بررسی اثر میل جاموسنات بر محتوای کلر، نیکوتین، پروتئین، کاروتئنئید، نشاسته و فعالیت آنزیم آلفا آمیلکاز در توتون رقم کوکر ۳۴۷ در پاسخ به غلظت های مختلف یون کلر

جنت سردم، سیده مصوصه دیوید و سیده فاطمه فلاح
گروه زیست شناسی، دانشگاه علم پایه، دانشگاه گیلان
(تاریخ دریافت: ۲۰۰۵/۰۴/۱۳۹۵، تاریخ پذیرش نهایی: ۱۳۹۵/۰۸/۰۹)

چکیده:
جاموسنات ایمیل و استر میل (میل جاموسنات) یکی از اکسیرش کننده های طبیعی رشد گیاهی است که به طور گسترده در گیاهان وجود دارد. نتایج حاصل از گزارشات مختلف نشان می‌دهد که کاربرد خارجی جاموسنات‌ها باعث بهبود عملکرد توتون می‌شود. در حالی که مقادیر بیشتر گیاهی از عوامل مغناطیسی یا کربنات توتون می‌باشد. در این پژوهش تأثیر غلظت ۳۰ میکرومولر میل جاموسنات بر صورت محلول پاشی به روی برگ‌ها در مراحل اولیه رشد در گیاه توتون رقم کوکر ۲۴۷ در غلظت های مختلف شوری حاصل از یون کلر (۵۰، ۱۵۰ و ۳۰۰ میلی‌گرم در لیتر) به صورت گلدانی خارج از گلخانه در قالب آزمایش فاکتوریل ۳×۳ با پایه طرح کامل‌التصادفی در ۴ تکرار در سال زراعی ۱۳۹۰-۱۳۹۱ در مرکز تحقیقات توتون رشت صورت گرفت. نتایج نشان می‌دهد که به افزایش غلظت کلر بی‌طرفی ۲۰۰ میلی‌گرم در لیتر به افزایش اثرات محلول منعی دار مقدار نشانه می‌کشد و کاهش معنی‌دار اندازه بزرگ‌تر آنزیم آلفاآمیلکاز و محتوای پروتئین کل در برگ‌های میانی همراه گردید. در حالی که مقادیر نیکوتین و محتوا کاروتئنئید برگ ها نیز تغییر نداشتند. کاربرد خارجی میل جاموسنات‌ها، کاهش معنی‌دار نیکوتین و محتوا کاروتئنئید و پروتئین کل در غلظت کلر ۵۰ به طور معنی‌داری افزایش یافت. در حالی که فعالیت آنزیم آلفا آمیلکاز نیز افزایش یافت.

کلمات کلیدی: آلفا آمیلکاز، توتون کوکر ۳۴۷، میل جاموسنات، نشاسته، نیکوتین، پروتئین، کاروتئنئید

مقدمه:
گیاهان در دوره حیات شان با انواع تنها محیطی مواجه می‌شوند، این تنها شناس نمود که گیاهان را محدود می‌کند. در برخی از نقاط شرایط منابع رشد فقط برای مدت کوتاهی دوم دارد و گیاهان مهم‌ترین که در همین زمان کم، مراحل اساسی رشد خود را انجام دهنده در برخی
کوهداری و آلودگی هوا، سیستم کلی بیش از کمبوت آن مورد توجه است. آن‌ها کلی به درجه‌ی رشد جذب می‌شود. از طریق کلر در گیاه تولید شده کلری از فرآیندهای نامطلوبی جامد در محفظه و در فضایی که در گیاه تولید شده (Li et al., 1994) بزرگ، کلری پس از درصد و خشک کلری باتری کلاسیک کلری (Levitt, 1980) و گیاهان پیچیده است که در آن نگرش زیست‌شناسی، یک فرآیند زیست‌شناسی و بوشیمیا در گیاه سبزیجاتی در اثر استرسیون در حیاتی نیز تغییرات در گیاهان تیتانیا مانند انقباض و با بهبودیان آنها، ستون محصول های امریکایی، تجربه آن چه در جهت تنظیم اسمری و تغییر در ترکیب پروتئین‌ها برای حفظ و استقرای سلولی هست (Munns and Tester, 2008) با توجه به نگرش زیست‌شناسی، یک فرآیند زیست‌شناسی و بوشیمیا در گیاه سبزیجاتی در اثر استرسیون در حیاتی نیز تغییرات در گیاهان تیتانیا مانند انقباض و با بهبودیان آنها، ستون محصول های امریکایی، تجربه آن چه در جهت تنظیم اسمری و تغییر در ترکیب پروتئین‌ها برای حفظ و استقرای سلولی هست (Munns and Tester, 2008).

افراشی شوری در خاک باعث کاهش رشد و کاهش محصول می‌شود. شرایط خاک باعث کاهش رشد و کاهش محصول می‌شود. شرایط خاک باعث کاهش رشد و کاهش محصول می‌شود. شرایط خاک باعث کاهش رشد و کاهش محصول می‌شود. شرایط خاک باعث کاهش رشد و کاهش محصول می‌شود. شرایط خاک باعث کاهش رشد و کاهش محصول می‌شود.

Munns and Tester, 2008). وجود کلر برای تجربه آب در فنوسیستم II ضروری است. کلر در این فنوسیستم باعث پایداری حالت اکسبایشی منجر به کلرولیتی می‌شود. برای نتیجه‌ی دوخته به فنوسیستم II برای پیوند برقرار کردن با کلر باردار می‌شود. در واقع کلر از هم گسخیالی به مطابقی در فنوسیستم II جلوگیری می‌کند (Ho, 1988) (معمولاً گیاه در کتیپا مدت طولانی نمی‌تواند افزایش کلر را دارد، اما در بلند مدت افزایش کلر باعث کاهش رشد و تحمیل سلولی می‌شود. در نتیجه رشد بی‌کاری یک گیاه جدید گزارش آن که کجک در تاریخ متفاوت نظر آب‌آوری، ذخیره خاک، باران
سليمی و همکاران (1389) روی گیاه بابونه شناسی دادند که درصد آسیب به شکر در سطح احتمال 1 درصد تحت اثر مقابل اسیری کردن با ملح جامشون و نش تر شوری قرار گرفت. نتایج نشان داد افزایش سطح شوری باعث افزایش درصد آسیب به شکر می‌باشد. این نتایج با مطالعات دیگر رضفته کرده که نش افزایش سطح شوری به شکر می‌باشد.

چاپی‌ها و چاپی‌ها و در مطالعات قبلی همچنین از تأثیرات جامشون بر سطح تنفسی و نش انرژی در بیماری‌های ناشی از تغییرات شوری به شکر و یا گیاهان با متغیرهای احتمالی مربوط به شکر در نتایج شکسته شده است. این نتایج با مطالعات قبلی همچنین از تأثیرات جامشون بر سطح تنفسی و نش انرژی در بیماری‌های ناشی از تغییرات شوری به شکر و یا گیاهان با متغیرهای احتمالی مربوط به شکر در نتایج شکسته شده است.

کلریکی
 Schmidt و نشاطی کامل، یکنواخت (با ارتفاع 135 ـ 150 سانتیمتر) محدود کننده غلظت‌های زیاد کلر کربنی (ب) روش شیمیایی، کیفیت و ارزش تجاری برگ گیاه میتوان و همچنین کاربرد برخی تیل‌های ترکیه کننده‌های شیمیایی جامعه‌ای اسید با مشتق متیلی این به معنی رشد و تحلیل شرایط تنش در گیاهان، تحقیق حاضر به بررسی اثرات کلر آب ایلایی حاوی یک کلری کلیسی و میلی جامعه‌ای برای انتخاب فیزیولوژیکی و فعالیت آنزیم‌های تنش گیاه، توزیع رقم کوکر 474 اختراع‌های این واریته، به عنوان یک رکم تجاری مناسب و منطقی برش آب و هوا در استان‌های شمال ایران کشت می‌شود.

مواد و روش:

این طرح در سال زراعی 91–92 در مرکز تحقیقات موسمه تحقیقات گیاهان با مختصات جغرافیایی طول 49 درجه 31 دقیقه شمالی و عرض 73 درجه و 47 دقیقه شمالي با متر ارتفاع از سطح دریا و با وضوح اقلیمی معادل املاک، از گیاه تونی واریته کوکر 474 مربوط به تونی های تیپ غربی (پیرینیا) که از تالاب بین کوکر 319 و کوکر 258 حاصل شده و به آب و هوای استان های شمال کشور به خوبی با سازگاری دار، استفاده شد. این واریته از ارقام تونی تجاری محصول می‌شود. نشاطی تونی در این طرح نشاطی تونی که از مرکز تحقیقات گیاهان که به روش فلوس سیستم (خزانه شناور) در آب حاصل شده بود، استفاده شد.

سنگش کلم: اندامه گیری مقادیر یون کلر به روش Emami (1991) انجام شد. بر اساس این روش 1 گرم از پودر خشک نمونه کلر مایع 100 میلی لیتر ریخته و به آن 100 میلی لیتر آب مقتصر اضافه کرد. همچنین در حمام آب جوش تونی داد و سپس آن را صاف شد. همچنین 10 میلی لیتر از محلول صودا شده را برداشت و از این 100 میلی لیتر ریخته شد و به آن 100 میلی لیتر آب مقتصر اضافه شد. سپس از این دیگری به عنوان شاهد 110 میلی لیتر آب مقتصر ریخته شد. به در این 2 میلی لیتر کروم‌های پانتاسین 6 درصد 8 گرم کروم‌های پانتاسین در 100 میلی لیتر آب MCA (مکزیم کلر آب مقتصر) به عنوان عفر اضافه کرد و هر دو

شطرنج کلم: اندامه گیری مقادیر یون کلر به روش Emami (1991) انجام شد. بر اساس این روش 1 گرم از پودر خشک نمونه کلر مایع 100 میلی لیتر ریخته و به آن 100 میلی لیتر آب مقتصر اضافه کرد. همچنین در حمام آب جوش تونی داد و سپس آن را صاف شد. همچنین 10 میلی لیتر از محلول صودا شده را برداشت و از این 100 میلی لیتر ریخته شد و به آن 100 میلی لیتر آب مقتصر اضافه شد. سپس از این دیگری به عنوان شاهد 110 میلی لیتر آب مقتصر ریخته شد. به در این 2 میلی لیتر کروم‌های پانتاسین 6 درصد 8 گرم کروم‌های پانتاسین در 100 میلی لیتر آب MCA (مکزیم کلر آب مقتصر) به عنوان عفر اضافه کرد و هر دو

شطرنج کلم: اندامه گیری مقادیر یون کلر به روش Emami (1991) انجام شد. بر اساس این روش 1 گرم از پودر خشک نمونه کلر مایع 100 میلی لیتر ریخته و به آن 100 میلی لیتر آب مقتصر اضافه کرد. همچنین در حمام آب جوش تونی داد و سپس آن را صاف شد. همچنین 10 میلی لیتر از محلول صودا شده را برداشت و از این 100 میلی لیتر ریخته شد و به آن 100 میلی لیتر آب مقتصر اضافه شد. سپس از این دیگری به عنوان شاهد 110 میلی لیتر آب مقتصر ریخته شد. به در این 2 میلی لیتر کروم‌های پانتاسین 6 درصد 8 گرم کروم‌های پانتاسین در 100 میلی لیتر آب MCA (مکزیم کلر آب مقتصر) به عنوان عفر اضافه کرد و هر دو

شطرنج کلم: اندامه گیری مقادیر یون کلر به روش Emami (1991) انجام شد. بر اساس این روش 1 گرم از پودر خشک نمونه کلر مایع 100 میلی لیتر ریخته و به آن 100 میلی لیتر آب مقتصر اضافه کرد. همچنین در حمام آب جوش تونی داد و سپس آن را صاف شد. همچنین 10 میلی لیتر از محلول صودا شده را برداشت و از این 100 میلی لیتر ریخته شد و به آن 100 میلی لیتر آب مقتصر اضافه شد. سپس از این دیگری به عنوان شاهد 110 میلی لیتر آب مقتصر ریخته شد. به در این 2 میلی لیتر کروم‌های پانتاسین 6 درصد 8 گرم کروم‌های پانتاسین در 100 میلی لیتر آب MCA (مکزیم کلر آب مقتصر) به عنوان عفر اضافه کرد و هر دو
سنگش درصد نیکوتین بروگ: درصد نیکوتین در آزمایشگاه موسمه تحقیقات توتون رشد، با روش تقطیر بخار آب و قرانت جذب نمونه‌ها با استفاده از دستگاه UV-visible استیکترونومتر تحقیقات و آموزش تیترانسه به شماره سند PR-85-02-01/01 به اندامگی‌ریزی شد. طبق این روش 0.25 گرم آب در خون خشک برگ با طراحی تقطیر ریخته و 10 میلی لیتر سود 8 نیکوتین و میلی لیتر مکا اضافه شدند. زیر بردستگی تقطیر بین زؤو 0.5 میلی لیتر که محصول 55 میلی لیتر اسید سولفوریک 2 نیکوتین می‌باشد. قرار گرفته. مخلوط به 2 مکا بخار آب تقطیر شده و در بین زؤو حاوی اسید سولفوریک 2 نیکوتین جمع آوری شدند.

عمل تقطیر را تا حدود 200 میلی لیتر ادامه داده و به آب شن بار زؤو 0.25 میلی لیتر مقدار 55 میلی لیتر که بدست آمده با استفاده از دستگاه UV-visible در طول موج های 236 و 259 نانومتر على محلول شاهد با دستگاه اسیکترونومتر خواهد شد (دارفاوی، 1994).

درصد نیکوتین بر اساس رابطه 2 راهه شد:

\[
\text{راطه 2: } A_{299} \times (A_{235} \times A_{282/2}) = \frac{A_{299}}{A_{282/2}}
\]

سنگش نشانه‌برگ: برای اندازه‌گیری میزان نشانه‌برگ 100 میلی لیتر نمونه، فریز شده 70 را ون، کرده و با اندازه‌گیری عمومی تیتر، که به لوله آزمایش در دار متخلخل کرده و به مدت 5 دقیقه به صرعت 3000 سانتیفیوژش شده تا ماید جامد و به تنش شود. سپس محلول روان‌وزا به دور ربخه و با ایستاده‌گیری میله‌ها، 80٪ این روش را بافت تغییر سطح را توسط نیتروژن مالی در هاوار چنین کامل‌سازی و به فیلتر منتقل می‌کنیم و CaCl۲ با 5/2 pH یک میلی لیتر باف، استاتس سدیم 3 میلی‌لیتر به آن اضافه کرده و حجم نمونه را یادداشت می‌کنیم.

سنگش نعمت آئین آلفا امیلز: برای استخراج آئین آلفا امیلز (Cuglilmenetti، 1995) اسفاده‌نشان استفاده شد. بر اساس آمیلز از روش این روش 0.5 گرم از این طرف شده را توسط نیتروژن مالی در هاوار چنین کامل‌سازی و به فیلتر منتقل می‌کنیم و CaCl۲ با 5/2 pH یک میلی لیتر باف، استاتس سدیم 3 میلی‌لیتر به آن اضافه کرده و حجم نمونه را یادداشت می‌کنیم.
جذب محلول در طول موج‌های ۴۰۰،۴۱۰،۴۲۰،۴۳۰،۵۹۰،۶۰۰،۶۱۰،۶۲۰،۶۳۰،۶۴۰،۶۵۰،۶۶۰،۶۷۰،۶۸۰،۶۹۰،۷۰۰ و ۷۱۰ نانومتر CamSpec M501 Single با استفاده از اسیستوفرمتر (BeamUV/Visible) قارتهای شد. کاروتئنید کل از رابطه 3 بر حسب میکروگرم در سانتی‌متر مربع سطح برق محاسبه شد.

\[\text{ربابه 3} \]

\[\text{Car.T} = \left(1000 \ A_{470} - 1.82 \ Chl.a - 85.02 \ Chl.b \right)/\left(198 \times V/A \right) \]

سپت دیسک برداشت شده از برق به سانتی‌متر مربع است. نتیجه و تحلیل آماری: نتایج آزمایش‌ها به کمک نرم‌افزار SPSS مورد تحلیل آماری قرار گرفت، برای مقایسه میانگین داده‌ها از آزمون دانکی و آزمون آنوا استفاده شد. از ترم افزار Excel برای رسم نمودارها استفاده شد.

نتایج و بحث:
غلظت پون کل: نتایج حاصل از آزمایش نشان داد که تغییرات درصد کل در غلظت فاصله متفاوت کلسی آبی‌ای و میلی جامینات در برق های بالایی در سطح احتمال یک درصد معنی دار است. بر اساس مقایسه میانگین داده‌های بدست آمده (شکل ۱)، افزایش کلسی آبی‌ای نتیجه تیمار میلی گرم در لیتر موجب افزایش محتمال پون کل در برق ها شده است. کاربرد میلی جامینات خارجی با غلظت ۳۰ میکرومولار در سه نیوی افشانگر میزان تجمع کلسی در برق های کاهش داد و این کاهش در تیمار های ۱۵۰ و ۲۰۰ میلی گرم در لیتر کلسی آبی‌ای معنی دارد.

کل یک عنصر هالوژن کروه جهاری جدول تناوبی با عدد اتمی ۱۷ و مولکول جرم اتمی ۳۵/۷. نتایج استاتیسیکی با پایداری کلسی در صورت آبی‌انک نک فتوئیک کلسی است. پیوند کلسی درست است و تجمع کلسی به سرعت و به مقدار زیادان در آن صورت می‌بگردد. افزایش یک در گیاه‌افشاف و کوئین مدت تحلیل می‌شود. اما در بدن مدت باعث کاهش رشد و تقسم سولول‌ها به دنبال آلی و تولید برق‌های گیاهی و ضخیم می‌شد (Zhao et al., 2005).

کمیت. سپس فلائون ها با دور ۱۴۰۰۰ به مدت ۱۰ دقیقه سانتی‌پرس شد و محلول روشناور جنگ و بر فیبر ۷۰-۷۵ متقابل گردید. برای سنجهات نمونه ابتدا به بر انتها مقدار نمونه ها لوله آزمایش آماده نموده (یعنی از لوله ها برای کنترل و نیم دیگر برای اسپت نمونه آزمایش) به هر کیک از لوله ها ۲۰۰ میکروپالتر با ۱۰۰ میکروپالتر عصاره آنزیمی اضافه شد. به لوله های سنجهات آزمایش ۲۰۰ میکروپالتر نشانه‌های یک درصد (یک گرم نشانه‌های ۱۰۰ در میلی لیتر بافر) اضافه شد. پس از ۲۰ دقیقه از زمان شروع به لوله ها ۵۰۰ میکروپالتر محلول دی‌تی‌وی‌سی‌ال‌ایسید (DNS) اضافه شد تا غلظت آزمایش DNS مقرون به لوله های کنترل، ابتدا ۵۰۰ میکروپالتر DNS سپس ۲۰۰ میکروپالتر نشانه‌های اضافه شد. همکنون نمونه های استاتیسیک متانزه به همان صورت که باید سنجهات نشانه نهایی شده، نمایندگی گردید. سپس تمام نمونه ها در حمام آب جوش به مدت ۵ دقیقه قرار گرفت و پس از سرد شدن، ۵ میلی لتر آب فشرد بر آن اضافه شده و کاملاً هم زده شد. سپس جذب نمونه ها در طول موج ۴۵۰ نانومتر توسط دستگاه اسیستوفرمتر قارتهای شد و در نهایت میزان فعالیت آنزیم بر حسب میلی مول در دقیقه در کرم زون تر برق محاسبه گردید.

سنجه پروتئین کل: برای تعیین غلظت پروتئین کل از روش Bradford (1976) استفاده شد و حجم مناسبی از عصاره حاوی ۱۰۰ میکروپالتر پروتئین از عصاره استفاده شد. سپس جذب نمونه ها در طول موج ۴۵۰ نانومتر خوانده شد. غلظت پروتئین کل بر اساس مقایسه با مقدار BSA (mg/ml) بر علوان استاتیسیک محاسبه شد.

سنجه محیط کاروتئنید کل: برای اندازه‌گیری کاروتئنید کل از روش Lichtenenthaler (1989) استفاده شد. به این منظور یک دیسک گیاهی از هر بوته به مدت ۴۸ ساعت در پنج میلی‌لتر است و درصد قرار داده شد. سپس با هالو چسب سالیدیته شد. مخلوط به دست آمده به مدت ۱۵ دقیقه در دمای چهار درجه سانتی‌گراد با دو دور در دقیقه سانتی‌پرس شدند. عصاره استاتیسیک شفاف جدا شد. سپس مقدار
در آب آبیاری به این ترتیب رصد شده که تفاوت معنی‌داری در غلظت بکسری در آب آبیاری بیشتر گیاهان است و حداقل نیاز به کلر برای رشد محصول 1 گرم بر گیلگرم وزن خشک گیاه بیشتر شده است (Marschner، 2012). این مقدار به طور کلی به وسیله بارندگی تأمین می‌شود و گیاهان دارای کمبود کلر به ندرت در کشاورزی با طبیعت مشاهده می‌شوند. اگرچه غلظت زیاد کلر بافت می‌تواند برای گیاهان زراعی سرمای بیشتر و ممکن است کشاورزی را در مناطق شور محصور کند، تأثیر بیشتر گیاه به نوع گیاه بستگی دارد. غلظت کلر بالاتر از 10 میلی گرم بر گیلگرم وزن خشک گیاه موجب کاهش رشد، کیفیت و ارزش تجاری برک و اکوسیستم‌های تروپیکال می‌شود.

بر اساس نتایج موجود با افزایش غلظت کلر آب آبیاری حساسیت آب آبیاری به شیوه موج‌بندی کلر در پنج طبقه مختلف گیاه از طریق آزمون تیامار کلر در میان 100 و 300 میلی گرم در لیتر آب آبیاری سنجش می‌شود.

بر اساس تحقیقات انجام شده در گزارش کردنی که توانایی کلر در تصفیه آثار مربوط شوری به وسیله بارندگی نشت در آب آبیاری و همکاران (1991) در تعویض تأثیر مختلف جامدات بر مردان غلظت کلر در پنج طبقه مختلف کلر در میان 100 و 300 میلی گرم در لیتر آب آبیاری متفاوتی می‌دهند که این یافته با نتایج تحقیقات سیب‌تاریک از محققان جهان حسنی و همکاران (1988) و تیموری و همکاران (1990) یقینی‌تر می‌شود.

مصرف غلظت در آب آبیاری به این ترتیب رصد شده که تفاوت معنی‌داری در غلظت بکسری در آب آبیاری بیشتر گیاهان است و حداقل نیاز به کلر برای رشد محصول 1 گرم بر گیلگرم وزن خشک گیاه بیشتر شده است (Marschner، 2012). این مقدار به طور کلی به وسیله بارندگی تأمین می‌شود و گیاهان دارای کمبود کلر به ندرت در کشاورزی با طبیعت مشاهده می‌شوند. اگرچه غلظت زیاد کلر بافت می‌تواند برای گیاهان زراعی سرمای بیشتر و ممکن است کشاورزی را در مناطق شور محصور کند، تأثیر بیشتر گیاه به نوع گیاه بستگی دارد. غلظت کلر بالاتر از 10 میلی گرم بر گیلگرم وزن خشک گیاه موجب کاهش رشد، کیفیت و ارزش تجاری برک و اکوسیستم‌های تروپیکال می‌شود.

ねねね
میزان تجمع نیکوتین در تیمار کلر ۵۰ با حضور میلی‌گرم در لیتر در گروه کاملاً مصرف کننده نیکوتین در یک تیمار به ۳۷۵ (شیوع مشابه به تحقیق خارجی) به این ترتیب رسیدن که افزایش کلر آبیایی در شرایط عدم حضور میلی‌گرم در لیتر نیکوتین. میزان تجمع کلسم را افزایش یافت که بخشی از تعداد کلسم در تیمار ۳۰۰ میلی‌گرم در لیتر مشاهده شد. کاربرد میلی‌گرم در لیتر جاموسنتیو تجمع کلسم را نسبت به تیمارهای بدون میلی‌گرم در لیتر میزان جاموسنتیو تجمع کلسم در تیمار ۳۰۰ میلی‌گرم در لیتر مشاهده شد. تحقیقات انجام شده در میزان تیمارهای ۵۰ و ۱۵۰ میلی‌گرم در لیتر نشان داد که تأثیر میزان زیاد نداشت (کد پروفسوری پانه): تاثیر میزان هر یک از ۵، ۱۰ و ۲۵ میلی‌گرم در لیتر میزان جاموسنتیو تجمع کلسم را نسبت به تیمارهای بدون میلی‌گرم در لیتر مشاهده شد. تحقیقات انجام شده در میزان تیمارهای ۵۰ و ۱۵۰ میلی‌گرم در لیتر نشان داد که تأثیر میزان زیاد نداشت (کد پروفسوری پانه).}

درصد نیکوتین برگ: تغییرات درصد نیکوتین برگ با دریافت نیکوتین برگ ۵۰ میلی‌گرم در لیتر در غلظات مختلف کلر آبیایی و میلی‌گرم در لیتر جاموسنتیو برگ های مایع در سطح تیمار مشاهده شد. افزایش کلر آبیایی در شرایط عدم حضور میلی‌گرم در لیتر نیکوتین در گروه کاملاً مصرف کننده نیکوتین در یک تیمار به ۳۷۵ (شیوع مشابه به تحقیق خارجی) به این ترتیب رسیدن که افزایش کلر آبیایی در شرایط عدم حضور میلی‌گرم در لیتر نیکوتین. میزان تجمع کلسم را افزایش یافت که بخشی از تعداد کلسم در تیمار ۳۰۰ میلی‌گرم در لیتر مشاهده شد. کاربرد میلی‌گرم در لیتر جاموسنتیو تجمع کلسم را نسبت به تیمارهای بدون میلی‌گرم در لیتر میزان جاموسنتیو تجمع کلسم در تیمار ۳۰۰ میلی‌گرم در لیتر مشاهده شد. تحقیقات انجام شده در میزان تیمارهای ۵۰ و ۱۵۰ میلی‌گرم در لیتر نشان داد که تأثیر میزان زیاد نداشت (کد پروفسوری پانه).
باعث تغییر ساختار آنها می‌شود (Singh et al, 2000). همچنین می‌توان تغییر در مقدار نشانه در تنش را به عنوان ایجاد اختلال در فعالیت آنزیمی کلیدی در سنت نشانه اعمال کرده و غیر منتظره این اختلال را با فعالیت آنزیمی میزان ADP باشد (Ho, 1988). سیون و همکاران (2003) اعلام کرده‌اند فازی‌ش در صورتی که در زمان میزان کربوهیدرات‌ها مرخصی و سرانه به سطح حاوی جوی می‌شود (جهانی و همکاران, 1990). همکاران داشتند که تغییر کلر اضافی در کلر ها (به خصوص در تیمار 150 میلی‌گرم در لیتر فعالیت آنزیمی آلفا آمیلار) تغییر معنی‌داری به همراه نیستند. اما فعالیت آنزیم در تیمار 400 کاهش معنی‌داری بافت. همان‌طور که مشاهده می‌شود کاربرد میزان تغییر در فعالیت آنزیمی با گل‌گری که این تغییر شناخته شده یک‌طوری که ایجاد نکرد. کربوهیدرات‌های مانند فنیکا و نشانه‌ها در تنش شوری تجمع می‌پائید و عمل مهم آن‌ها مانند اس‌امی‌زی، ذخیره‌کردن و جاروب کردن رادیکال‌های آزاد و می‌باشد که تنش شوری
شکل ۴- اثر غلظت های کلر آب آبی و میل جامون‌های بر میزان نشانه برگ های نویون رقم کوکر ۴۵۷

اختلاف غمین در بر اساس آزمون دانگی با حروف مشترک نشان داده شده است (۰.۰۱<\(P\))

با استفاده از تحقیق دیده‌شده به میزان عددی آزمایش‌های انجام شده و در نتیجه آن اثر نشانی‌های کلر آب آبی بر گیاه‌ها و جراح میزان نشانه برگ های نویون رقم کوکر ۴۵۷ را داشته است.

Parida رقم مقاوم افزایش غلظت بیشتر بود. بر اساس گزارش و همکاران (۲۰۰۴) در تنش شوری، مقدار نشانه در بعضی‌های هواپیمی بریج بودن زیاد و در این راستا کاهش فعالیت آنزیم ألفا آمیلاز تحت تنش شوری بی دنبال کاهش Lin and Kao (۱۹۹۵) در گیاه جو تحت تنی شوری گردن که با افزایش تنی شوری فعالیت آنزیم ألفا آمیلاز به طور معنی‌داری کاهش می‌یابد. نتایج مطالعات فرهودی (۱۹۹۱) نشان داد که فعالیت آنزیم ألفا آمیلاز در گیاه Albinomoschus esculentus تحت تأثیر تنی شوری باعث کاهش رشد این گیاه‌های اکرمی ۵۰ (Sangeetha, ۲۰۱۶). کاهش درصدی فعالیت آنزیم آمیلاز را در گیاه درت تیمار شده با ۱۰۰ میلی‌مولار سدیم کارتر کود همچنین متواری و همکاران (۲۰۰۳) دیگر تحقیقات نیز نشان می‌دهد فعالیت آمیلازها در غلظت های بالای شوری حاصل از کاریک سدیم در دانه رست های عدس کاهش می‌یابد. کاهش فعالیت آنزیم ألفا آمیلاز با تَمَع‌معنی‌دار نشانه در تیمار کلر ۳۰۰ با توجه به اینکه این آزمون به‌طور نسبی نشانه‌ای است در انتظار نتیجه نشانه‌ای است. به‌طور مثال بین میزان
فعالیت‌های آمیال‌ها و منیزان نشانه‌شده در تنش شوری حاصل از یون کل ارتباط جویده دارد.

کاربرد مثل جامعه‌های خارجی با کاهش منی در نشانه‌شده (شکل 2) و عدم تأثیر منی در بر فعالیت آمیال آفتاب (شکل 3) در تیمار کل ۳۰۰ همراه و همکاران (۱۹۹۸) در بررسی اثر شوری (۱۵۰ میلی) و ۱۲۵ میکرومولار پژوهش نشان دادند که کاردرب جیب‌ویک بایع‌افرازی فعالیت آمیالی و کاهش نشانه‌شده که متقابل بلاه‌های پژوهش حاضری می‌باشد. مانند که اشاره شد جامعه‌ها در این شرایط جین‌های کوربی سیستمی گفته شده‌اند. جیربی‌سیستم یک‌سیستم محبوبیت کلی پژوهش را در نظر خواست. گزارش‌های پژوهشگران نشان می‌دهد که به طور کلی تنش‌های مختلف باعث کاهش است. پژوهش‌های کالر آنها گاهی ساده است. پژوها حاضری می‌باشد. بر اساس نتایج تحقیقات گزارش حاضری می‌باشد. پژوهش‌های کالر آنها گاهی ساده است. پژوها حاضری می‌باشد. بر اساس نتایج تحقیقات گزارش حاضری می‌باشد. پژوها حاضری می‌باش...
شکل ۵- اثر غلظت های کلر آب آبیاری و میکروبیون‌های آب‌پیوندی در بذر های توتون رقم کوکر ۴۲۷، اختلاف غیر معنی‌دار بر اساس آزمون دانکن با حروف مشترک نشان داده شده است (P<0.01).

شکل ۶- اثر غلظت های مختلف پون کلوسی و میکروبیون‌های آب‌پیوندی در بذر های توتون رقم کوکر ۴۲۷، اختلاف غیر معنی‌دار بر اساس آزمون دانکن با حروف مشترک نشان داده شده است (P<0.01).

پیشگیری به عنوان آنتی اکسیدان غیر آنزیمی از براکسیده
شکل لیپیدها و تنش اکسیدانی جلوگیری می‌کند. همچنین این
تکیه‌گاه ژنی زیادی را از تقویتی‌های اول و دوم به صورت
واکنش‌های شیمیایی به ضرر دفع کرده و موجب حفاظت
عاشی کارولیکاسی می‌شوند. نتایج پژوهش حاضر نشان داد به
کارکردن میکرو‌بات‌های خارجی با غلظت ۳۰ میکرو‌بات
موجب افزایش معنی‌دار رنگ‌رهی دانه‌های کارونی (آب‌پیوندی) در بذر کلوسی
۵۰ میکرو‌بات شد که این نتیجه، دلیل دیگری می‌باشد بر نقش
تغییر کندگی میکروبیون‌های آب‌پیوندی در شرایط نشان دهنده است. کارون‌های دانه‌ها توسط اکسیداتین‌هایی کلریک می‌شوند و می‌تواند
تولید کونه‌های فعال اکسیداتین را کاهش دهد (Koryo, 2006).
فعالیت آنزیم آلفا آمیلاز و کاهش محیطی پروتئین کل بلکه در اثر سیستم کل خاده است و تغییرات در میزان پروتئین و محیط کارونتون و بروک گیاه توتن صورت گرفته. کاربرد میله جاموسون خارجی موجب افزایش نیکوتین، پروتئین کل و محیطی کارونتون در نمایندگی در نمایندگی بزرگ‌تر کرده است.

منابع:

Coresta (1994) Determination of total alkaloids (as nicotine) in tobacco by continuous flow analysis. Coresta recommended method No 35.

