اثر تنش شوری بر رشد، تنظیم کننده‌های اسمزی و فعالیت آنزیم‌های آنتی اکسیدان‌های گیاه شور‌پسند خرده سالی

الهام عناویج، حمیدرضا صالحی، محمدحسین دانشور و علی اکبر مردان

1. گروه علوم بیوتیک دانشگاه کشاورزی و منابع طبیعی رامین خوزستان، 2. دانشکده علوم زیستی دانشگاه تکاملی علوم جهانی زنجان، ایران

(تاریخ دریافت: 1394/12/20، تاریخ پذیرش نهایی: 1395/03/05)

چکیده:
در این پژوهش اثر غلظت‌های بهته و بیش از حد بهته کلرید سدیم (0، 250، 500 و 750 میلی‌مولار) بر رشد، میزان کلریل، کربوهیدرات‌های محلول، پرولین، غلظت بیو و فعالیت آنزیم‌های آنتی‌اکسیدان‌های خرده سالی بررسی شد. در تیمار شوری 250 میلی‌مولار کلرید سدیم افزایش معنی‌داری در رشد ساقه (28/1 سانتی‌متر) و ریشه (19/7 سانتی‌متر) و میزان آب بیش از (43 درصد) نسبت به شاهد مشاهده شد. همچنین در این شرایط کمترین آسیب باختی (92 درصد) نشان داد و در نجات در گروه‌های کلریل مشاهده کرد. دماغه در آلودگی ای سختی، بیش از حد بهته کلرید سدیم، سبب کاهش رشد گردید.

واژه‌های کلیدی: ساکسیکاپیس پورتلائکستر، کلرید سدیم، گیاه پوششی، نش بیشی

Menzel and Leith, 1999

Sesuvium (Menzel and Leith, 1999) از خانواده علف‌فرشیان (Aizoaceae) پورتلائکستر (portulacastrum) گونه خرده سالی (Menzel and Leith, 1999) گونه خرده سالی (Menzel and Leith, 1999), (Aizoaceae) (portulacastrum)
پارسیل بالایی برای پوشش خاک و فضای سبز دارد. این گونه دارای شاخاسه‌های رنگ صورتی مایل به قهوه و گاهی اوقات اکثری. Shigeoka et al. (2002). معرفی گل‌های سفید‌رخی می‌باشد. موفق این گونه است که توانایی آن در تحمل اکوسیستم‌های با محدودیت شوری دارد. این گونه قادر به رشد در خاک‌های بسیار شور و فقر از مواد غذایی می‌باشد. در گزارشی نشان مقدمه:
تنش‌های غیرزندگی (خشکی، شوری، سرمای و گرم) دلالت اصلی Boyer, از بین رفنگ گیاهان پوششی و فرسایش خاک ورود. (Hare et al., 1999) گیاهان بومی خاک‌های شنی را می‌توان در خاک‌های شور و خشک بکار برده در میان گیاهان مقاوم به شوری، گونه‌های سرمای‌زندگی در جنسی گونه‌های Mesembryanthemum و Batis Sesuvium باد Mesembryanthemum و Batis Sesuvium ماند و وجود دارد که می‌تواند در زمان کوتاهی خاک‌های بارا را پوشش دهد.

نویسنده مسئول: نشریه پست الکترونیکی salehi@ramin.ac.ir
گونه به عنوان یک شورپستین زیبی ارزشمند انجام شد.

مواد و روش‌ها:

این پژوهش در پاییز سال 1396 در گلخانه گروه گیاه‌شناسی دانشگاه کشاورزی و منابع طبیعی رامی خوزستان تحت شرایط دما بین 25 تا 30 درجه سانتی‌گراد و رطوبت نسبی ۶۰ تا ۷۰ درصد انجام گردید. گیاهان یکساله خرد ساحلی از تکثیرستان در شهر اهواز تهیه گردید. برای کاشت گیاهان از گلخانه پلاستیکی زهی‌کاری به قطر 20 سانتی‌مرد و طول 25 سانتی‌مرد استفاده گردید. گلخانه پی از ریختن ۵ سانتی‌مرد استخری به جوی (جدول ۱) پر گردد. به‌منظور استقرار و سازگاری، گیاهان به مدت ۳۰ روز در شرایط بیاکس و آب‌اری به میزان ظرفیت زراعی هر ۴ روزیکار انجام گردید. سپس اعمال تش خوری به همراه آب آب‌اری به مدت ۳۰ روز انجام شد و چهار سطح خوری وجود داشت که جابه‌گی از آب قطره (نیم‌سال)، ۲۲۰ و ۴۰۰ میلی‌متری‌کار شد. یکی از بی‌آنی است که برای جلوگیری از وارد شدن ناشقی به گیاه اعمال تن در ۵ مرحکه صورت گرفت.


نتایج و بحث:

نتایج حاصل از تجربه و رایانس داده‌ها مربوط به وزن گیاهی
جدول 1- برخی از ویژگی‌های خاک مورد استفاده.

<table>
<thead>
<tr>
<th>رس (%)</th>
<th>شر (0)</th>
<th>نسبت (%)</th>
<th>وقت خاک</th>
<th>ظرفیت زراعی (%)</th>
<th>میزان آب بر گر</th>
<th>وزن مخصوص ظاهری</th>
<th>وزن شاخه‌زده</th>
<th>طول ریشه</th>
<th>درجه آزادی</th>
<th>تیمار</th>
<th>خطا</th>
<th>ضریب تغییرات (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/16</td>
<td>80/55</td>
<td>10/29</td>
<td>9/16</td>
<td>80/55</td>
<td>10/29</td>
<td>9/16</td>
<td>80/55</td>
<td>10/29</td>
<td>9/16</td>
<td>80/55</td>
<td>10/29</td>
<td>9/16</td>
</tr>
</tbody>
</table>

جدول 2- میانگین میزان ویژگی‌های مورد ارزیابی در 4 سطح سری.

<table>
<thead>
<tr>
<th>درجه آزادی</th>
<th>پراکسیداز</th>
<th>دیپسیئز</th>
<th>کرومیرادات‌های آزاد</th>
<th>کرومیرادات‌های پرورشی</th>
<th>کرومیرادات‌های بی‌پرورشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>خطا</td>
<td>16</td>
<td>65</td>
<td>35</td>
<td>45</td>
<td>65</td>
<td>35</td>
<td>45</td>
<td>65</td>
<td>35</td>
<td>45</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>ضریب تغییرات (%)</td>
<td>0/13</td>
<td>4/13</td>
<td>0/13</td>
</tr>
</tbody>
</table>

امیری، شؤوشی، نیکنده‌های اسیرسی و فعالیت آن‌هایان...
شکل ۱- آب آبی‌یا با غلظت‌های مختلف کلرید سدیم بر طول ساعت و ریشه. ستون‌های با رنگ مشابه، که دارای حروف مشترک هستند، در سطح ۵٪ آزمون چنددماته‌ای دانک تفاوت معنی‌داری ندارند.

شکل ۲- آب آبی‌یا با غلظت‌های مختلف کلرید سدیم بر وزن شاخساره و ریشه. ستون‌های با رنگ مشابه، که دارای حروف مشترک هستند، در سطح ۵٪ آزمون چنددماته‌ای دانک تفاوت معنی‌داری ندارند.

شکل ۳- آب آبی‌یا با غلظت‌های مختلف کلرید سدیم بر میزان آب گرفته. نقاط دارای حروف مشترک، در سطح ۵٪ آزمون چنددماته‌ای دانک تفاوت معنی‌داری ندارند.

روش روش‌ی ایالاتی در خاک‌های شور دارد (Messedi et al., 2004). مسی و همکاران (2010) دانک که جنس Sesuvium قادر به رشد در شوری محدوده ۲۰۰ تا ۱۰۰۰ میلی‌مولا در پایان کردن که این جنس از تجمع سدیم در شاخساره جلوگیری می‌کند. در پژوهش‌های غلظت زیاد عناصر سدیم و کلر سبب تشکل اسیدزی و بیوئی می‌شود (Tester and Davenport, 2003) و باعث نماینده در جذب عناصر غذایی در تمامی اندام‌های گیاهی اختلال به وجود می‌آورند. در پژوهش‌های بیان‌شده این حال که جنس در مقایسه با تمامی گیاهان در سطح سلولی رفتار متفاوت داشته و...
به‌گونه‌ای که بیشترین میزان پرولین مربوط به تیمار آبی‌آب کلیدی سدیم 500 میلی‌مولار (شکل ۴) از لایل عده افرازیون پیروی در سیتوپلاسم، تنظیم فشار اسمری سول‌های اصلی و استری آبی‌آبی می‌باشد. که به‌وسیله تنظیم اسمری در واکنش و تیمار استرسیون‌های مختلف سیتوپلاسم و اجزای مختلف سول‌های باشند (Ashraf، 1994).

با توجه به ترتیب تیمار شاهد (آبی‌آبی از آب یافته) به دلیل عدم وجود سدیم، غیاب با تولید پرولین و اثر نشان از افرازیون مرحله سدیم 100 میلی‌مولار را به‌وسیله انتقال منگنز با واکنش اتمی فلورا در واکنش با اثر نشان یکی از دلایل افرازیون پرولین در گیاهان و میزان عمانی است (Flowers and Colmer، 2008) تا حدی که کاهش می‌تواند در جذب پودرگردهای سبب شود (Fernández Arias، 2011). در نتیجه این افزایش، غلظت پرولین Liu and (2008) در حدود ۴۰۰ میکروگرم بر گرم وزن خشک بود (Zhu، 1997) در حالی که در دو روشی در پرولین مردانه نشان داد (Hervieu et al., 1994) و تغییرات و تغییرات در گیاه‌های رشد بسیار به‌وسیله میزان غلظت پرولین در گیاهان نشان داده که به نظر می‌رسد یکی از این گیاه‌ها خشکی در بی‌سول‌های زیاد تجویز پرولین می‌باشد.

به‌بوت‌های بیشترین بیان‌گذاری شدن که تنها گیاهان که دیگر نیز توانایی بالا شدن به‌وسیله سدیم همراه با مصرف شوری میزان پرولین ۵۰۰ تا ۴۰۰ میلی‌مولار کلیدی Flowers et al., 1986; Khan et al., 2000; Siler et al., 2007; Moseki and Colmer 2010. علاوه بر این بیشترین نسبت وزن‌تره به‌خصوص در سطح شوری ۲۵۰ میلی‌مولار بیش از افرازیون (Burow 2010) ۱۰۰ میلی‌مولار اتفاق افتاد که نشانگر حفظ تعداد اسمری به‌وسیله تنظیم جذب یافته و جمع اوری آن در واکنش است. یکی از بی‌گری‌های مهم گیاهان شوری دوست افرازیون نسبت آبی در غلظت‌های متوسط شوری است. که سبب کاهش شدن گروه سود (Ashraf، 1986) با بایان وجود علت کاهش شوری در غلظت بالا از حد به‌وسیله کلیدی سدیم به‌طور مشخص نیست (Flowers and Colmer، 2008). اگرچه چندین احتمال مانند کاهش تبیت گیاه تابع، کاهش نوربستگی (Lovelock and Ball، 2002) در پوشش غلظت بی‌پودرگردهای Balonkin et al., 2005) و یا تغییر در دیواره‌های سولیکی و آپی‌لایس (James et al., 2006) و (Touchette 2006).

در پوشش‌های بیشترین بیان‌گذاری شدن که تنها گیاهان که دیگر نیز توانایی بالا شدن به‌وسیله سدیم حالی که (Flowers et al., 1986) و بی‌تغییرات در سطح شوری و سیتوپلاسم Bennici et al., 2004; Slama et al., 2008; Moseki and Colmer 2010. نشان داد که شوری، کاهش شربت تیمار شاهد گردید که به علت اختلال در سوخت‌وساز گیاه با یافته (Messedi et al., 2004). علاوه بر این تغییرات در سطح شوری و سیتوپلاسم Vicente et al., 2004; Bracchi et al., 2008) محدود و خاصیت رشد که مقدار آن با با افرازیون غلظت کلیدی سدیم ۲۵۰ میلی‌مولار کاهش شد و چنین در آن افرازیون با یافته.
شکل ۴- اثر آبیاری با غلظت‌های مختلف کلرید سدیم بر میزان پرولین بپ. نقطه‌دایاری حرف مشترک، در سطح ۵٪ آزمون چندامتایی دانکن تفاوت معنی‌داری دارد.

شکل ۴- اثر آبیاری با غلظت‌های مختلف کلرید سدیم بر فعالیت آنزیم اسکوربات-پراکسیداز. ستون‌های با حرف مشترک، در سطح ۵٪ آزمون چندامتایی دانکن تفاوت معنی‌داری دارند.

شکل ۶- اثر آبیاری با غلظت‌های مختلف کلرید سدیم بر فعالیت آنزیم سیروپراکسیداز-دیسموتاز. ستون‌های با حرف مشترک، در سطح ۵٪ آزمون چندامتایی دانکن تفاوت معنی‌داری دارند.

این بررسی در غلظت بالای کلرید سدیم و فعالیت آنزیم پراکسیداز کاهش یافته که بیانگر مکانیزم‌های مقاوت برای بیان آن دو آنزیم است (Shigeoka et al., 2002). در سیروپراکسیداز، از گیاهان مانند ارزین (1990) و استفاده سیروپراکسیداز-دیسموتاز در تنض شوری با استفاده از آنزیم پراکسیداز تجربه شود. افزایش در فعالیت آنزیم پراکسیداز تحت تنض شوری ۵۰۰ میلی‌مولر، بیانگر کارایی بالایی شاخص‌های در سم‌زایی رادیکال‌های آزاد است، با این وجود در
شکل 7- اثر آبایی با غلظت‌های مختلف کاردی سدیم بر میزان کارولفیل. سونهایا با حرف مشترک، در سطح 5% آزمون چندامه‌ای دانگن نتایج معنی‌دار ندارد.

(Parida et al., 2004).

کاردلیسی: کاهش در سطح 5% زیاد فعالیت آنزیم پراکسیداز کاهشی یافته و تجمع فول در برگ‌های آنان رخ داده است. علی‌رغم این امر، کاهش فعالیت آنزیم پراکسیداز در سبب کاهش فعالیت آنزیم پراکسیداز می‌شود (Kasukabe et al., 2004).

شیاری که فرض می‌شود شوری ۵۰ و مولار افزایش بافت (شکل 7) که این نتایج با بررسی Horsowsky (Venkatesalu and Chellappan, 1993) داشته است، این نتایج نشان دهنده افرازی در نشان دهنده شاهد خاصیت کم اکسیداتیوی (در اثر پراکسیدازیون) بیشتره می‌شود. اگرچه در گیاهان سرسبز، رنگ غلظت‌های باقی‌مانده نمک، سبب خاصیت پراکسیداز هیدروژن و نبرایانی نشان می‌دهد که نشان‌دهنده خسارتهای اکسیداتیویش در میزان کارولفیل کل، تا حدودی داشته و داشته است. بنابراین زمان بافتی به منظور تخمین ظاهری و زمان تنش شوری در میزان فنوتست و کارولفیل کل اثر دارد و تجربه این عامل در ارتباط با مساله زنی‌پذیری گیاه‌پیشانی که می‌تواند منجر به سبب‌کردن آناتوری‌گیری (Zeng et al., 2006) هم چنین نتایج نشان داد که در بنابراین آبایی (۷۵۰۰ مولار) میزان کارولفیل کل کاسته شد. پژوهشگران بیانکه‌اند که بنابراین آبایی (Storey et al., 1993) باعث افزایش فعالیت آنزیم پراکسیداز می‌گردد. همچنین نشان داده که فعالیت آنزیم پراکسیداز در تکامل فنوتست و تفویض‌پذیری غلظت‌های فنوتست می‌گردد. پیشنهادهایی که در شرایط شوری با نگاه‌های فنوتست II آسف ساختاری وارد می‌آید (ازهم‌پیشگیری‌های نوی فنوتست II و ازهم‌گسترش‌های مرکز و آن برای تنش شوری تحت تنش)
ذکر: ممکن است برخی از رشته‌ها و عناصر در این صفحه به دلیل تغییرات در نمایش به‌طور قطعی دیده نگردد. اگر ممکن است برای بهبود نمایش این صفحه به‌عنوان تصویر تخفیف دهید.
مشکل هستند. در سطح ۵ آزمون جنداده‌ای دانکن تفاوت معنی‌داری ندارد.

شکل ۱۰. اثر آبیاری با غلظت‌های مختلف کلرید سدیم بر میزان پاتام، سدیم و کلسیم سوئن‌های با رنگ مشابه، که دارای هر فاصله۲۷۵ میلی‌متر")

یکی از مهم‌ترین اثرات شوری در محیط عبارت از افزایش غلظت سدیم در داخل گیاه است. سدیم در محیط خارج از ریشه و هم‌چنین در داخل گیاه بیشترین تغییرات را در تصویب می‌شود به وجود می‌آورد (Greenway and Munns, 1980). در شرایط شور چرب آلی مقدار بسیاری از سدیم و کلسیم و منیزیم می‌تواند تحت تأثیر شوری قرار گیرد. به هم خوردن نسبت‌های بین در گیاه تحت شرایط شوری، حاصل تداخل جذب سدیم با پاتام است. تشابه بین شعاع‌های هیدرات‌سیم و پاتام، عمل توانایی دو Manual فرایند پاتام ناقل شکل می‌سازد. در هالوفیت‌ها به نظر می‌رسد که ارتباط متغیر‌بین جذب پاتام و تحمیل ویژه در سیم باشد. لوار به ویژه پاتام با پاتام گرفتگی و بارک‌دری در سیتیولاس و برقراری توازن به وسیله غلظت‌های بالاتر پاتام در سیتیولاس، پاتام سدیم را مورد تماز قرار نمی‌دهد که تاثیر افزایش حمل به نمک خواه‌های بود (Parida and Das, 2005).

نتیجه‌گیری کلی:

با توجه به نتایج بدآمده، غلظت متوسط کلرید سدیم (۵۰۰ تا ۵۰۰ میلی‌متر) شرایط مناسبی برای رشد خرده‌}

یون پاتام کاهش یافته به‌گونه‌ای که کمترین غلظت در تیمار آبیاری با کلرید سدیم ۵۰۰ میلی‌متر بود. به نظر می‌رسد که با افزایش میزان سدیم رقابت در جذب پاتام ایجاد می‌شود و بنا برای میزان بسیار کلرید پاتام نتایج نشان داد که با افزایش شوری بیش از ۵۰۰ میلی‌متر کلسیم کاهش شود و با افزایش بیش از ۷۵۰ میلی‌متر کلرید پاتام افزایش داشت (شکل ۱۰). اثر پاتام روی مقاومت به اثرات اصلی‌های انفعال هیدروپاتیک نسبت داده می‌شود. یکی از ویژگی‌های گیاهان شوری‌سند تجمع سدیم و کلسیم می‌باشد. همچنین سدیم با پاتام در محیط آب‌نذری می‌تواند رقابت داشته باشد. در پژوهش ناحیه پاتام در واکنش تجمع سدیم، در نتیجه سبب کاهش سطح پاتام ضروری می‌گردد. پاتام می‌شود. گزارش شده است، در گیاهان شوری‌سند سدیم می‌تواند به‌عنوان نظارت کننده اسمزی‌کردار و (۲۵۰ تب ۵۰۰ یک بمانند که در پژوهشی (Wang et al., 2001) خرده‌سال میزان پاتام بیشتر از پاتام به‌بینا و این توجهی در پژوهش‌های دیگر روی گیاهان گوشی مانند Atriplex micrantha و Suaeda salsa Suaeda aegyptiaca نیز مشاهده شد و الگوهای مختلف کرداری دریافت و نمو گیاهان شوری‌سند اجباری‌تر می‌باشد (Askari et al., 2006; Balnokin et al., 2005; Wang et al., 2001).


Megdiche, W., Ksouri, R., Debez, A., Falleh, H., Grignon, C. and Abdelly, C. (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte *Cakile maritime*. Plant Physiology and Biochemistry 45 (3,4) 244-249.


