال و 30 میلی لیتر آب آبی اضافه شدند. در زیر مبدت دستگاه تقطیع بیان زوره 250 میلی لیتر که محتوی 25 میلی لیتر اسید سولفوریک 2 ترمال می باشد. قرار گرفتن. مخلوط به کمک بخار آب تقطیع شده و در باندل وزه حاوالی اسید سولفوریک 2 ترمال جمع آوری شدند.
عمل تقطیع را تا حدود 200 میلی لیتر ادامه داد و پس از سرد بند باندلی وزه 0/5 گرم به حجم رساندند شدن و از دستگاه بالزن وزه 250 میلی لیتر مقادیر 25 میلی لیتر برداشتند و در بالزن وزه 100 میلی لیتر ریخته و را با اسید سولفوریک 500 میلی لیتر سود 8 ترمال جریان را در طول موج های 269 و 259 نانومتر عليه محلول شاهد با دستگاه اسپکتروفوتومتر خوانه شدن (دارفر. 1360).
درصد نیکوتین بر اساس رابطه 2 رابطه:

را به راه: {
A}_{259} = \frac{A_{2315} - A_{2825/2}}{2.6}

جذب محلول در طول موج‌های 470، 647/8 و 663/2 نانومتر CamSpec M501 Single (آسیتروفومتر) با استفاده از استیم‌اف کارتوئونید کل از رابطه ۳ (BeamUV/Visible)
برحسب میکروگرم در سانتی متر مربع سطح برگ محاسبه شد.

رابطه ۳.

\[\text{Car.T} = (1000 \times \text{A} - 1.82 \times \text{Chl.a} - 85.02 \times \text{Chl.b})/(198 \times \text{V/A}) \]

در این رابطه: حجم اسناد مورد استفاده به میلی لتر و A:
سطح دیسک برداشت شده از برگ به سانتی متر مربع است.

تجزیه و تحلیل آماری: نتایج آزمایش‌ها به کمک نرم افزار SPSS مورد تحلیل آماری قرار گرفت، برای مقایسه میانگین داده‌های آزمون انواع آزمایش‌های دیتای ویژه احتمال به طرف یک طرف برای رسم نمودارها استفاده شد.

نتایج و بحث:
غلظت پون کل: نتایج حاصل از آزمایش نشان داد که تغییرات درصد کل در غلظت‌های متفاوت کل آب ایکس و میلی گیم یافته در برگ‌های بالایی در سطح احتمال یک درصد معنی‌دار است. بر اساس مقایسه میانگین داده‌های بدست آمده (شکل ۱)، افزایش کل آب ایکس با تیمار ۵۰۰ میلی گم در لیتر موجب افزایش محصول پون کل در برگ‌ها شده است. کاربرد نیل جامسون‌های خارجی با غلظت ۳۰۰ میکرو‌میلی‌گرم در سه نیت افاضه در برگ‌های میزان تجمع کل را در برگ‌های کاهش داده و این کاهش در تیمار های ۵۰۰ و ۳۰۰ میلی گم در لیتر کل آب ایکس معنی‌دار بود.
کار یک نصرت هالوز کروه جدول نتایج، با عدد انی و میانگین جرم انی است. در این مطالعه، اکسیسایش‌های پایدار کل، کردن نخ طوفان کلی، تست‌های کنترل، کنترل سرعت و به مقدار زیاد در آن صورت قبیل است. افزایش یک ابتکار در دنیا میلی‌گرم که این پدیده‌ها به مدت تحقیق می‌باشد که نکته که می‌شود، اما در بند مدت تحقیق کاهش رشد و تفسیر سلولی و به دنبال آن تولید برگ‌های کوچک و ضخیم می‌شود (Zhao et al., 2005). همچنین کلیک یک ماده غذایی کم کنیم سیس فالکون ها با دور ۱۴۰۰۰ به مدت ۱۰ دقیقه ساترژیور در محلول روانشوند (۷۵٪-۷۰٪) کردن برای سنگین فعالیت آنزیم، ابزار دو برابر، تعادل نمونه ها لوله آزمایش آماده نمونه (یعنی از لوله ها برای کنترل و نیم هم بسته از لوله ها آنزیم به هر یک از لوله ۲۰۰ میکرویلتر باید ۵۰ میکرویلتر عصاره آنژیمی اضافه شد. به لوله های سنگین آنزیم، ۲۵ میکرویلتر نشانه‌کننده یک درصد (یک گرم نشانه‌کننده در ۱۰۰ میلی لتر باید) اضافه شد. پس از ۲۰ دقیقه از زمان شروع با لوله ها ۵۰۰ میکرویلتر محلول DNS متقه‌شود، به لوله های کنترل، ابزار و ۵۰۰ میکرویلتر DNS ۲۵۰ میکرویلتر نشانه‌کننده اضافه شد. هر میلی‌میکرویلتر تهیه استاندارد مالتوژ، به همان صورت که برای سنگین نشانه‌کننده تهیه شده، تهیه گردید. سپس تمام نمونه‌ها همراه هم در حمام آب ۴۵۰ درجه سانتی‌گراد در سرد دنیایی لیبل لیتر آب مغطر به آن اضافه شده و کاملاً هم زده شد.
سپس جذب نمونه‌ها در طول موج ۴۵۰ نانومتر توسط دستگاه اسیتروفومتر قرار گرفت و در نهایت میزان فعالیت آنزیم بر حسب میلی‌مول در دقیقه در گرم زن در برگ محاسبه گردید.

نتایج:
برای تجربه غلظت بروتونین کل ازرنگتونی کل بر اساس فرمولی کل از ۱۹۷۹ سپس Bradfords استفاده شد.

سنگین محیط کارتوئونید کل برای اندازه‌گیری کارتوئونید کل از روش Lichtenenthaler (۱۹۹۴) استفاده شد.

به این منظور یک دیسک برگی از هر یک دسته نمونه به مدت ۴۸ ساعت در پنج میلی‌لیتر هر دقیقه فراز داده شد. سپس با هالوز پنی سایه‌شده شد. مخلوط به دست آمده به مدت ۱۵ دقیقه در دمای چهار درجه سانتی‌گراد، با ۳۰۰ دور در دقیقه ساترژیور عصاره استوانه شفاف جدا شد. سپس مقدار
در آپیاری به این ترتیب رسیده که تفاوت معنی‌داری در غلظت کلسیم از آنامهای گیاهان به وسیله سطح بردن کلری کلسیم به اطراف آن گیاهان افزایش یافت (Marschner, 2012). این مقدار به طور کلی به تسره و سرعت گیاهان افزایش گیاهان دارای کمبود کلر به تدریج در کشاورزی با طیعت مشاهده شد. اگرچه غلظت زیاد کلر بافت می‌تواند برای گیاهان برای مزایای سمی باشد و ممکن است در مناطق نزدیک کند، تأثیر کلر در رشد گیاه به نوع گیاه بستگی دارد. غلظت کلر بالا از ۱۰ میلی‌گرم بر گرم خشک گیاه موجب کاهش رشد، کیفیت و ارزش تجاری برگ و احیاء خصوصیات نامطلوب در برگ خشک گیاه می‌شود (Li et al., 1994). بر اساس نتایج موجود با افزایش غلظت کلر آپیاری، محیوت کلر گیاه یا آپیاری (۲۴۷) به طور خشک که این تفاوت با تغییرات در معنی‌داری از سطح کلر در آپیاری مورد شرایط مختلف به وجود آمده است (Munns et al., 2006). بر اساس نتایج موجود (شکل ۱) کاربرد مدل جاسوسنات خارجی (۳۰ میکرومتر) در سه نیروی افزایش برک یا موج کاهش معنی‌داری دارد مدل کلری در برگ خشک گیاه افزایش می‌یابد. عملیات غلظت کلر ۱۰۰ و ۱۵۰ میلی‌گرم در لیتر آپیاری دارد. بر اساس بسیاری از گزارش‌های مختلف در عملیات سبیل سلیم و همکاران (۱۳۹۰) و چاوشی و همکاران (۱۳۸۸) مدل جاسوسنات نیز مدل کلر یا کلر باید تأثیر گیاه خاصی می‌کند. در Chin یا بهبود شرایط کیما مورد است. گزارش کردن که توانایی کلسیم در تعیید آثار مربوط شوری به وسیله مهار جذب سدیم نشان داده است. نیزروه و همکاران (۱۳۹۱) در تغییرات مختلف جاسوسنات بر گیاهان غلظت کلسیم تحت تأثیر گیاه‌های مختلف کلسیم (۵۰۰) و (۱۵۰) رم کورک. ۳۴۷ تا تحت تأثیر مختلف تیمار کلسیم کلسیم

![شکل ۱- اثر غلظت کلر آپیاری و مدل جاسوسنات بر محیوت گیاهی گیاه تونتون رقم کورک ۴۳۷ اختلاف‌های معنی‌دار (P<0.01)]](image)
میزان تجمع نیکوتین در تیمار کلر ۵۰ با حضور میلی جاموسنات مشاهده شد. در تیمار افزایش گلخانه کلر آبی افزایش کلر کلر ابیاری ۱۳۰۰ رنگ عنی‌دار بر گلخانه نیکوتین برگ های میلی ایجاد نکرد.

Karaizogolou (۲۰۰۶) بیان کرده که اثر کلر روی گلخانه نیکوتین میلی، ضایعات در مردان و زنان و همکارانی (۲۰۰۶)، میزان تجمع کلسم را افزایش یافت که به طور مدل کلسم در تیمار ۳۰۰ میلی گرم در لیتر مشاهده شد. کاربرد مدل جاموسنات تجمع کلسم را نسبت به تیمارهای بدون مدل جاموسنات فقط در تیمار ۳۰۰ میلی گرم در لیتر کاهش می‌یابد.

میزان تجمع کلزیم را افزایش یافت که در مردان و زنان و همکارانی (۲۰۰۶) و اهوان (۲۰۰۶) بیان شد. کاربرد مدل جاموسنات تجمع کلزیم را نسبت به تیمارهای بدون مدل جاموسنات فقط در تیمار ۵۰ میلی گرم در لیتر کاهش می‌یابد.

درصد نیکوتین برگ: تغییرات درصد نیکوتین برگ گیا در غلظت های مختلف کلر آب آبیاری و مدل جاموسنات خارجی اثر بیوتوسن اسپرمیک اسید نظیم می‌شود. با توجه به مشترک بودن یکنی از مسیر عملکرد مدل جاموسنات و اسپرمیک اسید، منابعی بسته شدن روزه و احتمالاتی دریچه برگ‌ها و همچنین ارگانی مشابه کلر بر روی زدن های اسپرمیکس را کاهش می‌دهد.

درصد نیکوتین برگ: تغییرات درصد نیکوتین برگ گیا در غلظت های مختلف کلر آب آبیاری و مدل جاموسنات خارجی اثر بیوتوسن اسپرمیک اسید نظیم می‌شود. با توجه به مشترک بودن یکنی از مسیر عملکرد مدل جاموسنات و اسپرمیک اسید، منابعی بسته شدن روزه و احتمالاتی دریچه برگ‌ها و همچنین ارگانی مشابه کلر بر روی زدن های اسپرمیکس را کاهش می‌دهد.
باستخدام تغییر ساختار آنها می‌شود (Singh et al., 2000).

(عکس)

شکل 2 - اثر غلظت های کل آب آبیاری و متی جاموسونات بر میزان نیکوتین بکپ های توتون رقم کوکر ۳۴۷، اختلاف غیر معنی دارد بر اساس آزمون دانکگه با حروف مشترک نشان داده شده است (P=0.05).

شکل 3 - اثر غلظت های کل آب آبیاری و متی جاموسونات بر میزان فعالیت آنزیم ألفا آیامیلاز بکپ های توتون رقم کوکر ۳۴۷، اختلاف غیر معنی دارد بر اساس آزمون دانکگه با حروف مشترک نشان داده شده است (P=0.01).

تا تیمار ۱۵۰ میلی گرم در لیتر فعالیت آنزیم آلفا آیامیلاز تغییر معنی دارد مشاهده نشده، اما فعالیت آن در تیمار کلر ۳۰۰ کاهش معنی دارد بالای ۰.۰۵ همان طور که مشاهده می‌شود کاربرد متفاوت جاموسونات خارجی با غلظت ۳۰ میکرومولار بافت معنی دارد بر میزان فعالیت آنزیم ألفا آیامیلاز در تیمارهای مختلف کلر آب آبیاری ایجاد نکرد.

کربوهیدرات های مانند قنها و نشاسته در نش شوری تجمع می‌یابند و عمل مهم آن‌ها محافظت اسیدی و ذخیره کردن و جاروبرد کردن رادیکال‌های آزاد می‌باشد که نش شوری...
شکل ۴- اثر غلظت های کلر آل آبیاری و مثل جاسوسی بالا میزان کاشتگی برگ های نرخ کوکر ب‌۴،۰، ۳ فزل ۴ و ۳ در نوسان شدید از اندازه‌گیری نتایج نشان داده شده است (P<0.01)

ارتباط غلظت کلر و دینک دوم‌فازه و همکاران (۲۰۰۴) در تنش شوری، مقدار نشانه در بخش

های هوابی بیشتر بوده، در نتیجه این کامیار برگ بیشتر می‌شود. در این راستا کاهش

فعالیت تنها آلفا آمبار تنش شوری به دنبال کاهش

Lin and Diao (۱۹۹۵). حیاتیت تراز شوری کاهش و کمیابی‌سازی در بخش متغییر می‌باشد. تفاوتی

مطالعه فرهنگ (۱۹۹۱) نشان داد که فعالیت آلفا آشفته

از کاهش آمبار تنش شوری کاهش می‌پاید. تفاوتی

فعالیت تنها آلفا آمبار از یکبیچه

که تأثیر تنش شوری باعث کاهش رشد این یکبیچه شد

Sangeetha (Dkhil and Denden, ۲۰۱۰) درصدی فعالیت آزمایش در گیاه دار می‌شود در نتیجه این کامیار

۱۰۰ میلی‌مولار سدیم کرو کاهش دارد. همچنین

نتایج Muscolo و همکاران (۲۰۰۳) ویژگی‌های نشان دهنده فعالیت آمبارها در غلظت‌های بالای شوری حاصل

فیزیولوژی (۱۳۹۱) نشان داده شده است که داشت های عدس کاهش می‌پاید.

پرونده داده شده در دانش های عدس کاهش می‌پاید.

کاهش فعالیت تنها آلفا آمبار با توجه می‌پاید. نشان دهنده

تیمار که ۲۰۰ با توجه به اینکه این آزمایش مدار تجربی

نشانه‌است دار در انتظار نتیج. به نظر می‌رسد بین میزان

خلاف غلظت های کلر آل آبیاری و مثل جاسوسی بالا میزان کاشتگی برگ های نرخ کوکر ب‌۴،۰، ۳ فزل ۴ و ۳ در نوسان شدید از اندازه‌گیری نتایج نشان داده شده است (P<0.01)

ارتباط غلظت کلر و دینک دوم‌فازه و همکاران (۲۰۰۴) در تنش شوری، مقدار نشانه در بخش

های هوابی بیشتر بوده، در نتیجه این کامیار برگ بیشتر می‌شود. در این راستا کاهش

فعالیت تنها آلفا آمبار تنش شوری به دنبال کاهش

Lin and Diao (۱۹۹۵). حیاتیت تراز شوری کاهش و کمیابی‌سازی در بخش متغییر می‌باشد. تفاوتی

مطالعه فرهنگ (۱۹۹۱) نشان داد که فعالیت آلفا آشفته

از کاهش آمبار تنش شوری کاهش می‌پاید. تفاوتی

فعالیت تنها آلفا آمبار از یکبیچه

که تأثیر تنش شوری باعث کاهش رشد این یکبیچه شد

Sangeetha (Dkhil and Denden, ۲۰۱۰) درصدی فعالیت آزمایش در گیاه دار می‌شود در نتیجه این کامیار

۱۰۰ میلی‌مولار سدیم کرو کاهش دارد. همچنین

نتایج Muscolo و همکاران (۲۰۰۳) ویژگی‌های نشان دهنده فعالیت آمبارها در غلظت‌های بالای شوری حاصل

فیزیولوژی (۱۳۹۱) نشان داده شده است که داشت های عدس کاهش می‌پاید.

پرونده داده شده در دانش های عدس کاهش می‌پاید.

کاهش فعالیت تنها آلفا آمبار با توجه می‌پاید. نشان دهنده

تیمار که ۲۰۰ با توجه به اینکه این آزمایش مدار تجربی

نشانه‌است دار در انتظار نتیج. به نظر می‌رسد بین میزان

نوبت آزمایش گیاهی، جلد ۲۶، شماره ۷، سال ۱۳۹۷

فرآیند و کارکرد گیاهی

Downloaded from jispp.iut.ac.ir at 23:08 IRDT on Tuesday August 6th 2019
فناوری آمیزه‌ها و میزان نشانه‌های در نشش شوری حاصل از بیون کل ارتباط بوجود دارد. کاربرد متیل جامشامتات خارجی با کاهش معنی‌دار نشانه‌های در نشش (شکل 4) و عدم تأثیر معنی‌دار بر فعالیت آنری آمیزه‌ها (شکل 3) در جیل کار، هر ۵۰۰ همراه بود و همکاران (۱۹۹۸) در پرورش دی‌ال‌کا (۵۰ میلی‌مولار) و جیل‌های ۶ میکرومولار نشان دادند که کاربرد جیل‌های باعث افزایش فعالیت آنری و کاهش نشانه‌ها شد که مقداری به‌این طور حاضر می‌باشد. همانطور که در اشاره‌شان، جامشامتات در این است. مغان (۵۰ میلی‌مولار) و جیل‌های ۶ میکرومولار موجب افزایش معنی‌دار متیل جامشامتات کل در تیمار ۵۰ میلی‌گرم در لیتر موجب گاه پروتئین کل برگ شده است. مغان (۵۰ میلی‌گرم در لیتر کل آب آبی‌ریز شده است، ولی بر تیمار ۵۰۰ میلی‌گرم در لیتر کل آب آبی‌ریز شده است دارند لی. (۲۰۱۰) و افتاده‌های (۲۰۱۴) Zea maize با متیل جامشامتات در نشش خشکی با نتایج این پژوهش مطابقت دارد. محتوای کاروتئید: مقایسه میانگین داده‌ها در شکل ۶ نشان می‌دهد با افزایش غلظت یون کل تیمار ۳۰۰ محتوای کاروتئید کل غلظت معنی‌داری ایجاد نشد. به‌کارگیری متیل جامشامتات به شکل افشانه به میزان ۳۰ میکرومولار محتوای کاروتئیدها را به سطح معنی‌دار یک درصد افزایش داد. پیشترین مقدار کاروتئید کل در تیمار کل ۵۰ میکرومولار مشاهده شد. رگ‌پیش‌های کاروتئیدی علاوه بر نتایج انرژی برانگیخته‌کنی در فتوستری برای صحت‌دارهای فتوستری نقش حفاظتی دارد.
تیمار با میل جامعه‌ها با تنفس دادن فعالیت سیستم آنی اسیدانی (اعم از آنزیم و غیر آنزیمی) می‌تواند موجب حذف رادیکال‌های آزاد و کاهش تنگی اسیدانی در گیاهان شود (Wang, 1999) که در پذیرش حاضر در تیمار ۵۰ کالرید کاهش نشته‌بها واسطه‌ای بین امر رخ داده است.

نتیجه‌گیری کلی:
با توجه به نتایج به دست آمده از پژوهش، چنین به نظر می‌رسد که تنگی واقعی در تیمار ۳۰۰ کالر آب آبیاری اتفاق افتاده که افزایش میزان تولید نشانده و محتوای کالر که احتمالاً به علت سهیت ایجاد شده توسط کالر می‌یافته; کاهش میزان این رنگ‌ها به عنوان آنتی اسیدان غیر آنزیمی از پراکسیدن شدن لیپیدها و تنگ اسیدانی جلوگیری می‌کند. همچنین این ترکیبات انرژی زیادی را از فتوسنتز های I و II به صورت واکنش‌های شیمیایی بی ضرر دفع کرده و موجب محفظه غشای کارپولیستی می‌شود. نتایج پژوهش حاضر نشان داد به کارکردن می‌تواند در تولید سیستم جامعه‌های خارجی با غلظت ۳۰ میکرومولار موجب افزایش معنی‌دار رنگ‌های کاروتینیدی در تیمار کلر ۵۰ میکرومولار شد که این نتیجه، دلیل دیگری می‌تواند بر نقش تبدیل کننده میل جامعه‌ها در شرایط نشانگی است.
کاروتینیدها توسط اسیدی می‌شوند و می‌تواند تولید کرده‌های فعال اکسیژن را کاهش دهد (Koryo, 2006).

شکل ۵
اگر آب آبیاری (پاکی گرم بر لیتر)

![Shap 5](image5)

شکل ۶
اگر آب آبیاری (پاکی گرم بر لیتر)

![Shap 6](image6)
فعالتی آزمایشگاهی و کاهش محیط‌های بروئنین کرک ها در اثر سرمای کرک رخ داده است و تغییری در میزان نیکوتین و محیط کاروتئنی بربه گیاه توزت صورت نگرفت. کاربرد بروئینات خارجی موجب افزایش نیکوتین، بروئنین کرک

منابع:

Corella (1994) Determination of total alkaloids (as nicotine) in tobacco by continuous flow analysis. Coresta recommended method No 35.

