Foliar application of copper and manganese on essential oils and morphophysiological traits of Lemon Balm (*Melissa officinalis* L.)

Mehrab Yadegari*

Department of Agronomy and Medicinal Plants, Faculty of Agriculture, Shahrekord Branch, Islamic Azad University, Po.Box:166. Shahrekord, Iran. Fax: +98 3813361093

(Received: 22/04/2016-Accepted: 20/08/2016)

Abstract:

Lemon balm (*Melissa officinalis* L.), a member of Lamiaceae family, is an important medicinal plant that has many useful properties. Micronutrients are necessary in low dose for the growth and the development of plants. Present research was conducted to study the effects of micronutrients including manganese (Mn) and copper (Cu) on morpho-physiological traits and essential oil of lemon balm. Field trials were carried out in 2015 at Shahrekord (50°56′ E 32°18′ N) South Western Iran. Experiments were arranged in a randomized complete block design with a factorial layout and three replications. Micronutrients concentrations (Cu and Mn in 0, 150 and 300 ppm) were employed form time of planting to beginning of flowering of plants. Of the two micro nutrients, copper was more effective in stimulating the accumulation of Caryophyllene β, Citronellal, Geranial, Geraniol, Geranyl Acetate. Linalool and Neral. At 150 ppm, micro nutrients enhanced the production of citronellol, Chavicol. Although combination of Cu²⁺ and Mn²⁺ at 300 ppm in some of essential oils like neral, e-caryophyllene, caryophyllene oxide and 14-hydroxy-Z-caryophyllene were more produced than 150 ppm combinations most of essential oils significantly increased in 150 ppm concentration of micronutrients. Trans-piperitone epoxide was upper extracted in 300 ppm concentration of Mn²⁺ but in much combination this essential oil was not extracted in little concentration. Geranial, Geraniol, (E-) Caryophyllene, Caryophyllene oxide and Neral were the main components in all treatments.

Keywords: Medicinal plant, Micronutrients, Phytochemical.

Introduction:

Lemon balm (*Melissa officinalis* L.) is a tetraploid (2n=2x=32) and perennial plant, member of Lamiaceae family (Sekorgulu *et al.*, 2006, Bagdat 2006, Moradkhani *et al.*, 2010, Abuhamdah and Chazot 2008). Also, its extraction have many medicinal uses (Farahani *et al.*, 2009). Lemon balm is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmyloytic, astringent and specific sensorial properties. Essential oil of the plant, is mainly made up of caryophyllene β, citronellal, geraniol, geranyl acetate, linalool, neral and ursolic acid, and is responsible for some of these effects (Bagdat and Cosge, 2006).

Use of micronutrients improves the quality and quantity crops and (Amjad *et al.*, 2014). These elements included of copper (Cu), manganese (Mn). Small amounts of Cu and Mn are essential for growth and quality of the crop because these micro nutrients also control most of the physiological activities of the crop by interrupting the level of chlorophyll content in leaves which ultimately influence the photosynthetic activity of the plant (Marschner, 1995). In micronutrients, Copper is an essential microelement in higher plants as it occurs as part of the prosthetic groups of several enzymes. It was shown to be associated with proteins or nuclear contaminants. Manganese is involved in many biochemical functions, primarily acting as an activator of enzymes such as dehydrogenases and decarboxylases involved in respiration, amino acid and lignin synthesis, and hormone concentrations (Schönherr *et al.*, 2005). In alkaline soils, nutrient concentration may be not enough and therefore micro nutrient in this soil immobilized quickly and roots of plants can’t absorb some of nutrients and no transition to leaves occurs, in these cases, application of micro nutrient may solve this problem (Dadhich and Somani, 2007). Few studies examining micronutrients fertilizers in essential oil components on lemon balm have been conducted. Present study was carried out to evaluate the some morpho-physiological characters and essential oils response of lemon balm (*Melissa officinalis* L.) to foliar application of Mn and Cu.

Material and Methods:

Seeds of Lemon balm were obtained from Iranian Seeds and Plant Improvement Institute. Seeds were planted in field condition. Table 1 shows physicochemical properties of the soil. Treatments were micronutrient Cu and Mn levels by three replications. Amounts of

*Corresponding Author, Email: mehrabyadegari@gmail.com
essential oil components production as well as the chemical component of the essence were determined. Field trials were established in 2015 at Shahrekord (50°56’ E 32°18’ N) South Western Iran. Experiment was arranged in a randomized complete block design with a factorial layout and three replications. Topsoil of the experimental plot area was kept moist throughout the growing season when necessary. After soil test, the required nutrients were added to soil. In the 3-5 leaves phase, plants were thin out to final row distance (20 cm). During the study, usual practices were conducted to achieve the best products. At the end of the blooming stage, shoots of plants were harvested. Several parameters including leaf dry weight, leaf fresh weight, root dry weight, root fresh weight, stem length, root length, number of stem were measured.

Lemon balm shoots were washed out with distilled water, and then were dried 3 days at 40°C in oven. Micronutrients concentrations (Cu and Mn in 0, 150 and 300 ppm) were employed from the time of planting to beginning of flowering of plants.

The essential oils were analyzed by gas chromatography-mass spectrometry (GC/MS). Thermo Finnegan Trace 2000 GC/MS, made in the USA, was employed with a HP-5MS capillary column (30 m long and 0.25 mm wide, and a 0.25 μm of film thickness) at a 250°C of injector chamber. The initial column temperature was at 120°C for 5 min then raised to 280°C at the rate of 10°C/min. Helium was used as a carrier gas at a rate of 35 ml/min. MS parameters were as follows: ionization energy, 70eV; ion source temperature, 200°C; voltage, 3000 v; and mass range, 30 to 600. The compositions of the essential oil were identified by comparison of their retention indexes, retention times and mass spectra with those of authentic samples in Wiley library (Adams, 2001).

All data were subjected to ANOVA using the statistical computer package SAS ver.9 and treatment means separated using L.S.D multiple range test at P<0.05 level.

Results:

Results of analysis of variance (table 2) showed that: 1- Foliar application of manganese and copper had significant effects on all the studied traits except leaf dry weight. 2- In all of essential oils, amount of Caryophyllene oxide, Neral, Chavicol, Geranial, E-Caryophyllene and Caryophyllene oxide were most affected by micronutrients (table 2). The mean comparisons with LSD test at 0.05 were performed for micronutrient effects for all the studied traits and its results are shown in table 3. Foliar application of micronutrients effectively increased the studied traits compared to the control. There were similar results about effective application of micronutrients on leaf fresh weight, root dry weight, root fresh weight, stem length, root length and number of stem.

The most of essential oils were Caryophyllene oxide, E-Caryophyllene, Geranial, Geraniol, Chavicol and Neral that were affected by the treatments (tables 2, 3). Also, the Cu²⁺ application affected the caryophyllene oxide, E-Caryophyllene, Geranial, Geraniol, Chavicol and Neral percentage. Similarly, the Mn²⁺ application increased the Caryophyllene oxide, E-Caryophyllene, Geranial, Geraniol, Chavicol and Neral of percentage by 34%. The foliar Cu²⁺ and Mn²⁺ affected the Caryophyllene oxide, E-Caryophyllene, Geranial, Geraniol, Chavicol and Neral of concentration an average of 55% and 150 ppm application of micronutrients compared with the control (table 3).

Cu²⁺ and Mn²⁺ applications affected geranial, geraniol and geranyl acetate of stems and increased with the micronutrients applications by an average of 22% during the research seasons compared with the control (table 3). There was statistical significant differences among the three rates of Cu²⁺ and Mn²⁺ applications (table 2). The amount of geranial, geraniol and geranyl acetate per plant increased after fertilizing compared with the control by an average of (52%), (>100%) and (71%) (table 3). Linalool and neral concentrations were affected by Cu²⁺ and Mn²⁺ applications and increased an average of (21%) and (12%) compared with the control (table 3). In general, the most of Caryophyllene oxide (12.62%), E-Caryophyllene (7.54%), Geranial (32.49%), Chavicol (12.65%) and Neral (27.83%) were made by treatments that had 150ppm of Cu. In most of other subsidiary components contain Linalool, exo-Isocitral, Citronellal, Z-Isocitral, Rosefuran epoxide, E-Isocitral, Piperitone, Piperitenone oxide, E-Caryophyllene, alpha-trans-Bergamotene, alpha-Humulene, Germacrene D, E-beta- Ionone, gamma-Cadinene, Caryophyllene oxide, Humulene epoxide II, epi-alpha-Cadinol, 14-hydroxy-Z-Caryophyllene, Hexadecanoic acid and Abieta-8(14),13(15-diene); the treatments that had 150ppm of Cu made most of components and in these treatments the treatment of Cu150 ppm with Mn150 ppm was the best (table 3).

Discussion:

In the present study, the effects of micronutrients applications were determined on the essential oils of Lemon balm. According to our knowledge, this is the first report that shows that Cu²⁺ and Mn²⁺ can affect the geranial and neral of Lemon balm and the same response can probably be found in other essential oils that have adapted to local soils or have high requirements for Cu²⁺ and Mn²⁺. In the soil application,
null
Here are still many unanswered questions about how Cu\(^{2+}\) and Mn\(^{2+}\) act in increasing essential oils for Lemon balm. One possibility is that the foliar applied micronutrients can affect dry matter accumulation and increase dry matter yield. Micronutrients can increase the number of stems per plant and slowdown leaf senescence (El-Shahawy et al., 2008; Datta et al., 2011). The obtained results are in conformity with those of Mazaheri et al. (2013) on the Cu\(^{2+}\) and Mn\(^{2+}\) application, developed a bigger root system, and took up more nutrients. Cu\(^{2+}\) and Mn\(^{2+}\) are immobile in plants and can’t be transported to developing organs. Therefore, foliar application can provide Cu\(^{2+}\) and Mn\(^{2+}\) to the developing organs that need it the most and, in this case, the plants do not have to take these micronutrients from the soil solution. However, the actual amount of Cu\(^{2+}\) and Mn\(^{2+}\) that reaches the reproductive tissue can be small and depends on other factors such as Cu\(^{2+}\) and Mn\(^{2+}\) soil and plant levels, and water stress that can restrict micronutrients movement and this is possibly one reason for finding a significant increase in the yield because of the micronutrients application. Micronutrients application affected chavicol as the plants in the control treatment and increased with micronutrients applications which were not detected in control plants. When the Cu\(^{2+}\) and Mn\(^{2+}\) level is too low to sustain plant growth, the plants become shorter and the total biomass is lower compared with the plants with sufficient micronutrient (Mengel et al., 2001 and Habib, 2012). This effect can be explained as micronutrients affecting the carbohydrate transport, and this can affect the yield components in many plants (Marschner, 1995). Since micronutrients affect the meristems, the increase in the availability of Cu\(^{2+}\) and Mn\(^{2+}\) can increase the number of stems per plant as they grow better (Anwar et al., 2005). In similar researches, the effect of farm yard manure reported significant on neral, (28.43%), geranial (39.86%) and geranyl acetate (8.67%) compared to other treatments (Harshavardhan et al., 2007). Cu\(^{2+}\) and Mn\(^{2+}\) applications affected on chavicol percentage of the crop. Also Abazarian et al., (2011); Yadegari et al., (2012, 2015), Sinta et al. (2015) and Abu-Darwish (2009) showed usefulness of micronutrients on yield of plants.

Table 3-continued-

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Neryl formate</th>
<th>Methyl geranate</th>
<th>Piperitenone oxide</th>
<th>Geranyl acetate</th>
<th>E-Caryophyllene</th>
<th>alpha-trans-Bergamotene</th>
<th>alpha-Humulene</th>
<th>Germacrene D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.47</td>
<td>-</td>
<td>-</td>
<td>4.9</td>
<td>7.54(^{a})</td>
<td>0.52(^{b})</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cu0xMn150</td>
<td>-</td>
<td>0.72(^{a})</td>
<td>-</td>
<td>7.29(^{a})</td>
<td>7.17(^{a})</td>
<td>-</td>
<td>0.47(^{b})</td>
<td>-</td>
</tr>
<tr>
<td>Cu0xMn300</td>
<td>-</td>
<td>0.49(^{b})</td>
<td>-</td>
<td>5.44(^{a})</td>
<td>7.37(^{a})</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cu150xMn0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.85(^{a})</td>
<td>5.91(^{a})</td>
<td>0.39(^{b})</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cu150xMn150</td>
<td>-</td>
<td>0.46(^{b})</td>
<td>-</td>
<td>4.48(^{a})</td>
<td>6.37(^{ab})</td>
<td>0.5(^{b})</td>
<td>1.59(^{a})</td>
<td>0.93(^{a})</td>
</tr>
<tr>
<td>Cu150xMn300</td>
<td>-</td>
<td>0.46(^{b})</td>
<td>-</td>
<td>5.09(^{ab})</td>
<td>7.38(^{a})</td>
<td>1.12(^{a})</td>
<td>0.71(^{b})</td>
<td>0.35(^{b})</td>
</tr>
<tr>
<td>Cu300xMn0</td>
<td>-</td>
<td>0.46(^{b})</td>
<td>-</td>
<td>5.31(^{b})</td>
<td>7.1(^a)</td>
<td>0.4(^{b})</td>
<td>1.29(^{a})</td>
<td>0.57(^{b})</td>
</tr>
<tr>
<td>Cu300xMn150</td>
<td>5.3(^{a})</td>
<td>0.51(^{b})</td>
<td>1.11(^{b})</td>
<td>4.1(^{b})</td>
<td>6.09(^{b})</td>
<td>0.28(^{b})</td>
<td>0.88(^{ab})</td>
<td>0.4(^{b})</td>
</tr>
<tr>
<td>Cu300xMn300</td>
<td>-</td>
<td>0.55(^{a})</td>
<td>6.07(^{a})</td>
<td>7.35(^{a})</td>
<td>0.5(^{b})</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Means within each column followed by the same letter are not significantly different (\(a=0.05\)).

Table 3-continued-

<table>
<thead>
<tr>
<th>Treatments</th>
<th>E-beta-lonone</th>
<th>gamma-Cadinene</th>
<th>Caryophyllene oxide</th>
<th>Humulene epoxide II</th>
<th>epil-alpha-Cadinol</th>
<th>14-hydroxy-Z- Carapheylene</th>
<th>Hexadecaneric acid</th>
<th>Abeta-8(14,13/15-diene)</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
<td>12.46(^{a})</td>
<td>0.72(^{a})</td>
<td>-</td>
<td>0.74(^{a})</td>
<td>0.29(^{a})</td>
<td>-</td>
<td>2.59(^{a})</td>
</tr>
<tr>
<td>Cu0xMn150</td>
<td>0.24(^{b})</td>
<td>-</td>
<td>9.79(^{bc})</td>
<td>0.49(^{b})</td>
<td>-</td>
<td>0.6(^{b})</td>
<td>-</td>
<td>1.75(^{b})</td>
<td>94.3</td>
</tr>
<tr>
<td>Cu0xMn300</td>
<td>0.24(^{b})</td>
<td>-</td>
<td>11.29(^{ab})</td>
<td>-</td>
<td>-</td>
<td>0.65(^{ab})</td>
<td>-</td>
<td>2.19(^{b})</td>
<td>94.36</td>
</tr>
<tr>
<td>Cu150xMn0</td>
<td>0.22(^{b})</td>
<td>-</td>
<td>10.98(^{b})</td>
<td>0.56(^{b})</td>
<td>-</td>
<td>0.61(^{b})</td>
<td>-</td>
<td>2.11(^{b})</td>
<td>93.01</td>
</tr>
<tr>
<td>Cu150xMn150</td>
<td>0.5(^{b})</td>
<td>1.46(^b)</td>
<td>6.37(^{a})</td>
<td>-</td>
<td>0.4(^{b})</td>
<td>0.39(^{a})</td>
<td>0.24(^{a})</td>
<td>1.95(^{a})</td>
<td>94.49</td>
</tr>
<tr>
<td>Cu150xMn300</td>
<td>0.42(^{ab})</td>
<td>0.7(^{b})</td>
<td>12.62(^{a})</td>
<td>0.64(^{ab})</td>
<td>1.35(^{a})</td>
<td>0.64(^{ab})</td>
<td>0.26(^{b})</td>
<td>1.59(^{a})</td>
<td>92.6</td>
</tr>
<tr>
<td>Cu300xMn0</td>
<td>0.3(^{ab})</td>
<td>1.12(^{ab})</td>
<td>8.13(^{a})</td>
<td>0.51(^{b})</td>
<td>0.23(^{b})</td>
<td>0.46(^{b})</td>
<td>0.71(^{a})</td>
<td>1.22(^{a})</td>
<td>95.89</td>
</tr>
<tr>
<td>Cu300xMn150</td>
<td>0.28(^{b})</td>
<td>-</td>
<td>9.89(^{bc})</td>
<td>0.54(^{b})</td>
<td>0.29(^{b})</td>
<td>0.71(^{a})</td>
<td>-</td>
<td>1.34(^{b})</td>
<td>91.24</td>
</tr>
<tr>
<td>Cu300xMn300</td>
<td>0.23(^{b})</td>
<td>-</td>
<td>11.48(^{ab})</td>
<td>0.61(^{ab})</td>
<td>-</td>
<td>0.64(^{ab})</td>
<td>-</td>
<td>2.04(^{ab})</td>
<td>94.3</td>
</tr>
</tbody>
</table>

Means within each column followed by the same letter are not significantly different (\(a=0.05\)).
trans-Piperitone epoxide percentage. The main components of the oil were Caryophyllene oxide, E-Caryophyllene, Geraniol, Chavicol and Neral for all populations. This indicates that foliar application of micronutrients has a significant effect on the composition of the essential oil. Many researchers have reported that the main components of lemon balm are Caryophyllene oxide, E-Caryophyllene, Geranial, Geraniol, Chavicol and Neral (Manukyan, 2011; Patora et al., 2003; Sari and Ceylan, 2002). However, there were significant differences among the rates of those reported components. Neral and geranial were the main components of the oil. Kirimer et al. (1995) found that the main component of the lemon balm oil they have found in some of studies, were citronellal, linalool and geranial as major chemical compositions of the essential oil of the lemon balm (Adinee et al., 2008; Bagdat and Cosge, 2006; Mrlianova et al., 2001; Sorensen, 2000). All the significant differences for the components of the oil among the papers discussed above may be due to the use of different genetic material and/or different environmental conditions.

Conclusion:
This study showed that the applications of Cu$^{2+}$ and Mn$^{2+}$ had a significant effect on morpho-physiological characters and essential oils of Lemon balm such as trans-Piperitone epoxide percentage. The main components of the oil were Caryophyllene oxide, E-Caryophyllene, Geranial, Geraniol, Chavicol and Neral for all treatments. This indicates that foliar application of micronutrients has a significant effect on the composition of the essential oil. These results show that micronutrients applications can affect the growth and yield of Lemon balm, especially when it is grown in alkaline soils. This study provides some useful information about the effect of application of Cu$^{2+}$ and Mn$^{2+}$ on lemon balm production and in that way broadens our knowledge about the effect of micronutrients on crop production.

References:

