اثرات اسد سالیسیلیک بر بخی از ویژگی‌های مورفو-فیزیولوژیکی و پوششی‌پایی دانه‌های گردو تحت تنش شوری

سیاوش صفری، جواد عرفانی مقدم، محمد جواد زارع

کروه علوم باغبانی، دانشگاه کشاورزی، دانشگاه ایلام

(تاریخ دریافت: 1335/01/20، تاریخ پذیرش نهایی: 1335/04/30)

چکیده:
در بین بین تنش‌های غیر زنده، شوری خاک یکی از مهم‌ترین تأثیرگذار بر رشد و تولید محصول در سراسر جهان است. در این پژوهش، اثر اسید سالیسیلیک بر پارامترهای مورفو-فیزیولوژیکی و پوشش‌پایی دانه‌های گردو تحت تنش شوری بررسی شد. آزمایش به صورت فاکتوریل با پایه طرح کاملاً تصادفی با دو فاکتور اسید سالیسیلیک (۰، ۱/۰، ۱/۵ و ۱/۰ میلی‌مولار) و NaCl (۰، ۵۰/۰، ۱۰۰/۰ و ۱۵۰/۰ میلی‌مولار) در سه ترکیب انجام شد و دانه‌های گردو ۶۰ روز بعد از اعمال شوری مورد بررسی قرار گرفتند. نتایج تجزیه واریانس نشان داد تفاوت معنی‌داری در بین پارامترهای برای صفات ویژه وجود دارد. نتایج نشان داد افزایش گلخانه شوری باعث کاهش رشد پارامترهای تنش‌زا مرده مانند تعداد برگ، سطح برگ، تعداد شاخه فرعی و ارتفاع ساقه گردید. همچنین شوری باعث کاهش رشد رگ‌دانه‌های کلرولیف و محتوای نشی آب پریکش شده و مقدار نشان داد. مثابره، افزایش‌های دانه‌های گردو تحت تنش شوری می‌شود. همچنین اثرات مقاومت شوری و اسید سالیسیلیک بر مقدار کارتن‌داری، محتوای آب نشی پریکش، نشان داد. مثابره، مقدار آلودگی می‌شود و مقدار پرولین معنی‌دار گردید.

نتایج کلی آزمایش نشان داد کاربرد اسید سالیسیلیک با گلخانه یک میلی‌مولار باعث کاهش تغییر بافت در دوري تنش شوری می‌گردد و به عنوان تیماری مناسب باعث حفظ دانه‌گردو شده است.

واژه‌های کلیدی: پرولین، کلرولیف، مالوندی‌آلدهید، محتوای نشی آب

مقدمه:
شناسه مسول‌نشین پست الکترونیکی: J. erfani@ilam.ac.ir

نویسنده مسول، نشانی پست الکترونیکی: J. erfani@ilam.ac.ir
گزارشی مشخص شد نشش شوری به‌طور معنی‌داری سبب کاشش طول، قطر، تعداد برگ و سطح برگ در دانه‌های پسند درست است. (Manchanda and Garg, 2008) و بر اساس قرارداد (بابای، فیتی و علی‌زیده، ۱۳۹۲) و شوری آب و خاک در مناطق خشک و نیمه‌خشک ایران مشکلی می‌باشد. (شفا و شنتی، ۱۳۹۳) شوری آب در کشاورزی یکی از باعث‌های کاهش شدید عملکرد محصول می‌گردد بلکه به مرور زمان سبب سرمای کاهش و سدیمی شدن خاک و از بین رفتن آن می‌شود. (مؤمنی، ۱۳۹۰) و طبق خورشید نشر هوشائل (نی‌زADE و همکاران، ۱۳۹۵) با توجه به افزایش و بروز عوامل کاهشی در کشاورزی، منابع افزایشی در حدود ۵۰ میلیون هکتار می‌باشد. (آبادانی و همکاران، ۱۳۹۲) که در مورد نشش شوری قرار دارد (کاظمی و همکاران، ۱۳۹۵) در اثر انقلاب دینی، شوری بعدی مردمی نشش محیطی است که از طریق کاشش پاتسیال اسمی و انتخاب در فیزیولوژی گیاه و عملکرد محصولات زراعی و باغی می‌باشد. (Demir-Kaya et al., 2006) گیاهان که در دانه‌های شور رشد می‌کنند، به دلیل خواص اسمی، علاوه بر نشش شوری به باعث کم‌آبی مواجه شده که این عامل محبوب کاشش سرعت شدید گیاه می‌شود. این امر موجب اختلال در تقسیم سلول و برک شدن سلول‌ها شده و تعامل واکنش‌های متاپاتیک گیاه تحت تأثیر قرار می‌گیرد و با افتخار عضو سلول را به‌مره می‌زنند. (Netondo et al., 2004) .

شکر از ارائه‌دهندگان تحقیق. کاشش سرعت فتوسنتز خالص گیاهان از طریق کاشش رنگ‌های فتوسنتزی از جمله کارولفیل‌ها می‌شود. (Ashraf, 2004; Oliviera-Neto et al., 2009) و سرعت فتوسنتز به غلبه کاشش محیط‌های کارولفیل در شرایط کمبود شدید آب می‌باشد. محیط‌نابین در باعث بهبود رشد و فتوسنتز افزایش محیط کارولفیل و (Li et al., 2014) مکانیسم‌های آنتی‌کسیدانی گیاهان نشش است. (Juglans regia) گردو با نام علمی بر روی خاک و در منطقه خشک و نیمه‌خشک ایران می‌باشد. (Altinkut et al., 2001; Ashraf, 2004) و ایستگاه‌های کشاورزی می‌باشد که ارتباط نگاتیوی با گیاهان در این شرایط به دلیل کاهش پاتسیال اسمی نخواهد کرست. (آبادانی زمین و همکاران، ۱۳۸۷) در
اثزات اسیذ سالیسیک تز تخیص شدن کامل هر دو سطح برگ استری شدن. برای غلظت
صرف میلی‌مولار اسیذ دو آب مفید عمداً قرنیت گرفت. اعمال
تیمار اسید سالیسیلیک در مخلوط دوم تقریباً 3 روز بعد از
مرحله اول انجم شد (باقری و محمدعلی پور، 1390).

ملحولپاتی اسید سالیسیلیک در سطح برگ‌ها در هنگام صب
و قبل از گرم شدن هوا قرنیت گرفت. تیمار شوری یک هفته
بعد از اولین مرحله مخلوط پاشی سالیسیلیک اسید آغاز گردید
که شمال غلظت‌های صفر، 50 و 150 میلی‌مولار نمک
بود. تیمار شوری همره با آب آبایی هر 0.5 روز یکبار
نکار می‌گردد تا زمانیکه مقدار نمک در خاک EC (نکار)
مریخ و به هر گره تیماری شمار 100 و 150 میلی‌مولار
نمک به ترتیب به 80 و 180 دسی یونس متر رسید.

بعد از این مرحله نهال ی تا آن دوره ارزیابی یا آب معمولی
آب‌سوزی نمکی موجود در خاک قبل از اعمال شوری
انتهایگری شد که میزان آن در حدود 2/3 دسی یونس متر
بود.

نمونه‌برداری از برگ‌های گیاه 60 روز بعد از اعمال
شوری انجم شد. به‌منظور اندازه‌گیری پارامترهای بیوشیمیایی
و صفات تخیبی از برگ‌های قسمت میانی نهال جنین برگ
به‌صورت تصادفی انتخاب و با فول آلومتریومی پچیده و
بلافاصله در نیتروز مایع منجمد شدن و در دمای منفی
40 درجه سانتی‌گراد تکمیلی شدند. بر خصوصی فیزیولوژیکی
و بیوشیمیایی شمل انتخاب برگ، سطح برگ، تعادل نمک،
ارتباط باعث نرمال، درصد محیطی آب در بافت برگ، نشت
یونی، کارولفیل H8، کارولفیل کل، کارولتون، مالونیدی آلدهید
و بروتیل در پایان دوره اندازه‌گیری شدن. برای اندازه‌گیری
سطح برگ از دستگاها سطح برگ سنگ استفاده شد. بین محدود
از هر گرد و گرد 15 برگ از قسمت میانی نهال به‌صورت تصادفی
انتخب و سپس از جداسازی، سطح هر برگ اندازه‌گیری و
میانگین سطح 15 برگ به‌عنوان سطح برگ هر تیمار در نظر
گرفته شد. طول ساقه با استفاده از نکات میلی‌متر محاسبه
شد و بر اساس واحد میلیمتر کاراکتر گردید. درصد محصولی
آب نسبی برگ با روش Díaz-Pérez و همکاران (1995) تعیین

(Fulton and Buchner, 2006) تنظیم گردیده‌ها رشد به‌صورت برنز در سپاریز از موارد در
کاهش نهال‌های محیطی مؤثر گزارش گردیده است. تحقیق
سالیسیلیک اسید در سپاریز از نهال‌های محیطی ثابت شده
است. هر چند کاربرد این ماده منجر به کاهش نهال‌های
مختلف در سپاریز از یک‌ها به شده است اما گزارشات اندکی
در خصوص تأثیر آن در درختان میوه و به‌خصوصی در دانه‌آل
گرد و وجود دارد.

مواد و روش‌ها:
این آزمایش در بهار و تابستان سال 1394 در دانشگاه
کشاورزی دانشگاه امام خمینی (ره) آراک به‌صورت فاکتوریل
بر یک طرح کاملاً تصادفی شامل سالیسیلیک اسید در چهار
غلظت صفر، 50 و 150 میلی‌مولار و کلرید سدیم (NaCl) در
چهار غلظت صفر، 50 و 150 میلی‌مولار بر دانه‌آل دو
ساله گردید. در سه تکرار انجم شد. در این آزمایش تعداد
80 دانه‌آل گرد به‌کمک‌سازی از گل‌های پاسکینیکا با سایر میوه‌های
گل‌های پاسکینیکا با قطر 30 و ارتفاع 40 سانتی‌متر انقلال
داده شدند و در زمان اعمال تیماری نهال‌ها در فصل دوم
شدید قرار داشتند. خاک مورد استفاده به نسبت برابر از خاک
مورع، خاک برک و ماسه‌باده تهیه شد. گل‌های دنا در محیط
مزوین در فضای آزاد قرار داده شدند و میوه‌های لازم شامل
آبی‌آرزو و چیزی که در ترکیب نیاز برند از روش NPK
(آبی‌آرزو، چیزی، کوده‌های (کوده‌های کد 20-40-10) به
نسبت به یک مکانیک گردن و یک هفت به بعد از
مقدار کیفی‌سازی به بافتی میلی‌مولار G و یک هفت به بعد از
مقدار یک مقداری که به بافتی میلی‌مولار G رشد کرد.

کود اول کود نرمال ب در مقدار 20 کمی به
هر هلال داده شد. میزان اثرات زمانی که رشد کافی داشته
باشد و به تعداد کافی برگ تولید کردن ادامه به کافی بود.
از اعمال تیماری برای جلوگیری از ایجاد تشک‌ته و گرمای
نهال‌های به زیبایی متوقف شده. علاوه بر 48 هلال سال و
یک‌ساله انجام تشک‌ته و در اواخر بهار تعداد با رشد و تحمیل دانه‌آل توسه برگ‌ها
و نمک ساله، تیمار سالیسیلیک اسید در چهار غلظت صفر، 51، 2
و 3 میلی‌مولار به کمک اسیری دستی انجم شد و نهال‌ها تا
شاخص فرعی مربوط به شاهد با میانگین 5/5 شاخه و کمترین تعداد آن زن در سال 150 میلی مولار با میانگین 4/7 شاخه مشاهده گردید. در بین کلیه تیمارها از نظر آماری معنی دار بود (جدول 2). همچنین تعداد شاخص فرعی مربوط به طوریکه پرتو یک میلی مولار اسید سالسیلیک افزایش یافته به طوریکه تفاوت معن‌داری تا سایر تیمارها داشت (جدول 3). سطوح مختلف شوری در اختلاف معن‌داری در ارتفاع سه داهنه گردید ابزار کرد که طوریکه پیش‌برتران ارتفاع سه مربوط به تیمار بدون نش شوری و میانگین 2/4 میلی‌گرم بر گرم وزن و کمترین مقدار آن در شوری میلی‌مولار مشاهده گردید (جدول 2). در مقایسه میانگین اثرات سه سالسیلیک اسید مشاهده گردید که بیشتر تأثیر این 21/4 میلی‌گرم بر گرم وزن را دست اماد داشت (جدول 3). نتایج نشان داد که در سالسیلیک اسید میانگین 4 و کل در شوری 150 میلی‌مولار و در تیمار اسید سالسیلیک اسید میانگین 4/7 میلی‌مولار این ترکیب به دست آمد (جدول 2 و 3). اثرات متفاوت شوری و اسید سالسیلیک با شاخص‌های کنولف مربوطه نشی. محتوی نسبی آب در بات بکر گروه تحت تأثیر شوری و اسید سالسیلیک فزار گرفته یا طوری که بیشترین محتوای نسبی آب باید از تیمار بدون نش شوری و در غلظت یک میلی مولار با میانگین 75/5 درصد و کمترین مقدار آن از شوری 150 درصد مولار و غلظت 3 میلی‌مولار اسید سالسیلیک با میانگین 10 درصد مشاهده شد (شکل 1).

نتایج:

نتایج حاصل از تجزیه و ارائه‌داده‌ها نشان داد که شوری و کارتوئید سالسیلیک اسید اثر معن‌داری بر پارامترهای مورفولوژیکی و فیزیولوژیکی داهنگ گردود سطح برق تعداد برگ، تعداد شاخه فرعی، ارتفاع، ساقه، میزان رطوبت نسبی، نشت بونی، کل کالکول فلک و کالکول کل کارتوئید، مولتی‌آلدنید و پرولین داشت (جدول 1). اثرات متفاوت شوری و سالسیلیک اسید بر پایه خصوصیات مانند مولتی‌آلدنید، محتوای آب نسبی، نشت بونی، پرولین و کارتوئید معن‌دار گردید (جدول 1). شوری تأثیر معنی‌داری در کاهش سطح برق و تعداد آن در زمان نمونه‌برداری داشت به طوریکه با افزایش سطح شوری تعداد برگ و سطح آن کاهش یافت. بیشترین بهره برق مربوط به شاهد با میانگین 83/7 سانتی‌متر مربع و کمترین میانگین آن مربوط به تیمار اعمال 150 میلی‌مولار شوری و میانگین 4/4 سانتی‌متر مربع بود. بیشترین تعداد برگ مربوط به تیمار بدون شوری و میانگین 75/3 برک و کمترین تعداد برگ مربوط به شوری 150 میلی مولار با میانگین 77/2 برک نشت بود (جدول 2). نتایج نشان داد اسید سالسیلیک در غلظت یک میلی مولار باعث افزایش سطح برگ و تعداد آن گردید. اما در غلظت‌های بالاتر تأثیر مثبت بر این شاخص‌ها نداشت (جدول 3). تأثیر شوری بر شاخص تعداد شاخه فرعی معنی‌دار بود به طوریکه بیشترین تعداد
جدول 1- توانای تجزیه واربین صفات مورد بررسی در نهال‌های گردو تحت نش شوری و سالیسیلیک اسید

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>نش نوعی</th>
<th>ارتفاع ساقه</th>
<th>تعداد برج</th>
<th>بکر فرعی</th>
<th>طول برج</th>
<th>درجه آزادي</th>
</tr>
</thead>
<tbody>
<tr>
<td>61/338/8/8**</td>
<td>79/374/8*</td>
<td>70/4**</td>
<td>75/8**</td>
<td>30/8**</td>
<td>3</td>
<td>NaCl</td>
</tr>
<tr>
<td>23/058/7**</td>
<td>38/1/2**</td>
<td>24/2**</td>
<td>20/5**</td>
<td>11/8**</td>
<td>3</td>
<td>SA</td>
</tr>
<tr>
<td>90/212/4**</td>
<td>48/5**</td>
<td>18/8**</td>
<td>13/2**</td>
<td>5/1m</td>
<td>3</td>
<td>NaCl*SA</td>
</tr>
<tr>
<td>29/3/8</td>
<td>88/0</td>
<td>12/1</td>
<td>7/1</td>
<td>0</td>
<td>3</td>
<td>ضریب تغییرات (٪)</td>
</tr>
</tbody>
</table>

** و ***: به ترتیب معنی دار در سطح 1 و 5 درصد.

این جدول نشان می‌دهد که فاصله میانگین مورد بررسی صفات مورد اثر نهال‌های گردو تحت نش شوری و سالیسیلیک اسید تأثیر گذاشته‌است.

جدول 2- مقایسه میانگین ارزش‌های مورد بررسی صفات مورد علائم در نهال‌های گردو

<table>
<thead>
<tr>
<th>میانگین کل</th>
<th>کلموکین a</th>
<th>کلموکین b</th>
<th>کلموکین c</th>
<th>تكبیک a</th>
<th>تكبیک b</th>
<th>تكبیک c</th>
<th>تعداد برج</th>
<th>بکر فرعی</th>
<th>طول برج</th>
<th>درجه آزادي</th>
</tr>
</thead>
<tbody>
<tr>
<td>41/3**</td>
<td>18/9**</td>
<td>22/4**</td>
<td>42/8**</td>
<td>5/5</td>
<td>27/5</td>
<td>83</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>20/5**</td>
<td>11/9**</td>
<td>4/3b</td>
<td>21/3b</td>
<td>0/4b</td>
<td>15</td>
<td>8b</td>
<td>100</td>
<td>150</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>18/7**</td>
<td>8/3b</td>
<td>10/3c</td>
<td>37/3c</td>
<td>3/3c</td>
<td>8/5</td>
<td>8/8d</td>
<td>15</td>
<td>150</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>13/3d</td>
<td>5/8c</td>
<td>1/5d</td>
<td>30/7d</td>
<td>1/3d</td>
<td>4/4d</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>2</td>
</tr>
</tbody>
</table>

در سطح معنی‌داری که سطح حداقل به حرف مشترک هستند، فاصله میانگین صفات مورد بررسی در سطح احتمال 5 درصد از میانگین بسیار معنی‌دار است.

میلی مولار اسید سالیسیلیک حفظ شد. شوری بر میزان نش است. نش اکثریت در سطح یک درصد احتمال آماری معنی دار گردد. سالیسیلیک اسید غلظت ۳ میلی مولار با میانگین ۲/۳۸۰ درصد مشاهده گردید (شکل ۲). در مجموع غلظت یک میلی مولار سالیسیلیک اسید به میزان ۶۲/۳ درصد و بهترین نش تونی از تیمار شوری ۱۰۰ میلی مولار با سالیسیلیک اسید غلظت ۳ میلی مولار با میانگین ۲/۳۸۰ درصد کمترین میزان نش تونی در تیمار بدون نش شوری و غلظت.
جدول 3- مقایسه میانگین اثرات ساده اسید سالیسیلیک بر صفات مورد مطالعه دانه‌ال گیاه

<table>
<thead>
<tr>
<th>اسید سالیسیلیک</th>
<th>سطح برش</th>
<th>تعداد برش</th>
<th>فرعي</th>
<th>ارتقاء‌سازه</th>
<th>کارکرد کل</th>
<th>کارکرد b</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 میلی مولار</td>
<td>1 میلی مولار</td>
<td>3 میلی مولار</td>
<td>6 میلی مولار</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15/5 a</td>
<td>7/34 a</td>
<td>5/7 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36/6 a</td>
<td>15/9 a</td>
<td>9/5 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26/5 b</td>
<td>12/4 b</td>
<td>14/6 b</td>
<td>37/7 c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/4 c</td>
<td>9/5 c</td>
<td>10/8 c</td>
<td>37/3 c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون میانگین هایی که از هم گردیده هستند، به ترتیب با اعداد مختلف مشاهده می‌شود. بهترین نتایج در سطح احتمال 5 درصد در آزمون LSD مشاهده شد.

شکل 1- اثر مقایسه معیارهای مختلف سالیسیلیک اسید (SA) و شوری بر میزان آب نسبی بافت دانه‌ال گیاه. حروف مشابه نشانه‌دهنده عدم اختلاف معنی‌دار در سطح احتمال 5 درصد در آزمون LSD است.

شکل 2- اثر مقایسه معیارهای مختلف سالیسیلیک اسید (SA) و شوری بر مقدار نشت پوستی بافت دانه‌ال گیاه. حروف مشابه نشانه‌دهنده عدم اختلاف معنی‌دار در سطح احتمال 5 درصد در آزمون LSD است.

اسید سالیسیلیک به منظور جلوگیری از نشت پوستی در سول در مقایسه با غلظت‌های بالاتر این ترکیب بهتر بود.

شاخص رنگدانه کارونیوند تحت تأثیر اثر مقابل شوری و اسید سالیسیلیک قرار گرفت به طوری که هردو با افزایش
اثزات اسید سالیسیلیک بر پنی از ویژگی‌های مورفولوژیکی...

شکل ۳- اثرات مقابل غلظت‌های مختلف سالیسیلیک اسید (SA) و شوری بر مقدار کارتن‌بندی برگ دانه‌الگ گروه. حروف مشابه نشان‌دهنده عدم اختلاف معنی‌دار در سطح احتمال ۵ درصد در آزمون LSD است.

شکل ۴- اثر مقابل غلظت‌های مختلف سالیسیلیک اسید (SA) و شوری بر مقدار مالوندیآلدهید برگ دانه‌الگ گروه. حروف مشابه نشان‌دهنده عدم اختلاف معنی‌دار در سطح احتمال ۵ درصد در آزمون LSD است.

شکل ۵- اثر مقابل غلظت‌های مختلف سالیسیلیک اسید (SA) و شوری بر مقدار پروپیون برگ دانه‌الگ گروه. حروف مشابه نشان‌دهنده عدم اختلاف معنی‌دار در سطح احتمال ۵ درصد در آزمون LSD است.
طوری که بیشترین مقدار آن در شوری صفر و غلتگی پک میلی‌مولار اسید سالیسیلیکبا مقدار ۱/۰ میلی‌گرم در وزن‌تر بک لنیت شد. اثر متقابل سالیسیلیک اسید و شوری در مقدار یک درصد آماری بر میلی‌مولار غلظت می‌باشد. (Nasir Khan et al., 2007)

پیشینه نشان می‌دهد تا در تیمار نش شوری شدید یا شوری مقدار ۰/۵ میلی‌مولار و اسید سالیسیلیکبا غلظت می‌باشد. (شکل ۱)

با توجه به نتایج حاصل در این کلیه تیمارها، غلظت یک میلی‌مولار با میانگین ۱/۰/۵ نانومول بر گرم وزن‌تر بر دسته آمد.

(حکم).

بحث

نشن شوری از مهم‌ترین نش‌های محیطی است که رشد و عملکرد گیاهان را کاهش می‌دهد. نتایج حاصل از این تحقیق نشان دهنده اثر شوری بر شاخه‌های رشد دانه‌ای گردو دارد که با تأثیر محیطی از نظر محتوایهای انسدادی و مهارگیران (۱۳۹۰) که نشان داده شد، نشان شوری باعث کاهش سطح برق و تعداد برق در دانه‌گردو می‌گردد و برق مشتق است. در آزمایشی دیگر، نشان شوری موجب کاهش تعداد و سطح برق در توپ‌فرنگی شد (سادهدی و معلمی، ۱۳۹۰). (۱۳۹۰) که نشان دادید، نشان شوری باعث کاهش سطح برق و تعداد برق در دانه‌گردو می‌گردد و برق مشتق است. در آزمایشی دیگر، نشان شوری موجب کاهش تعداد و سطح برق در توپ-فرنگی شد (سادهدی و معلمی، ۱۳۹۰). (۱۳۹۰) که نشان دادید، نشان شوری باعث کاهش سطح برق و تعداد برق در دانه‌گردو می‌گردد و برق مشتق است. در آزمایشی دیگر، نشان شوری موجب کاهش تعداد و سطح برق در توپ-فرنگی شد (سادهدی و معلمی، ۱۳۹۰). (۱۳۹۰) که نشان دادید، نشان شوری باعث کاهش سطح برق و تعداد برق در دانه‌گردو می‌گردد و برق مشتق است. در آزمایشی دیگر، نشان شوری موجب کاهش تعداد و سطح برق در توپ-فرنگی شد (سادهدی و معلمی، ۱۳۹۰).
حذف رادیکال‌های آزاد و جلوگیری از پراکندگی آن‌ها (Koyro, 2006) در نهایت مانع تشکیل‌کننده‌ها می‌گردد. کاهش در میزان فعالیت سلول‌های میکروسمی و جلوگیری از طولین سلول‌ها نتیجه تغییر در رابطه آبی گیاهان تحت تنش شوری است که مدل کاهش شاخص‌های رشدی گیاهان است (2011). تشکیل نمای‌های مقدار محتوای آب نسبی در گیاه کاشت در (2005) Parida and Das نشان داد که محتوای آب نسبی رطوبت گیاهان تحت تنش شوری در مقایسه با گیاه مادر و گیاه در رابطه آبی می‌باشد. برای این نسبی و آب آبی بین‌النوازین و 48 درصد برای تشکیل شوری مهانه گردید. کاهش محتوای آب بزرگ از نکته‌های اصلی گیاه فستیلاتیون در طول شوری سه ماهه باعث آن شده است. همچنین گیاهان در مقدار کاری‌پذیری ویژه مهانه که کاهش کردن فیل‌کلی است. احتمال ناشی از فعالیت آب و گیاهان و دیگر اجزای نسبی کاری‌پذیری کردنیک (Sairam and Srivastava, 2002) مشاهده می‌گردد. گیاهان که در طول شوری، نوع نمک و سیستم کشتی دارند (Sairam and Srivastava, 2002) اثر شوری بر چربی‌بندی به روش‌های مانند آن وال و منیزمی که در ساختن کریپ‌پلاست و وجود دانش‌های کافی است و به دنبال کاهش ای از بهتر کردنیک ری‌کاری‌ها که فستیلاتیون و دستگاه فستیلاتیون (Hanafy et al., 2002) باعث آن شده است. همچنین فستیلاتیون کردنیکی که به دلیل تغییرات ساختن کریپ‌پلاست و دستگاه فستیلاتیون (انفیل‌سیسوین کردنیکی و میان‌انسی بیستار کردنیکی) جدید شاد (2005). (Sultana et al., 2005) در این پژوهش نیز رنگ‌دهانه‌های فستیلاتیون در اثر فعالیت کردنیک یافته که نشان می‌دهد بیستار کردنیک تأثیری در این شوری و در مقایسه با گیاه کنترل کردنیک بی‌کاره است. در این پژوهش مشخص شد که رنگ‌دهانه‌های فستیلاتیون و کاری‌پذیری در تیمار اید سالیسیلیک بی‌کاره می‌باشد تحت تأثیر اثر فعالیت کردنیک این نتیجه داشته به نیز رنگ‌دهانه‌ها در شرایط غلظت می‌توانند به دلیل نقش خاصی آن‌ها در تکنیک‌های فستیلاتیون باشد زیرا این رنگ‌دهانه‌ها باعث...
یهی دیگر از مکانیسم‌های مقاومت در برابر ترشح‌های
محیطی منفرد شوری و تنش کم‌آبی باعث المولی بهداشتی و
اسیدهای چرب غیراصعب آن است که در طی تنش باعث
پدیداری گشایش می‌شود (Idress et al., 2011).
رادیکال‌های آزاد به حفاظت از ترکیبات اکسیدانی و
اسیدهای ترشح‌های غیراصعب آن است که در طی تنش باعث
پدیداری گشایش می‌شود (Idress et al., 2011).

رادیکال‌های آزاد، از پراکسیداسیون چربی‌های جلوگیری نموده
و مرکب‌های مادونی می‌گردد.

در این آزمایش افزایش میزان نشیمیتی سنگین کلیه
تیمارهای گروه مشابههای در برخی گروه‌هایی در کلیه
شود. ممکن است میزان سنگینیتی در ناحیه‌های
افزایش می‌یابد و سپس تغییراتی از می‌گردد از
سیستم نمک جلوگیری می‌کند. (Kaya et al., 2006)
در این پژوهش بیشترین مقدار پروپولین در نشیمیتی
شود که از نظر آماری با مقدار پروپولین در سایر سطوح شوری
اختلاف معنی‌دار داشت. این تحقیق با تاثیر گانی و راهی
شده‌ای در گیاه‌های مختلفی که نشان داده تناها در
سطح بالای پاتولی و نشیمیتی پرولین افزایش
می‌یابد مشابهت دارد. افزایش میزان نشیمیتی در
مرکبات حسب‌یابی و اسمی (1992)، توت‌فرنگی (دهفان و
همکاران، 1990)، انگور (کریمی و همکاران، 1990)، زیتون
(کوه فایق و همکاران، 1992) و پوست در است. پروپولین
تهمجع بازی به شکل نشیمیتی شایل ایجاد ترکیبات اسیدی، ترکیب
دیگری از این می‌باشد. (به عنوان داشتن ترکیبات آنتی‌اکسیدانی)
از بین برند رادیکال‌های هیدروکسیل، محالله، تنظیم
پاتولیاسیون اکسیداسیون سلولی، کاهش تنشیمیتی (pH)
و هفظ ترکیبات بدنی برای اندازه‌گیری مقدار پراکسیداسیونی
یافته‌های استفاده می‌شود. (Doulatabad et al., 2008)
این گونه به نظر می‌رسد که اسید سالمیسیک با پاکسازی

doulatabadi1390@gmail.com

نتیجه‌گیری کلی:
تنش شوری در دانه‌های گردو باعث کاهش پارامترهای رشدی مانند سطح برق، تعداد برق، تعداد مشاهده فرعي و ارتقاء سطح سطح برق شده است. تنش شوری همچنین باعث کاهش رنگدانه‌های گل‌بری و محتوای آب گیاه، برگ و افزایش نشت بروز و مالون در آلوده و پرولوگی گردید. نتایج نشان داد این سالسیلیک در غلفت‌های پایین به طور موردی می‌تواند دانه‌های گردو را در شرایط تنش شوری حفظ کند و مانع از ایجاد

مقاله:

امامی، م. حسنی، ا. و نوره، ن. پیشنهاد، ه. (1392) واکنش رشد اولیه و غلظت‌های پنج ماده سدیم و نتیجه‌گیری در هر گرو (Hordeum vulgare L.) در شرایط تنش شوری. فصلنامه علمی پژوهش زراعت غیرگیاهی: 5-15.

اورعی، م. طاطسیا، ص. فلاحی، ا. ایمنی، ع. (1388) اثرات تنش شوری و پایه بر رشد، شدت، فتوسنتز، غلظت و اسید درخت باقل. مجله علوم گیاهی ایران 43: 131-140.

بیاتی، ع. و علی‌اصغری، ب. (1392) تحقیق قضایی خشکسالی بینند مدت ایران. پژوهش‌های جغرافیایی طبیعی ۴۵: 1-19.

باقری، ع. مهدعلی، ی. و ایلامی، ع. ج. (1392) اثر این سالسیلیک بر اجزاء عملکرد و رشد سوابق تحت شرایط تنش شوری. مجله اکوفیزیولوژی گیاهی ۳: 26-39.

بستمی، ن. بابلی، ی. و ایلامی، ع. (1390) پایه تنش شوری به رشد و اکوسفیزیولوژی اثر این سالسیلیک بر اجزاء عملکرد و رشد سوابق تحت شرایط تنش شوری. مجله اکوفیزیولوژی گیاهی ۳: 40-47.

جیبی، ع. غیری، ف. ا. امیری، م. (1392) بررسی عادات آنزیمی و واکنش‌های بیوشیمیایی دو پایه مركبات به تنش شوری درون سیستمی.

جراح، م. و علی‌اصغری، ب. (1392) بررسی اثر پرکرده محصولات پایه برگ ستاره‌ی سالسیلیک اسید و تنش شوری بر بخشی ویژگی‌های فیزیولوژیکی و بیوشیمیایی گیاه نت‌گیری در این تحقیق و سالنها به غلظت‌های 12: 50-56.

تمایلی، م. و علی‌اصغری، ب. (1390) بررسی تأثیر محلول‌های خشک بر رشد و عملکرد گیاه نت‌گیری در شرایط تنش شوری.

سیده‌نهادی، ی. (1388) اثر شباهت‌های این سالسیلیک بر رشد و عملکرد گیاه نت‌گیری در شرایط شوری. مجله علوم گیاهی ۲۳: ۸۸-۹۰.

شهیدی پور اکبری، ه. و فریدنی، ف. (1389) کاربرد اسید کطران در واکنش دانه‌های لیمو آب در برای تنش شوری. مجله علوم و فنون گیاهی ایران 11: 145-162.

