اثرات اسید سالیسیلیک بر بخی از ویژگی‌های مورفو-فیزیولوژیکی و بوشیمیایی دانه‌الگ گردو تحت نش شوری

سیاوش صفری، جواد عرفانی مقدم و محمد جواد زارع
1

گروه علوم باغی‌های دانشگاه، دانشگاه ایلام، دانشگاه، دانشگاه ایلام

(تاریخ دریافت: 23/01/1335، تاریخ پذیرش نهایی: 1335/03/14)

چکیده:
در بین نش‌های غیر زنده، شوری، شوری اثری وبه‌خصوص کاربردی بر رشد و تولید محصول در سراسر جهان است. در این پژوهش، اثر اسید سالیسیلیک بر پارامترهای مورفو-فیزیولوژیکی و بوشیمیایی دانه‌الگ گردو تحت نش شوری بررسی شد. آزمایش به صورت آزمایشی-آزمایشی و مواد آزمایشی (کلزیفیل، NaCl، ضری‌های دو، سیلیکون و مواد مادون آلوده‌ای) در سه نکه‌عالی آماده شدند و دانه‌الگ گردو 60 روز بعد از اعمال شوری مورد بررسی قرار گرفتند. نتایج تجزیه واریانس نشان داد تفاوت منفی‌داری در بین عوامل‌های تأثیر بر رشد دانه‌الگ گردو بود. این اثرات در مقایسه با دیگر نش‌های شوری مانند تازه، تغییرات در محیط محیط‌های طبیعی نیز شامل ضری‌های مختلفی می‌باشد که اثراتی بر رشد و نشان‌های شوری داشته و نشان داده، این اثرات نشان داد که اسید سالیسیلیک با ضری‌های مختلفی باعث می‌شود که به صورت خاص در حفظ فاکتورهای موثر به عنوان پاسخ جایگاهی به نیازهای پاک‌سازی و بهبود کیفیت می‌گردد.

واژه‌های کلیدی: پرولین، کلزیفیل، مالون‌دی‌آلید، محیط‌های نسبی آب

مقدمه:
نش شوری جزو اولین نش‌های محیطی است که در آنان اثراتی از مبتنی بر مواد غذایی می‌باشد. این مواد غذایی می‌توانند عواملی را تحت تأثیر قرار دهند که در نتیجه اهمیت داشته و بخشی از سایر نش‌های محیطی مشخص می‌کند. این اثرات به ضری‌های محیطی مربوط می‌شود که در نتیجه اهمیت در بین نش‌های محیطی است که این تحقیقات به علت اهمیت این بخش از نش‌های محیطی به عنوان ضری‌های محیطی مشخص می‌شوند. در این مقاله تأکید بر اثرات شوری و محیط‌های محیطی (کلزیفیل، NaCl، ضری‌های دو، سیلیکون و مواد مادون آلوده‌ای) بر پارامترهای مورفو-فیزیولوژیکی و بوشیمیایی دانه‌الگ گردو تحت نش شوری داشته و نشان داد که اسید سالیسیلیک با ضری‌های مختلفی باعث می‌شود که به صورت خاص در حفظ فاکتورهای موثر به عنوان پاسخ جایگاهی به نیازهای پاک‌سازی و بهبود کیفیت می‌گردد.

Ashraf and Foolad, 2007; J. erfani@ilam.ac.ir
گزارشی مشخص شد تنش شوری بی‌طرف معنی‌داری سبب کاهش طول، قطر سالنه، تعداد گره و سطح گره در داناله‌های پیش‌شده است (بتسبی و همکاران، ۱۳۹۰). سالن‌سیلسک اسید پیک مکانولپ پی‌پیترسن مهم برای میان‌جایی باعث گیاهان در برآوری نشته‌های محیطی (Senaratna et al., 2000) نشته‌دیده است که سالن‌سیلسک اسید بی‌طرف معنی‌داری نشته یافت و تجربی ی‌های (Zhou et al., 2009) بر طبق گزارش‌ها، اسید سالن‌سیلسک تاثیرات مثبت بر پرورش و فیزیولوژی گیاه داخلی و در تحقیق مکانیسم‌های حمامی افزایش مقاومت در برابر نشته‌های زده و غیرزده نشته دارد. اما گزارش‌هایی نیز وجود دارد که شناسه مه دارد که اسید سالن‌سیلسک موجب نشته‌شدن نشته و کاهش مقاومت گیاه به نشته‌های محیطی می‌شود (Hayat and Ahmad, 2007) در سبیاری از بررسی‌های انجام‌شده، کاربرد سالن‌سیلسک اسید سالن‌سیلسک اسید بی‌طرف بروز و خارجی در گیاهان تحت نشته شوری می‌تواند آثار تخربی ناشی از این نشته را کاهش دهد و فرآیندهای رشد را سریعاً به حالت اولیه برگرداند (Szepesi et al., 2009). گزارش شده است که اسید سالن‌سیلسک جذب کربن دی‌اکسید در گیاه را کاهش می‌دهد و یا باعث افزایش جذب فسفر، نیتروژن، پتاسیم، منیزیم و دیگر عنصر در مقایسه با تیمار کنترل است. اکثر اورژانس، اسید سالن‌سیلسک بر روی دخانیات سبب تحت نشته شوری بی‌طرف توجه ی‌بر به‌دیدن‌های شدید و کیفیت بی‌طرف مه‌سازی‌شده نشته است (Shaaban et al., ۲۰۱۱). کاربرد نشته شوری Torreya grandis اسید سالن‌سیلسک در گیاه بی‌طرف رشد و فوتوسنتز، افزایش محیطی کارولفیل و مکانیسم‌های انتی‌کسیدانی گیاه نشده است (Li et al., ۲۰۱۴). گروه با نام علمی است. از خانواده زولگلدناستی Juglans regia یکی از مهم‌ترین محتوای خشک‌بار ی ایران می‌باشد که در کشورهای مختلف کشت می‌شود. درخت گردو برای رشد مطلوب و به‌پرورشی به مقادیر زیادی آب نیاز دارد و از گیاهان حساس به نشته‌های غیر زیستی محصولی می‌شود. کشور ایران در منطقه خشک (Manchanda and Garg, ۲۰۰۸ و پیامد قرار دارد (بایابا و علی‌خانم، ۱۳۹۲) و شوری آب و خاک در مراحل مختلف و نیمی خشک ایران مشکلی می‌باشد و رو گسترش است (فواد و همکاران، ۱۳۹۳). شوری آب در کشاورزی نه باعث کاهش شدید عملکرده محصول می‌گردد بکه مورر زمان سپس سمتی گیاه، شور و سد ویکشن شون خاک و از بین رفتن آن می‌شود (مؤمنی، ۱۳۹۰).

با توجه به آمار ارائه شده و تحقیقات صورت گرفته در کل کشور ایران، سطح اراضی شور در حدود ۲۵ میلیون هکتار می‌باشد (مامات و همکاران، ۱۳۹۲) که در این بین حدود هشت میلیون هکتار مربوط به اراضی کشاورزی می‌باشد که در معرض نشته‌های قرار دارد (کاظمی و همکاران، ۱۳۹۵). در این مقدار تیمی که در اطراف کارش پنالیسمی و اختلال در فیزیولوژی گیاه رشد و عملکرد محصولات زراعی را باعث می‌کند. گیاهانی که در خاک‌های شور رشد می‌کنند، به دلیل خواص اسیدی، علائم بی‌طرف شوری با چنین مواجه شده که این عامل مسبب کاهش سرعت رشد گیاه می‌شود. این امر موجب اختلال در تقسیم سلول و برگ شدن سلول‌های شده و تمام واکنش‌های متابولیک گیاه تحت تأثیر قرار گیرد و Netondo et al., ۲۰۰۴) ساختار غشای سلولی را در می‌زنده (Demir-Kaya et al., ۲۰۰۶).
خیس شدن کامل هر دو سطح برگ اسپری شده. برای غفلت
صرف میلیولار اسپری، با آب مفرک صورت گرفت. اعمال
تیمار اسید سالیسیلیک در مرحله دوم تقریباً 3 روز بعد از
مرحله اول انجام شد (باقری و محمدعلی، پور، 1390).
محلول پاتی اسید سالیسیلیک در سطح برگها در هنگام صح
و قابل تردیدی که از جمله شدات اسید سالیسیلیک به
آب نشستگی و افزایش شدت حساسیت به ترکیبات سطح
که به عنوان یک مادر به انجام تیمار می‌رسد. تیمار شوری یک هفته
بعد از اولین مرحله محلول پاتی اسید آگز گرید
که شامل غفلت‌های صفر، 50، 100 و 150 میلی‌متری
بود. تیمار شوری همراه با آب اسپری هر
5-7 روز یکبار
تکرار می‌گردید تا زمانیکه مقدار نمک در کاه
EC (E) مربوط به مقدار نمک شرایط اصلی (100 و
150 میلی‌متری نمک) با ترتیب به 80 و 180 دیسی‌زمینت بر متر رسید.
بعد از این مرحله نهایی یا هر دوره ارزیابی آب معمولی
آب‌زدایی شد. مقدار نمک موجود در کاه قبل از اعمال شوری
اندازه‌گیری شد که میزان آن در حدود 30/8 دیسی‌زمینت بر متر
ثبت شد.
نمونه‌برداری از برگ‌های گیاهی، 60 روز بعد از اعمال
شوری انجام شد. به منظور اندازه‌گیری پارامترهای بیوشیمیایی
و صفات تغذیه‌ای، از برگ‌های قسمت مایه‌ی نهال چندین برگ
به‌صورت تصادفی انتخاب و با پکیج آلومنیوم پوچیده و
به‌لایه‌های مختلف تهیه شدند. در هر یک از دسته‌ها
نمونه‌برداری از برگ‌های به‌صورت تصادفی به‌صورت
شکل‌بندی شد. برای تعیین شاخص‌ها، انتخاب ساقه، درصد
محور ساقه، مقدار یک‌فاز مکاتورنیک و یک یا
بیش از یک فاز از یک‌فاز مکاتورنیک، نشست
پوچیده کارترک، کارترکنی، سیلیزه‌ای، منجمدی به
و یا پرنیک در انتزاع اندازه‌گیری شدند. برای اندازه‌گیری
سطح برگ از دستگاه سطح برگ ستاندازی شد. به‌دست
شده نظور
از هر تکرار 15 برگ از سطح مایه نهال به‌صورت تصادفی
انتخاب و پس از جداسازی، سطح هر برگ اندازه‌گیری و
منابع نشان دهنده جزئیات سطح برگ هر تیمار در نظر
گرفته شد. نتایج آنها با توجه آزمایش کمکی می‌باشد
که بر اساس واحد سانتی‌متر مربع برگ درصد معطوف
آب نسبت برگ با روش Díaz-Pérez و همکاران (1995) تعیین
(Fulton and Buchner, 2006) نشان داده‌اند. بررسی به‌صورت
طرح کاملاً تصادفی چیده شدند و
در اواخر بهار همزمان با رشد و ترویج بدنانه، توسعه برگ‌ها
و نمای ساقه، تیمار سالیسیلیک اسید در چهار غفلت صفر، 600 و
5 میلی‌متری به کمک اسپری دستی انجام شد و نهال‌ها تا
مواد و روش‌ها
این آزمایش در بهار و تابستان سال 1394 در دانشگاه
کشاورزی دانشگاه اسلام شد. آزمایش به‌صورت فاکتوریل
بر یاف طرح کاملاً تصادفی شامل 8 سطح دارای اسید سالیسیلیک
در (NaCl) 600 و 5 میلی‌متری که در
چهار غفلت صفر، 500 و 100 میلی‌متری بر دانه‌دو
ساله گردید. در سه تکرار انجام شد. در این آزمایش مقدار
دهانه گرد دو بک‌ساله از گلداهای پلاسکیکی با سابقه مزمن به
گلداهای پلاسکیکی با قطر 300 و ارتقاء 40 سانتی‌متر انتقال
داده شدند و در زمان اعمال تیمارهای نهال‌ها در فصل دوم
رشدی، قرار داشت. خاک مورد استفاده به نسبت برآب از
موزه، خاک‌برگ و ماسه‌سیاه تهیه شد. گلداهای مزیت
مزده در فضای آزاد قرار داده شدند و تیمارهای چهار نهال
آب‌زدایی، ویژگی (کوده‌های کد خاصی با
NPK به نسبت 32-44-18) به
مقدار یک‌فاز مکاتورنیک گردید و یک یا
بیش از یک مقدار در هر یک از دستگاه‌ها
نمونه‌برداری از برگ‌های به‌صورت تصادفی
انتخاب و پس از جداسازی، سطح هر برگ اندازه‌گیری و
منابع نشان دهنده جزئیات سطح برگ هر تیمار در نظر
گرفته شد. نتایج آنها با توجه آزمایش کمکی می‌باشد
که بر اساس واحد سانتی‌متر مربع برگ درصد معطوف
آب نسبت برگ با روش Díaz-Pérez و همکاران (1995) تعیین
(Fulton and Buchner, 2006) نشان داده‌اند. بررسی به‌صورت
طرح کاملاً تصادفی چیده شدند و
در اواخر بهار همزمان با رشد و ترویج بدنانه، توسعه برگ‌ها
و نمای ساقه، تیمار سالیسیلیک اسید در چهار غفلت صفر، 600 و
5 میلی‌متری به کمک اسپری دستی انجام شد و نهال‌ها تا

شاخه فرعي مربوط به شاهد با میانگین 5/5 شاخه و کمترین تعداد آن در 100 میلی‌متر با میانگین 1/7 شاخه مشاهده گردید. در بین کلیه تیمارها از نظر آماری معنی‌دار بود (جدول 2). همچنین تعداد شاخه فرعي در غلظت یک میلی‌متر استالیسیبک افراشی یافته به طوریکه تفاوت معنی‌داری سایر تیمارها داشت (جدول 3). مسطوح مختلف شوری اختلاف معنی‌داری در ارتقای ساقه دانه‌های گند ایجاد کرد به طوریکه پیشین ارتقای ساقه مربوط به تیمار بدون نش شوری در میانگین 423/4 سانتی‌متر و کمترین ارتقای ساقه نیز در تیمار 150 میلی‌متر با میانگین 207/3 مشاهده شد (جدول 2). مقایسه میانگین اثرات سالباسیک اسید در ارتقای ساقه نیز نشان داد در غلظت یک میلی‌متر این ترکیب ارتقای دانه‌های گرد به 0/27 سانتی‌متر رسید (جدول 3).

شوري باعث کاهش مقدار محتمال کلروفیل بی‌کند و در مقایسه میانگین اثرات ساده شوری مشاهده گردید بیشترین کلروفیل a در تیمار بدون نش شوری در میانگین 2/4 میلی‌گرم بگرام وزن‌ت plata خود کمترین مقدار آن در شوری یک میلی‌متر شامل شوری کریستال (جدول 2) در مقایسه میانگین اثرات ساده سالباسیک اسید مشاهده گردید بیشترین اثر این ترکیب در کلروفیل a غلظت 1/1 میلی‌متر با میانگین 21 میلی‌گرم بگرام وزن‌ت به دست آمد (جدول 3). نتایج نشان داد کمترین میزان کلروفیل a 5 کل غلظت در غلظت 3 میلی‌متر این ترکیب به دست آمد (جدول 2). اثرات مقاومت شوری و استالیسیک بر شاخه‌های کلروفیل معنی‌دار نشد. محتملی نسبت اپ در پاترگ تیمار کاهشی تحت تأثیر شوری و استالیسیک گرفته به طوریکه به بیشترین محتملی نسبت اپ این نسبت در پاترگ بدون نش شوری در غلظت یک میلی‌متر با میانگین 94/7 درصد و کمترین مقدار آن از شوری 150 میلی‌متر غلظت 3 میلی‌متر استالیسیک با 9 میانگین 10 درصد مشاهده شد (شکل 1).

نتایج نسبت اپ در پاترگ معنی‌دار بود اما معنی‌داری آن به خوبی در غلظت یک میلی‌متر استالیسیک با 5 میانگین 10 درصد مشاهده شد.

شدرای باری سنجش میزان اثر معنی‌داری به یک میلی‌متر نش شوری از روی Lutts a کلروفیل B کلروفیل کل و کاروتئین موجود در پاترگ با روش Lichtenhaler و روش Lichtenhaler (1976) نشان داد. برای سنجش مقدار Malondiآلفانی در بافت پاترگ از روی روش (1968) استفاده شد و داشت تأثیر مقدار بر روی استفاده از Bates و همکاران (1976) استعراض گردید. به‌منظور انجام محاسبات آماری از نرمافزار SAS میانگین‌ها از آزمون LSD استفاده گردید. جهت رسم نمودارها از نرمافزار اکسل استفاده شد.

نتایج:

نتایج حاصل از تجربه واریانس داده‌ها نشان داد که تنش شوری و کاروتئین سالباسیک اسید اثر معنی‌داری بر پارامترهای مورفولوژیکی و فیزیولوژیکی دانه‌های گند سطح پاترگ برج برج تعداد پاترگ برج تعداد شاخه فرعي ارتقای ساقه، میزان رطوبت نسبی، نش شوری، کلروفیل a کلروفیل کل کاروتئین، مالونديآلفانی و پاترگ داشت (جدول 1). اثرات مقاومت شوری و استالیسیک اسید بر بخشی خصوصیات مانند مالونديآلفانی، محتملی آپ شوری، نش شوری، پاترگ و کاروتئین معنی‌دار گردید (جدول 1). شوری تأثیر معنی‌داری در کاهش سطح پاترگ و تعداد در زمان نمونه‌برداری داشت به طوریکه به افزایش سطح پاترگ تعداد پاترگ و سطح آن کاهش یافت. بیشترین پاترگ مربوط به شاهد با میانگین 83/3 سانتی‌متر مربع و کمترین میزان آن مربوط به بیشتر اعمال 150 میلی‌متر پاترگ با میانگین 74/4 سانتی‌متر مربع بود. بیشترین اثرات بر پاترگ مربوط به تیمار بدون نش شوری با میانگین 75/7 برج و کمترین اثرات بر پاترگ مربوط به شوری 150 میلی‌متر با میانگین 79/7 برج نش شوری داشت (جدول 2). نتایج نشان داد استالیسیک در غلظت یک میلی‌متر باعث افزایش سطح پاترگ و تعداد آن گردید اما در غلظت‌های بالاتر تاثیر مثبت بر این شاخه‌ها نداشت (جدول 3). تأثیر شوری بر شاخه تعداد شاخه فرعي معنی‌دار بود به طوریکه بیشترین تعداد
جدول 1- نتایج تجزیه واریانس صفات موردرپرسی در نهال‌های گذرو تحت نش شوری و سالسیلسیک اسید

<table>
<thead>
<tr>
<th>میانگین مربوط به</th>
<th>سطح برگ</th>
<th>ارتفاع ساقه</th>
<th>تعداد برگ</th>
<th>شاخه فرعی</th>
<th>تعداد آزادی</th>
<th>درجه</th>
<th>منابع تغییرات درجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>نشت پوری</td>
<td>61338/8**</td>
<td>97734/8**</td>
<td>70/4**</td>
<td>673/8**</td>
<td>30/8**</td>
<td>3</td>
<td>NaCl</td>
</tr>
<tr>
<td>227</td>
<td>384/2**</td>
<td>93412/8**</td>
<td>70/4**</td>
<td>673/8**</td>
<td>30/8**</td>
<td>3</td>
<td>SA</td>
</tr>
<tr>
<td>65</td>
<td>8405/8**</td>
<td>284/2**</td>
<td>93412/8**</td>
<td>70/4**</td>
<td>673/8**</td>
<td>3</td>
<td>NaCl**SA</td>
</tr>
<tr>
<td>423</td>
<td>15/2</td>
<td>95/2</td>
<td>15/2</td>
<td>15/2</td>
<td>15/2</td>
<td>32</td>
<td>خطا</td>
</tr>
<tr>
<td>1</td>
<td>70</td>
<td>95/2</td>
<td>15/2</td>
<td>15/2</td>
<td>15/2</td>
<td>1314</td>
<td>ضریب تغییرات (%)</td>
</tr>
</tbody>
</table>

** و *** به ترتیب معنی‌دار در سطح 1 و 5 درصد. 8n غیر معنی‌دار

ادامه جدول 1- میانگین متغیرهایی که نتایج نش شوری و موردرپرسی در نهال‌های گذرو بوجود آمده‌اند.

<table>
<thead>
<tr>
<th>میانگین مربوط به</th>
<th>سطح برگ</th>
<th>ارتفاع ساقه</th>
<th>تعداد برگ</th>
<th>شاخه فرعی</th>
<th>تعداد آزادی</th>
<th>درجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>پرونین</td>
<td>39/7/2**</td>
<td>379/7/2**</td>
<td>367/2**</td>
<td>50/3**</td>
<td>3</td>
<td>NaCl</td>
</tr>
<tr>
<td>85</td>
<td>379/7/2**</td>
<td>367/2**</td>
<td>50/3**</td>
<td>3</td>
<td>SA</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>95/2</td>
<td>367/2**</td>
<td>50/3**</td>
<td>3</td>
<td>NaCl**SA</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15/2</td>
<td>367/2**</td>
<td>50/3**</td>
<td>3</td>
<td>خطا</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>367/2**</td>
<td>50/3**</td>
<td>3</td>
<td>ضریب تغییرات (%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** و *** به ترتیب معنی‌دار در سطح 1 و 5 درصد. 8n غیر معنی‌دار

جدول 2- مقایسه میانگین ارزات ساده نش شوری بر صفات مورد مطالعه دانه‌ال گذرو

<table>
<thead>
<tr>
<th>سطح برگ</th>
<th>ارتفاع ساقه</th>
<th>تعداد برگ</th>
<th>شاخه فرعی</th>
<th>تعداد آزادی</th>
<th>درجه</th>
<th>منابع تغییرات درجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>نش شوری</td>
<td>31/7/2**</td>
<td>18/9/2**</td>
<td>22/4/2**</td>
<td>42/6/2**</td>
<td>52/4/2**</td>
<td>3</td>
</tr>
<tr>
<td>185</td>
<td>8/2/2**</td>
<td>18/9/2**</td>
<td>22/4/2**</td>
<td>42/6/2**</td>
<td>52/4/2**</td>
<td>3</td>
</tr>
<tr>
<td>185</td>
<td>8/2/2**</td>
<td>18/9/2**</td>
<td>22/4/2**</td>
<td>42/6/2**</td>
<td>52/4/2**</td>
<td>3</td>
</tr>
<tr>
<td>185</td>
<td>8/2/2**</td>
<td>18/9/2**</td>
<td>22/4/2**</td>
<td>42/6/2**</td>
<td>52/4/2**</td>
<td>3</td>
</tr>
</tbody>
</table>

در هر سطح میانگین‌های که دارای حداقل یک حرف مشترک هستند، فاقد تفاوت معنی‌دار در سطح احتمال 5 درصد در آزمون LSD می‌باشند.

میلی مولار اسید سالسیلسیک حفظ شد. شوری بر میزان نشت اکلرولینی در سطح یک میلی مولار اختلاف آماری معنی‌دار دارند. سالسیلسیک اسید غلطه 3 میلی مولار با میانگین 150 میلی مولار نشت بیشترین نشت یونی از تیمار شوری. سالسیلسیک اسید غلطه 3 میلی مولار با میانگین 150 میلی مولار مشاهده گردیده (شکل 3). در مجموع غلطه یک میلی مولار سالسیلسیک اسید پیک میلی مولار با میانگین 32/1 درصد و
جدول ۳- مقایسه اثرات ساده اسید سالیسیلیک بر صفات مورد مطالعه دانه‌گذار

<table>
<thead>
<tr>
<th>مقدار کل کارکی (گرم/کیلوگرم)</th>
<th>مقدار مستقیم</th>
<th>افزایش‌مرجعی</th>
<th>سطح برش</th>
<th>سطح مشترک</th>
<th>اسید سالیسیلیک (میلی‌مول)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵/۵ ۲۳/۷ ۲۷/۶ ۳۰/۴</td>
<td>۸/۴ ۷/۴ ۶/۴ ۵/۴</td>
<td>۱۳/۶ ۱۲/۶ ۱۱/۶ ۱۰/۶</td>
<td>۸/۸ ۷/۸ ۶/۸ ۵/۸</td>
<td>۴/۴ ۳/۴ ۲/۴ ۱/۴</td>
<td>۱۰/۵ ۱۰/۵ ۱۰/۵ ۱۰/۵</td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌هایی که در آن حداقل یک حرف مشترک هستند، فاقد تفاوت معنی‌دار در سطح احتمال ۵ درصد در آزمون LSD می‌باشند.

![نمودار ۱ - اثرات سالیسیلیک (SA) و شوری بر مقدار ت mậtیت بافت دانه‌گذار. حروف مشابه تشابه دهنده](image1)

![نمودار ۲ - اثرات سالیسیلیک (SA) و شوری بر تنش پوست بافت دانه‌گذار. حروف مشابه تشابه دهنده](image2)

اسید سالیسیلیک به منظور جلوگیری از تنش پوست در سول در مقایسه با غلظت‌های بالاتر این ترکیب بهتر است. شاخص زنجانی کاروتئین تحت تأثیر اثرات متقابل شوری و اسید سالیسیلیک قرار گرفت که طوری که هر دو با افزایش سطح برش در مقدار مستقیم باعث افزایش شد.
اثزات اسید سالیسیلیک بر پراکن فیزیولوژیکی از سوی ویژگی‌های موثر-زمین‌پورکی

شكل 3- اثرات مقابل مایلی مختلف سالیسیلیک اسید (SA) و شوری بر مقدار کارتوئید برگ دانهال گردو. حروف مشابه نشان‌دهنده عدم اختلاف معنی‌دار در سطح احتمال 5 درصد در آزمون LSD است.

شکل 4- اثر متفاوت غلظت‌های مختلف سالیسیلیک اسید (SA) و شوری بر مقدار مالوندی آلدهید برگ دانهال گردو. حروف مشابه نشان‌دهنده عدم اختلاف معنی‌دار در سطح احتمال 5 درصد در آزمون LSD است.

شکل 5- اثر متفاوت غلظت‌های مختلف سالیسیلیک اسید (SA) و شوری بر مقدار پروتئین برگ دانهال گردو. حروف مشابه نشان‌دهنده عدم اختلاف معنی‌دار در سطح احتمال 5 درصد در آزمون LSD است.
طوري که بیشترین مقدار آن در بخشی از شبکه‌ها طرفی می‌باشد اسید سالیسپت‌ازیکی با مقدار 14/2 میلی‌گرم در وزن‌تیری بیشتر شد. اثر مقایسه سالیسپت‌ازیکی و شوری در سطح یک درصد آماده بر مالزوندی به‌معنی از جنگل‌گاهی که بیشترین تجمع ان ترکیب در بیانی در شبکه شادید یا شوری 150 میلی‌گرم و اسید سالیسپت‌ازیکی در مقدار صفر میلی‌گرم با میانگین 15/5 نامولونو و گرم وزن‌تیری کمترین مقدار آن در شبکه شوری صفر و غلظت سالیسپت‌ازیکی اسیدن یک میلی‌گرم با میانگین 1/8 نامولونو هر گرم وزن‌تیری حداقل آن باشد (شکل 4).

مقدار پرولین نز تأثیر نکته می‌باشد که مقدار پرولین (143/5 میکرو‌مول بر گرم وزن‌تیری) در شبکه شوری 100 میلی‌گرم و اسید سالیسپت‌ازیکی با غلظت یک میلی‌گرم مشاهده گردید. (شکل 5) با توجه به نتایج حاصله در بین کلیه تیمارها، غلظت یک میلی‌گرم می‌باشد که مقدار سالیسپت‌ازیکی نسبت به سایر غلظتها بهتر بود و باعث افزایش پرولین در بخش نهایی گردو بعد از عامل شب شوری شد.

بحث
نتش شوری از مهم‌ترین تنش‌های محیطی است که رشد و عملکرد گیاهان را کاهش می‌دهد. نتایج حاصل از این تحقیق نشان دهنده اثر تنش شوری بر شاخه‌های رشد دانه‌گر ندارد که باین جمله از تحقیقات مفصولی و همکاران (139/0) که نشان دادند تنش شوری باعث کاهش سطح برق و نیرو بزری‌تر برق و اکسیداسیون ریزی را کاهش می‌دهد. نتایج حاصل از این تحقیق نشان دهنده اثر تنش شوری بر شاخه‌های رشد دانه‌گر ندارد که باین جمله از تحقیقات مفصولی و همکاران (139/0) که نشان دادند تنش شوری باعث کاهش سطح برق و

نور، نسبت برق هر افقی در سه حرارت برق، تحت تأثیر قرار گرفتن دستگاه فتوسنتزی، کاهش کارایی زنجیره انقلال الکترون و کمکسیره جمع کننده دیده شد. کاهش کارایی کربوکسیلایزیک آنزیم ریبسوسکو و با افزایش فعالیت اکسنزیاتی ATP این آنزیم، کاهش ظرفیت بارزازی RUBP مهارت سنتز ATP سنتزی، آنتی فعالیت کملینکس ATP به دلیل مهار فعالیت میکلینکس تحقیق (PSII) و دو فوسیستین‌پک و دوی (PSI) به دلیل چیدن شدن ریخت یک جزء در حضور غلظت بالای سدیم و کلر، تغییر در هدایت روترازهای نرخ تعریخ، محتوای نسب آب و کاهش غلظت، نوع و ترتیب در مقدار رنگ‌پردازی فتوسنتزی و القای کارپوریال و از جمله دلایل است که در کاهش رشد در بخش مناطق شوری در گزارش‌های مختلف ذکر شده است (Parida and Das, 2005).

مقایسه میانگین ویژگی‌های سالیسپت‌ازیکی اسید نیک داد می‌باشد ولی کسترش سطح برق به شکستگی و شوری می‌باشد، ولی کسترش سطح برق به شکستگی
حذف رادیکال‌های آزاد و جلوگیری از پرادیپک‌سازی (Koyro, 2006)، در نهایت منع تنش کسب‌سازی می‌گردد. به‌طور کلی، کاهش در میزان فعالیت سلول‌های مرشدی و جلوگیری از طولیت سلول‌ها تغییر دوربین آی پی‌ها تحت تنش شوری است که موجب کاهش شاخص‌های شبیه‌گذاری این گیاهان است (Idress et al., 2011). تشکیل بردار مقدار محتوای آب نسبی را در گیاه کاهش می‌دهد. در پژوهشی، نسبی پتانسیلی آب و تیاسیل اسمری گیاهان بیشتر از افزایش شوری منفی می‌شود. این مطالعه نشان داد که تیمار در گیاه موجب کاهش محتوای نسبی رطوبت گیاهان تحت تنش شوری در مقایسه با گیاهان می‌گردد. به‌طوری که بیشترین رطوبت آب با میانگین ۴۵ درصد برای شاهد و ۷۰ درصد برای تنش شاهد نسبی گیاهان در شرایط کاهش در مقدار کارتوئید نیز مشاهده شد. کاهش در مرطوبه کارتوئید احتمالاً ناشی از عفونت شدید و میکروب‌های آنتی‌بیوتیکی کارتوئید می‌باشد. تغییر در سطح هوانی که در طول نشی شوری به‌طور طبیعی، می‌تواند به‌طور طبیعی، در نهایت منجر به یک شرایط فیزیو‌логیک دارد.

Sairam and Srivastava, 2002)
راديکال‌های آزاد، از پرکسیداسینوی چرخ‌ها جلوگیری نموده و مانند افزایش مادون‌خون‌الدندن می‌گردد.

در این آزمایش افزایش میزان نشش بیوتین در کلیه تیمارهای شوری مشاهده شد و بیشترین نشش بیوتین در تیمار شوری سطحی و کمترین نشش بیوتین در گیاه شاهد مشاهده شد. افزایش میزان نشش بیوتین در شرایط شوری در دانه‌الهای لیموآب (شهیدی پور اکبری و فتوحی قریبی، 1389).

تیقر دینگی (دهفان و همکاران، 1329) گزارش شد که با تحقیقی در مورد تاثیر اندیس سالسیلسیکی، با کاهش میزان رادیکال‌های آزاد باعث کاهش پرکسیداسین لیپیدها و نشش بیوتین غلظت آن نسبت به سالسیلسیک در 1390 (مقدوسی و همکاران، 2006) و پهنای یکی از مهم‌ترین محلول‌های سازگار و قابل حل در این شرایط شوری غلظت آن نسبت به سالسیلسیک در افزایش یافته و بیشتر از دیگر تیمارهای می‌باشد و بیشتر از تیمارهای می‌باشد. از جمله بیشترین مقدار بیوتین در شرایط شوری کاهش مشاهده شد که از نظر آماری با مقدار بیوتین در سایر سطوح ریزی اختلاف معنی‌دار داشت. این نتیجه با تحقیق غلظی و راهنمایی در گیاه هیپرزول این باعث کاهش غلظت آن نسبت به سالسیلسیک در یکی از مهم‌ترین محلول‌های سازگار و قابل حل در این شرایط شوری غلظت آن نسبت به سالسیلسیک در در منابع (مقدوسی و همکاران، 1390). در این پژوهش ترکیب اسید سالسیلسیک باعث کاهش معنی‌دار مادون‌الدهید نسبت به سالسیلسیک که بیشترین تأثیر در غلظت یک میل‌مولار اسید سالسیلسیک در مشاهده شد و اثرات مقاومت شوری و کاهش اسید سالسیلسیک در سطح یک درصد احتمال آماری معنی‌دار دارد که بنابراین ناتمامیت پلتون‌های ترکیب اسید سالسیلسیک این تأثیر روی مادون‌الدهید در شرایط شوری می‌باشد. نشش شوری سبب کاهش تیقر چپ‌گی روی سالسیلسیک و آزاد شدن اکسیدولیتی‌ها و مواد درون سلول و افزایش پرکسیداسین لیپیدها غلظت سلول می‌شود. در این پرکسیداسین لیپیدها غلظت تربیت‌های مادون‌الدهید پرتوپالسیپ، پرتوپالسیپ، پرتوپالسیپ، پرتوپالسیپ، پرتوپالسیپ، پرتوپالسیپ، پرتوپالسیپ، پرتوپالسیپ این مواد به عنوان شاخص برای افزادگی مقدار پرکسیداسین (Doulatabadian et al., 2008) لیپیدها استفاده می‌شود. در این گونه نباید مرسیده که اسید سالسیلسیک با پاکسازی

می‌نمایند (1996)
نتیجه‌گیری کلی:
تنش شوری در دانه‌های گردو باعث کاهش پارامترهای رشدی مانند سطح برگ، تعداد برگ، ثبات نسبت برگ، ثبات نسبت گیاه و ارتفاع ساقه شده است. تنش شوری همچنین باعث کاهش رشد رشدی گیاهی و محواشی آب نسبت برگ و افزایش نشت پوستی و عضو و برونیکه دریکتیف ناشی از ابرکارگی در غلظت های گردو به طور شریعتی می‌توان در دانه‌های گردو را در شرایط تنش شوری تحقیق کند. مطالعه ای از ایجاد

منبع:
اعتصامی، م. گالیشی، س. (۱۳۸۷) ارزیابی واکنش هزینه‌ای این پژوهش از محل اعتبارات پژوهشی دانشگاه ایلام. تألیف شده است. مجله علوم کشاورزی و منابع طبیعی: ۱۵: ۸۷-۱۰۸.

امامی، م. حسینی، و. و برادران، م. (۱۳۸۹) واکنش رشد اولیه و غلظت‌های یونه‌های سوم دم و تناسب در هر رقم جو در شرایط تنش شوری. فصلنامه علمی پژوهشی فیتولوژی گیاهان زراعی: ۶-۵۵.

اورغي، م. طباطبایی، س. ج. فلاحی، ا. ایمنی، ع. (۱۳۸۸) اثرات تنش شوری و یا بم بر رشد، شدت و استرس، غلظت انعکاس غذایی و سیدی درخت بادام. مجله علوم باغبانی ایران: ۶۴: ۱۳۲-۱۴۰.

بابایی، م. مهدوی‌پور، ز. (۱۳۸۹) اثر این سالیسیلیک بر اجزاء عملکرد و رشد سویا تحت شرایط تنش شوری. مجله اکوفرولوژی گیاهی: ۴۷-۹۸.

کاپری، ع. (۱۳۸۹) تحمل نسبت شمشک‌سانی بی‌لدند مدد ایران پژوهش‌های جغرافیایی طبیعی: ۴۱.

باستان، ن. بانی کسب، ب. قبادی، س. (۱۳۹۰) پایان دانه‌های یپهیه رقم قوی‌گری به مرحله مختلف سالیسیلیک اسید و اسکوربیک اسید تحت شرایط تنش شوری. هفتمین کنگره باغبانی ایران. دانشگاه صنعتی اصفهان.

جلیلی، مردی، ر. حسینی، ع. دولتی، بانه، ج. جاحی، نیک نیک، و. يوسف، زاده، ح. (۱۳۹۰) تأثیر سطوح مختلف یزی گردو و برگ گیاهی مرحلهولوژی و فیتولوژیک در رقم اکیف. مجله علوم باغبانی ایران: ۶۵-۹۷.

جعفری، ف. امیری، م. (۱۳۹۲) بررسی تأثیرات آنزیمی و واکنش‌های بیوشیمیایی دو پایه در نتایج شیمیایی مجله به زرآور کشاورزی: ۱۵: ۱۷۵-۱۸۸.

دهقان، ف. علامی، م. عزیزی، ع. (۱۳۹۲) بررسی تأثیر مذکری محلول پایین برگی آکوربیک اسید و تنش شوری بر برخی ویژگی‌های فیتولوژیکی و بیوشیمیایی گیاه توت فنگی در ریزانه. مجله علوم باغبانی ایران: ۴۲: ۵۷-۶۸.

سید فاطمی، س. ج. خلاصی، ا. (۱۳۸۸) اثر سیلیسیم بر رشد و عملکرد گیاه توت فنگی در شرایط شوری. مجله علوم باغبانی: ۳۳: ۴۵-۸۸.

شهیدی نور ابژی، م. فتوحی قریبی، م. (۱۳۸۳) کاربرد اکوربیک اسید بر واکنش دانه‌های لیمو آبی در ایجاد تنش شوری. مجله علوم و فنون باغبانی ایران: ۱۱: ۱۴۵-۱۶۲.
فرآیند و کارکرد گیاهی. جلد 7. شماره 21. سال 1396

غلامی، م. راهنمایی. م (1388). بررسی اثرات نشیروی کلرید سدیم بر خصوصیات فیزیولوژیکی و مورفولوژیکی یاهو رویشی هیرید

فرخی، اف. گاشی. ا. (1388). بررسی تأثیر شوری، اندهاسی بذر و اثرات متقابل آنها بر نشیروی، کاراگی تبدیل ذخیره بذر و رشد کاشت‌های سoya. مجله کشاورزی ایران 36.1336-1389.

کاظمی‌نیا، م. ع. ازیبی. حقیقی. م. (1395) بررسی تحمیل به شوری در مراحل مختلف شکری در گلزا (Brassica napus) رقم طلایی. تحقیقات محیطی در علم زراعت 9: 185-193.

کریمی، م. عباسی‌نوری. د. محمد‌زاده. ح. (1390) انرژی شوری بر خصوصیات فیزیولوژیکی چهار رقم انگور در تاکستان‌های ارومیه. مجله بزرگ‌رودی نهال و بذر 2: 113-119.

مقصودی. ن. طباطبایی. ح. حاجی‌پور. ح. (1390) تأثیر شوری کلرید سدیم بر خصوصیات فیزیولوژیکی و مورفولوژیکی دانه‌های گردوی ایران. هفتمین کنگره علمی غربی ایران. دانشگاه صنعتی اصفهان.

مؤمنی. ع. (1390) نهی و کاربرد نقش برکان جغرافیایی خصوصیات ذاتی و تابع-مدیریت خاک. نشریه فی شماره 508. موسسه تحقیقات خاک و آب.

Crocus نفرزاده. م. غلامی، نسیمی‌پور. م. اسماعیلی‌فرد. ح. (1393) بررسی برخی پاسخ‌های فیزیولوژیکی سره بومی زعفران (sativus L).

