اثر تشیع شوری بر رشد، تنظیم کندنهای اسمزی و فعالیت آنزیم‌های آنی اکسیداتی‌های گیاه شوری‌سند خرده ساحلی

الهام عناوینچه، محمد رضا صالحی سلوی ۱، محمد حسین دانشور ۲ و علی‌اکبر مرادان ۳

گروه علوم ابیاته، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان، دانشکده علوم زیستی دانشگاه تربیت مدرس

نویسنده مسئول، نشانی پست الکترونیک: salehi@ramin.ac.ir

(تاریخ دریافت: ۱۳۹۴/۱۲/۲۰، تاریخ پذیرش نهایی: ۱۳۹۵/۰۵/۰۵)

چکیده:
در این پژوهش اثر غلظت‌های بهینه و بیش از حد بهینه کلرید سدیم (۱۰۰، ۲۵۰، ۵۰۰ و ۷۵۰ میلی‌مولار) بر رشد، میزان کلروفیل، کربوهیدرات‌های محلول، پروپن و فعالیت آنزیم‌های آنی اکسیداتی‌های خرده ساحلی بررسی شد. در تیمار شوری ۲۵۰ میلی‌مول کلرید سدیم افزایش معنی‌داری در رشد ساق (۲۸/۷٪ سانتی‌متر و رشد (۱۹/۷٪ سانتی‌متر) و میزان آب برگ (۴۲ درصد) نسبت به شاهد مشاهده شد. در همین میزان شرایط کمتری امپس باخته‌ای (۲/۲۰ درصد نشان بود) و بیشترین هماهنگی معنی‌دار در اثر بیان بالایی کربوهیدرات محلول (۳۸/۲٪ میلی‌مول بر گرم در لیتر) و بیان سدیم (۲۸/۶٪ میلی‌مول بر گرم وزن خشک) و کمترین تولید پروپن (۲۳/۷ میکرو‌گرم بر گرم وزنتی) وجود داشت. در شرایط شرید مطلوب، فعالیت متوسط آنزیم‌های آنی اکسیداتی‌های (سوپراسیدسیمپتاز و آسکوربیات پراکسیداز) تیز‌تر بود. در مقابل، در رشد زیر (آب مفروض) و بیش از (۷۰۰ میلی‌مول کلرید سدیم) حد بهینه بطور قابل توجهی رشد، میزان آب برگ و رشد انسیتی نسبت به تجمع بیان‌های سیمی، افزایش یافته‌تنیی رشد و افزایش فعالیت آنزیم‌های آنی اکسیداتی‌های منظور تعادل اسمزی و زندگیان در شرایط زیر و بیش از حد بهینه کلرید سدیم، سپس کاهش رشد گردید.

واژه‌های کلیدی: سوپراسیدسیمپتاز، کلرید سدیم، گیاه پوششی، نشان پست

Menzel and Leith, 1999 (Sesuvium portulacastrum) گونه خرده ساحلی (Menzel and Leith, 1999), (Aizoaceae, (portulacastrum) یک‌سانی پایایی برای پوشش خاک و فضاهای سبز درد. این گونه دارای شاخه‌زاره به رنگ صورتی مایل به بی‌رنگ و گاهی اوقات گل‌های سفیدرنگی‌ی می‌باشد (Shigeoka et al., 2002). معرفی موافق این گونه بستگی به توانایی آن در تحت اکوسیستم‌های بی‌ماهی دریایی بسیار کرد. این گونه قادر به رشد در خاک‌های بسیار شور و سخت همراه با مواد غذایی می‌باشد. در گزارش‌های

مقدمه:
ثنیه‌های غیرنزنده (خشک، شوری، سرمای و گرم) دلالت اصلی Boyer از بین رفت. گیاهان پوششی و فرسایش خاک هستند. (Boyer, 1982; Hare et al., 1999) گیاهان پوششی خاک‌های شنی را می‌توان در خاک‌های شور و خشک که با پرک بردن در میان گیاهان مقاوم به شوری، گونه‌های سریع‌ترشدن در جنس‌های گیاهی Mesembryanthemum و Batis Sesuvium همین‌جا دارند. که می‌تواند در زمان کوتاه‌تر خاک‌های باریک را پوشش دهد.
گونه به عنوان یک شوری‌پسند زیبی ارزشمند انجام شد.

مواد و روش‌ها:

این پژوهش در پاییز سال 1393 در گلخانه گروه گیاهی دانشگاه کشاورزی و منابع طبیعی رامی خوزستان تحت شرایط دما 25±2 درجه سانتی‌گراد و رطوبت نسبی 60 تا 70 درصد انجام گردید. گیاهان یک‌ساله خرده سالیانه از نهال‌ریز در شهر اهواز تهیه گردید. برای کاشت گیاهان از گلخانه پلاستیکی زه‌چکدار به قطر ۲۰ سانتی‌متر و طول ۲۵ سانتی‌متر استفاده گردید. گلخانه‌ها پس از ریختن ۵ سانتی‌متر سطح‌پوش‌ها با خاک (جدول ۱) پر گردیدند. بر پایه استقرار و سازگاری، گیاهان به مدت ۳۰ روز در شرایط پیکان و آب‌پزی به میزان ظرفیت زراعی هر ۴ روز کیلوگرمان انجام گردید. سپس اعمال تنش شوری به همراه آب آبادی به مدت ۳۰ روز انجام شد و چهار سطح شوری وجود داشت که عبارت بودند از: (آب فقط (شاهد)، ۲۵۰ و ۵۰۰ میلی‌میلار کلاریک سدیم. لازم به ذکر است که برای جلوگیری از وارد شدن ناگهانی به گیاه اعمال تنش در ۵ مرحله صورت گرفت.

نتایج و بحث:

نتایج حاصل از تجزیه واریانس داده‌های مستقل ویژگی‌های
جدول 1- برخی از ویژگی‌های خاک مورد استفاده.

علیه	نسبت (سوختگی)،	دامپرسی (آب‌سوز)،	وزن مخصوص ظاهری،	رس (سونه)،	شش لومی،	یافتاً خاک (این‌گونه)	تیمار	افزایش ریشه،	طول ریشه،	وزن شاخسار،	وزن ریشه،	پرولین	میزان آب گرگ		
1/82	10/29	9/12	17	1/142	469/6**	412/4**	0/67	3/83	4/47	7/19	0/12	78/35**	77/85	77/35**	38/35**
2/82	10/29	9/12	17	1/142	469/6**	412/4**	0/67	3/83	4/47	7/19	0/12	78/35**	77/85	77/35**	38/35**
3/82	10/29	9/12	17	1/142	469/6**	412/4**	0/67	3/83	4/47	7/19	0/12	78/35**	77/85	77/35**	38/35**

جدول 2- میانگین میزان‌ها و ویژگی‌های مورد ارزیابی در 4 سطح شوری.

<table>
<thead>
<tr>
<th>درجه افزایش</th>
<th>کربوهیدرات‌های هوا</th>
<th>نسبت سپرایکسید</th>
<th>دم‌پرسی</th>
<th>پرولین</th>
<th>میزان آب گرگ</th>
<th>پراکسیداز</th>
<th>افزایش غلظت</th>
<th>ضریب تغییرات (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/29</td>
<td>4/47</td>
<td>4/17</td>
<td>3/83</td>
<td>41/81</td>
<td>0/13</td>
<td>0/28</td>
<td>5/34</td>
<td>7/13</td>
</tr>
<tr>
<td>9/12</td>
<td>4/47</td>
<td>4/17</td>
<td>3/83</td>
<td>41/81</td>
<td>0/13</td>
<td>0/28</td>
<td>5/34</td>
<td>7/13</td>
</tr>
<tr>
<td>17</td>
<td>4/47</td>
<td>4/17</td>
<td>3/83</td>
<td>41/81</td>
<td>0/13</td>
<td>0/28</td>
<td>5/34</td>
<td>7/13</td>
</tr>
<tr>
<td>17</td>
<td>4/47</td>
<td>4/17</td>
<td>3/83</td>
<td>41/81</td>
<td>0/13</td>
<td>0/28</td>
<td>5/34</td>
<td>7/13</td>
</tr>
</tbody>
</table>

متوسط مولکول‌وزن، فیزیولوژیکی و بهبودی‌گی یکی خرده ساحلی نشان داد که میزان میزان‌های 500 میلی‌مولار و کمترین طول ریشه مربوط به آب‌پرگ بود. (شکل 1). نتایج نشان داد که افزایش غلظت کارکرده در طول شاخسار و ریشه اثر گذاشت. گونه‌هایی که در هر دو ویژگی اندامی که یافت و پرکارکسید ریشه ریشه‌های میزان‌ها و سپرایکسید در سطح احتمال 1 درصد و افزایش غلظت با 500 میلی‌مولار، وزن‌تر شاخسار و و ریشه افزایش ذاکر ولی در غلظت‌های 500 میلی‌مولار وزن‌تر شاخسار و ریشه کاهش یافت. با این وجود کمترین وزن‌تر شاخسار و ریشه در تیمار بالا (آب‌پرگ خرد سطح) مشاهده شد (شکل 2). بررسی میزان آب گرگ خرد سطح با تیمار بالا (آب‌پرگ خرد سطح) مشاهده شد. همچنین میزان‌های 500 میلی‌مولار سپرایکسید در طول‌های مختلف بر روی آب‌پرگ یافته در گونه‌های بالا میزان، آب‌پرگ کاهش یافت و میزان مولکول‌وزن کمتر از تیمار بالا (آب‌پرگ خرد سطح) (شکل 3).
شکل ۱- اثر آیا تیاری با غلظت‌های مختلف کلرید سدیم بر طول ساقه و ریشه ستون‌های با رنگ مشابه، که دارای حروف مشترک هستند، در سطح ۵٪ آزمون چنددمتایی دانک تفاوت معنی‌داری ندارند.

شکل ۲- اثر آیا تیاری با غلظت‌های مختلف کلرید سدیم بر وزن شاخه‌ها و ریشه ستون‌های با رنگ مشابه، که دارای حروف مشترک هستند، در سطح ۵٪ آزمون چنددمتایی دانک تفاوت معنی‌داری ندارند.

شکل ۳- اثر آیا تیاری با غلظت‌های مختلف کلرید سدیم بر میزان آب برم. نقاط دارای حرف مشترک، در سطح ۵٪ آزمون چنددمتایی دانک تفاوت معنی‌داری ندارند.

Lokhande et al. در حالی که در نظر داشتند که تعداد کلرید سدیم در میلی‌مولار (Messedi et al., 2004) مسی و همکاران (۲۰۰۳) مورد استفاده قرار گرفته که جنس Sesuvi um همزمان با بهره‌برداری در شوری محدوده با ۶۰۰ تا ۱۰۰۰ میلی‌مولار می‌باشد و بیان کرده‌اند که این جنس از جنگل‌های جنگلگری می‌کند. در پژوهش‌های غلظت زیاد عناصر سدیم و کلر سبب نشان‌های سمی و بی‌پای بوده است (Tester and Davenport, ۲۰۰۳) و بنا براین در جهد عناصر غلظتی در تمامی اندازه‌های گیاهی اختلاف به وجود می‌آورد. در پژوهش‌های بیان‌شده اینکه جنس Sesuvi um در مقایسه با تمامی گیاهان در سطح سلولی رفتار متفاوت داشته و
به گونه‌ای که بیشترین میزان پرولین مربوط به تیمار آبیاری با کلردی سدیم ۲۰۰ میلی‌مولار می‌باشد، افزایش پرولین در سیتوپلاسم تنظیم‌شده است. در تحقیقات دیگر نیز نشان داده شده که هنگامی که گیاهان شور دوست در محیط سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)

در این زمینه پژوهشی به‌پژوهش دوست‌داره کلردی سدیم (Flowers and Melo 2006) احتمال تعداد وسایل در غلظت بالاتر از حد بهینه یافته است. در این مطالعه سیتوپلاسم تنظیم جدید بوده و جمع‌آوری آن در واکنش است. یکی از ویژگی‌های مهم گیاهان شور دوست افزایش نسبت آبی در غلظت‌های متوسط شور است. (Flowers et al., 2005)
شکل ۴- اثر آبیاری با غلظت های مختلف کلرید سدیم بر میزان پرولین بروگ. نقاط دارای حرف مشترک، در سطح ۵/آزمون چندنمایی دانکن تفاوت معنی‌داری دارند.

شکل ۵- اثر آبیاری با غلظت های مختلف کلرید سدیم بر فعالیت آنزیم اسکوربات پراکسیداز ستوهای با حرف مشترک، در سطح ۵/آزمون چندنمایی دانکن تفاوت معنی‌داری ندارند.

شکل ۶- اثر آبیاری با غلظت های مختلف کلرید سدیم بر فعالیت آنزیم سوپراکسیدیمیتاز ستوهای با حرف مشترک، در سطح ۵/آزمون چندنمایی دانکن تفاوت معنی‌داری ندارند.

این پرسی در غلظت بالایی کلرید سدیم فعالیت آنزیم پراکسیداز کاهش یافت که بیانگر مکانیزم‌های متفاوت برای نشان دهنده بهبود کارایی بالایی با استفاده از گیاهان مانند ارز (Shigeoka et al., 2002) و دارو (Das et al., 1990) شاخشه در فرآیند رادیکال‌های آزاد است. بازیابی وجود در سوپراکسیدیمیتاز در تشییع نیتریک توسط آنزیم پراکسیداز تجزیه شود. افزایش در فعالیت آنزیم پراکسیداز تحت تنش شوری ۵۰۰ میلی‌مولار، بیانگر کارایی بالایی این امر برای گیاهان مانند ارز (Shigeoka et al., 2002) و دارو (Das et al., 1990) شاخسه‌ها در فرآیند رادیکال‌های آزاد است.
شکل 7- اثر آبیاری با غلظت‌های مختلف کاری دمید بر میزان کار‌فولیک، سن‌های با حرف مشترک، در سطح 5% آزمون چندام‌های دانکن نفاوت معنا دارند.

کاری دمید (میلی مولار)

<table>
<thead>
<tr>
<th>غلظت (میلی مولار)</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>250</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>500</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>750</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

(Parida et al., 2004)

شیری به‌دیه‌ف رضی شده است (2004)

نتایج بررسی نشان داده که کمترین میزان نشان نش سوی مربوط به تیمار آبیاری با کاری دمید 250 میلی مولار و بیشترین نش سوی مربوط به تیمار آبیاری با آب داری کاری دمید 750 میلی مولار بود (شکل 8). به‌طور کلی در سطح 5% آزمون چندام‌های دانکن نفاوت معنا دارند.

شیروی 500 میلی مولار افزایش یافته (شکل 7) که این نتایج با بروز (Venkatesalu and Chellappan, 1993) همسوی داشت، ایشان بیان کردن گیاهان خره سالم تحت تنش طولانی مدت شوری نسبت به تیمار شاهد میزان کار‌فولیک کل بالاتری نشان دادند. درخواست افزایش غلظت‌های بیشتر در تنش نشان دهنده کاری دمید است. در پژوهش حاضر افزایش در نشان نش سوی مربوط به تیمار شاهد غلظت‌های زیاد کاری دمید نشان دهنده کاری آبیاری است و غلظت‌های 250 میلی مولار کاری دمید برای یادآوری است.

نتایج نشان داد که با افزایش غلظت‌های مختلف کاری دمید در آب آبیاری، میزان کربون‌هیدراتات در محلول الیزافیس یافته، بیشترین میزان کربون‌هیدراتات در تیمار آبیاری با کاری دمید 750 میلی مولار و کمترین کربون‌هیدراتات در تیمار شاهد (آبیاری با آب مفطر) مشاهده شد (شکل 9). بررسی‌های مفصل در ارتباط با رابطه کربون‌هیدراتات و تخلیه شوری در گیاهان انجام‌شد. نتایج کربون‌هیدراتات نش و ریز نش در تعداد اصلی و جمع‌آوری رادیکال‌های آژاد دار (2004). با گزارش شده است در تنش‌های زیاد فعالیت آنزیم پراکسیداز کاهش یافته و تجمع فول در برگ‌های آنال رسعده است. عمدی بر این است که در تنش شوری کمپلکس بین کل و مس تشکیل شده و این کمپلکس سبب کاهش فعالیت آنزیم پراکسیداز می‌شود.

(Zawistowski et al., 1991)

با توجه به نتایج به‌دست‌آمده میزان کار‌فولیک کل تا سطح شوری 500 میلی مولار افزایش یافته (شکل 7) که این نتایج با بروز (Kasukabe et al., 2004) همسوی داشت، ایشان بیان کردن گیاهان خره سالم تحت تنش طولانی مدت شوری نسبت به تیمار شاهد میزان کار‌فولیک کل بالاتری نشان دادند. پژوهشی داشتند که در تنش نشان نش میزان کار‌فولیک کل بالاتری نشان دادند. درخواست افزایش غلظت‌های بیشتر در تنش نشان دهنده کاری دمید است. در پژوهش حاضر افزایش غلظت‌های زیاد کاری دمید نشان دهنده کاری آبیاری است و غلظت‌های 250 میلی مولار کاری دمید برای یادآوری است.

نتایج نشان داد که با افزایش غلظت‌های مختلف کاری دمید در آب آبیاری، میزان کربون‌هیدراتات در محلول الیزافیس یافته، بیشترین میزان کربون‌هیدراتات در تیمار آبیاری با کاری دمید 750 میلی مولار و کمترین کربون‌هیدراتات در تیمار شاهد (آبیاری با آب مفطر) مشاهده شد (شکل 9). بررسی‌های مفصل در ارتباط با رابطه کربون‌هیدراتات و تخلیه شوری در گیاهان انجام‌شد. نتایج کربون‌هیدراتات نش و ریز نش در تعداد اصلی و جمع‌آوری رادیکال‌های آژاد دار (2004). با گزارش شده است در تنش‌های زیاد فعالیت آنزیم پراکسیداز کاهش یافته و تجمع فول در برگ‌های آنال رسعده است. عمدی بر این است که در تنش شوری کمپلکس بین کل و مس تشکیل شده و این کمپلکس سبب کاهش فعالیت آنزیم پراکسیداز می‌شود.

(Ozturk and Demir, 2003)
شکل 8- اثر آبیاری با غلظت‌های مختلف کلرید سدیم بر میزان نش‌پوشی. نقاط دارای حرف مشترک، در سطح 5% آزمون چندنامه‌ای دانکن تفاوت معنی‌داری ندارند.

شکل 9- اثر آبیاری با غلظت‌های مختلف کلرید سدیم بر کربوهیدرات‌های محلول برگ. نقاط دارای حرف مشترک، در سطح 5% آزمون چندنامه‌ای دانکن تفاوت معنی‌داری ندارند.

کربوهیدرات‌های محلول مانند گلورک، فرکتوز، ساکارز انتفاک می‌آید (Parida and Das, 2005). علاوه بر این برخی محققان Cakile (Munns, 2002) اظهار کرده‌اند که در گیاهان (Meydiche et al., 2007) تحت شرایط بالا (400 میلی مولار کلرید سدیم) میزان بسیار بالایی کربوهیدرات‌های محلول و پروتئین‌ها تجمع یافته‌اند که نشان از وجود جذب و همکاری اندوکاریک می‌باشد به صورت زیر از مقابل نشان داده شده است (Megdiche et al., 2007). (Hissao, 1973) کربوهیدرات‌های محلول در محیط‌های شیمی‌محیطی به صورت فعال و غیر از دست می‌دهند (Dubey and Singh, 1999). نتایج نشان داد که با افزایش کلرید سدیم در آب آبیاری روند تغییرات پویه‌های پاتیام، کلسیم و سدیم برگ مقاوت بوده است که با افزایش غلظت کلرید سدیم، میزان پویه، سدیم برگ و کلرید سدیم یافته‌ها یافته‌ها که به‌علت در سطح‌های سدیم در اطراف ریشه و جذب آن می‌باشد. با افزایش شوری، غلظت در پویه‌های گیاهی که تحت تنش شوری تجمع
میکروکلمه است. در شش ۵/آزمون جنده‌مانی دانگ تفاوت معنی‌داری ندارد.

شکل ۱۰- اثر آبیاری با غلظت‌های مختلف کلرید سدیم بر میزان پاتاسیم، سدیم و کلسیم سونوریا رنگ مشاء، که درای حروف

یکی از مهم‌ترین اثرات شوری در محیط عبارت از افزایش غلظت سدیم در داخل گیاه است. سدیم در محیط خارج از رشد و همچنین در داخل گیاه بستگی‌های مختلف را در تغذیه (Greenway and Munns، ۱۹۸۰) در شرایط سوزش جذب پاتاسیم توسط سلول‌های ریشه به علت رقابت با سدیم کاشش می‌یابد. البته هیچ‌کدام کل مقدار پاتاسیم بله نسبت آن به پاتاسیم سدیم، کلسیم و منیزیم می‌تواند تحت تأثیر شوری قرار گیرد و باعث کاهش محصول شود (Martinez et al.، ۲۰۰۵). به هم‌خوردن نسبت‌های بین

در گیاه تحت شرایط شوری، حاصل داخل جذب سدیم با پاتاسیم است. تشکیل شروع پاتاسیم سدیم و پاتاسیم، عمل نمایی از دو رون ماکور برای پرتوشیتی متقاطع شکل می‌سازد. در هالفونیتا ها به نظر می‌رسد که ارت Nội ی رته‌های بین چپ یا سمت و ارتﺆ در غلظت‌های بالاتر پاتاسیم در سیتوپلاسم، پون سدیم را مورد تحمیل قرار می‌دهد که تغییر این اعضا یافته‌های سدیم در پاتاسیم (Parida and Das، ۲۰۰۵).

نتیجه‌گیری کلی:

با توجه به نتایج بدنه‌آمده، غلظت متوسط کلرید سدیم (۲۵۰ تا ۵۰۰ میلی‌مولار) شرایط مناسبی برای رشد خرفه

Megdiche, W., Ksouri, R., Debez, A., Falleh, H., Grignon, C. and Abdelly, C. (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte *Cakile maritima*. Plant Physiology and Biochemistry 45 (3,4) 244-249.

