اثر تنش شوری بر رشد، تنظیم کننده‌های اسمزی و فعالیت آنزیم‌های آنتی‌اکسیدان‌های گیاه شورپند خرفا ساحلی

الهام عناجمه، محمدردضا صالحی سلطی، محمدحسین دانشور و علی اکبر مرادان

گروه علوم یابی‌دانگاه کشاورزی و منابع طبیعی، رامیان خوزستان. دانشگاه علوم زیستی دانشگاه، تحصیلات تکمیلی علوم پایه زنجان، ایران

نویسنده مسئول: salehi@ramin.ac.ir

(تاریخ دریافت: 10/12/1394، تاریخ پذیرش نهایی: 05/03/1395)

چکیده:

در این پژوهش اثر غلظتی های بهینه و پیچ از حد بهینه کلیه فیل، کربوهیدرات‌های محلول، پرولین، غلظت بیوهای و فعالیت آنزیم‌های آنتی‌اکسیدان‌های خرفا ساحلی بررسی شد. در تیمار شوری 240 میلی‌متر، مولار کلرید سدیم افزایش معنی‌داری در رشد ساقه (p<0/1011) و رشد (p<0/156) نسبت به شاهد مشاهده شد. ممکن است این شرایط کمترین آسیب باخته‌ای (20 درصد نشتن بویی) و بهترین تتعلیمی درمان بالایی کربوهیدرات محلول (0/28 میلی‌متر بر گرم در لیتر) و بیوهای 240/00 میلی‌متر بر گرم وزن خشک، و کمترین تولید پرولین (۲۰۹/0) میکرو‌گرم بر گرم وزن خشک داشته است. در شرایط ویژه، فعالیت‌های متوسط آنزیم‌های آنتی‌اکسیدانی (سوپرکاکت‌دیسمونتوس و آسکوربیات پراکسیداز) نیزی که مبتنی داشته شد. در مقایسه با شرایط فیل (0/250 میلی‌متر) و پیچ از حد بهینه به‌طور قابل توجهی افزایش یافت، و گیاه آب گرگ نشتن کلیه آب و نشتن الکتریکی، با توجه به تجمع بویهای سیمی، افزایش می‌باید. تجمع گازهای P و انواع آنزیم‌های آنتی‌اکسیدانی به منظور تعلیمی درمان بالایی در شرایط ویژه و پیچ از حد بهینه کلرید سدیم، سبب کاهش رشد گیاه شد.

واژه‌های کلیدی: سوپراکسید دیسمونتوس، کلرید سدیم، گیاه پوشرشی، نشتن بویی

Mencel and Leith, 1999

Gonum خرفا ساحلی (Menzel and Leith, 1999, از خانواده علف‌فیتان (Aizoaceae) (Portulacastrum)، پلتانت بالایی برای پوشش خاک و فضای سبز دارد. این گونه دارای شاخاسه به رنگ صورتی میل به پفک و گاهی اوقات گل‌های سفیدرنگی می‌باشد (Shigeoka et al., 2002). مصرفی موفق این گونه بسته به ظرفیت آن در حمل کروماتیسم‌های با حمض‌های شوری دارد. این گونه قادر به رشد در خاک‌های بسیار شور و قطب از مواد غذایی می‌باشد. در گزارش‌های نشان می‌دهد که می‌تواند، در زمان خاک‌های شوری با را پوشش دهد.

Menzel and Leith, 1999

Gonum خرفا ساحلی (Menzel and Leith, 1999, از خانواده علف‌فیتان (Aizoaceae) (Portulacastrum)، پلتانت بالایی برای پوشش خاک و فضای سبز دارد. این گونه دارای شاخاسه به رنگ صورتی میل به پفک و گاهی اوقات گل‌های سفیدرنگی می‌باشد (Shigeoka et al., 2002). مصرفی موفق این گونه بسته به ظرفیت آن در حمل کروماتیسم‌های با حمض‌های شوری دارد. این گونه قادر به رشد در خاک‌های بسیار شور و قطب از مواد غذایی می‌باشد. در گزارش‌های نشان می‌دهد که می‌تواند، در زمان خاک‌های شوری با را پوشش دهد.

Boyer, 1982; Hare et al., 1999

Menzel and Leith, 1999 (Menzel and Leith, 1999, از خانواده علف‌فیتان (Aizoaceae) (Portulacastrum)، پلتانت بالایی برای پوشش خاک و فضای سبز دارد. این گونه دارای شاخاسه به رنگ صورتی میل به پفک و گاهی اوقات گل‌های سفیدرنگی می‌باشد (Shigeoka et al., 2002). مصرفی موفق این گونه بسته به ظرفیت آن در حمل کروماتیسم‌های با حمض‌های شوری دارد. این گونه قادر به رشد در خاک‌های بسیار شور و قطب از مواد غذایی می‌باشد. در گزارش‌های نشان می‌دهد که می‌تواند، در زمان خاک‌های شوری با را پوشش دهد.

نوع پژوهش: نشانی پست الکترونیکی: salehi@ramin.ac.ir
دانه شده که بیشترین میزان رشد این گونه در محدوده 100 تا 200 میلی‌مولار کلرید سدیم بود و این گونه را در دسته گیاهان شوری‌پرداز قرار دادند (Mossed et al., 2003). با بررسی پراکنش پونه‌های سدیم و کلرید در بین اندازه‌های سلول پیشنهاد شد که گونه S. portulacatum بین از طریق تجربه بون سدیم در واکونل ایبرگ سبب تنظیم امسری می‌گردد (Moseki and Buru, 2010). هنگام قرارگیری در تنش امسری، قادر به تجربه میزان زیادی پرولین و استهیاه آمینه‌ها را پاشند (Heun et al., 1998; Delaunay and Verma, 1993; Deuschle et al., 2001).

این آزمایش در این گونه از گل‌نامه‌ها بر اساس ساختمان مورد نظر می‌باشد که می‌تواند در تجمیع پرونده در هنگام تنش شوری، شاخه‌نشان شده است ولی اهمیت نقص اورتیسی در تجمیع (Delaunay et al., 1993, 2000). ساواها مخلوط آب یک فرآیند ارزی خواه برای سلول است و اگر تجربه مخلوط آب ته و نسبت تنظیم امسری واکونل و سنترالیسم یابود، اگر نیروهای فتوسترزی یابود صرف تنظیم امسری می‌گردد (Megdiche et al., 2007). ویلی در این زمینه‌ها توانایی وجود دارد که اکثر گیاهان راهانه سدیم و پاتامیدزا برای تنظیم امسری در واکونل تجربه می‌دهند (Martinez et al., 2005). اگر چه بعضی علف‌های چمن ممکن است از مواد مخلوط آلی در واکونل نیز استفاده کندن (Flowers and Colmer, 2008).

با توجه به مشکلات در مناطق خشک و کم‌آبی‌گی از اجمله ایران، کاشت گیاهان شوری‌پرداز در این ناحیه از راه حل‌های نوین بهینه شرایط محیط محیطی با شرایطی که خNormalsaj با عنوان ایبرگ که سدیم از اتصال ضروری می‌باشد که در یازده نیز گیاه‌ها یا به‌ویژه در فضای سایر ایجاد اندازه است. همبستگی نیاز آب اهمیت داشته و در پرورش شوری نیز مفهوم می‌باشد، ولی تاکنون تحقیق مستندی در مورد چنین گیاه‌های مورفوفیزیولوژی این گیاه‌ها انجام‌شده است. بنابراین این پروژه را به منظور بررسی تأثیر سطوح شوری بر پرورش ویژگی‌های مورفوفیزیولوژی این
جدول 1 - برخی از ویژگی‌های خاک مورد استفاده.

| رس (%) | شش (%) | یافته‌های آب سه‌وزن (٪) | ظرفیت زراعی (٪) | وزن مخصوص ظاهری | میزان آب برگ | پرونین | درجه آزادی طول ریشه | وزن شاخه‌رسان | وزن ریشه | طول دیده بار
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>80/55</td>
<td>10/29</td>
<td>16</td>
<td>17</td>
<td>1/146</td>
<td>2/65</td>
<td>2/65</td>
<td>3/35</td>
<td>3/45</td>
<td>1/90/16</td>
<td>1/55</td>
</tr>
</tbody>
</table>

جدول 2 - میانگین مربوط به ویژگی‌های مورد ارزیابی در 4 سطح شوری.

<table>
<thead>
<tr>
<th>سری</th>
<th>درجه آزادی طول ریشه</th>
<th>وزن شاخه‌رسان</th>
<th>وزن ریشه</th>
<th>درجه آزادی طول دیده بار</th>
<th>وزن شاخه‌رسان</th>
<th>وزن ریشه</th>
<th>درجه آزادی طول دیده بار</th>
<th>وزن شاخه‌رسان</th>
<th>وزن ریشه</th>
<th>درجه آزادی طول دیده بار</th>
<th>وزن شاخه‌رسان</th>
<th>وزن ریشه</th>
<th>درجه آزادی طول دیده بار</th>
<th>وزن شاخه‌رسان</th>
<th>وزن ریشه</th>
<th>درجه آزادی طول دیده بار</th>
<th>وزن شاخه‌رسان</th>
<th>وزن ریشه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

** به ترتیب معنی‌داری در سطح 5 و 1 درصد.

موفقیت‌های فیزیولوژیکی و بیوشیمیایی گیاه‌های ساحلی

ترکیب‌های آسکوربیک و پرپنیکسید در سطح‌های مختلف بررسی شده‌اند. وزن‌رسان، میزان آب برگ، پرونین، ظرفیت زراعی، طول ریشه و وزن ریشه شاخه‌رسان و ریشه اثر گذاشته. با استفاده از آنالیزهای یکپارچه‌ای، نشان داده شد که در سطح‌های مختلف، وزن ریشه، میزان آب برگ، پرونین و ظرفیت زراعی به ترتیب معنی‌داری دارند و در سطح‌های مایع‌رسان و دمپوزیت‌سوز و خطا 16 درصد و در بیشتر سطوح در سطح‌های مختلف معنی‌داری دارند.

(جدول 2).

** به ترتیب معنی‌داری در سطح 5 و 1 درصد.

موفقیت‌های فیزیولوژیکی و بیوشیمیایی گیاه‌های ساحلی

ترکیب‌های آسکوربیک و پرپنیکسید در سطح‌های مختلف بررسی شده‌اند. وزن‌رسان، میزان آب برگ، پرونین، ظرفیت زراعی، طول ریشه و وزن ریشه شاخه‌رسان و ریشه اثر گذاشته. با استفاده از آنالیزهای یکپارچه‌ای، نشان داده شد که در سطح‌های مختلف، وزن ریشه، میزان آب برگ، پرونین و ظرفیت زراعی به ترتیب معنی‌داری دارند و در سطح‌های مایع‌رسان و دمپوزیت‌سوز و خطا 16 درصد و در بیشتر سطوح در سطح‌های مختلف معنی‌داری دارند.

(جدول 2).

** به ترتیب معنی‌داری در سطح 5 و 1 درصد.
270
فرآیند و کارکرد گیاهی، جلد 6، شماره 21، سال 1396

شکل 1- اثر آبیاری با غلظت‌های مختلف کلرید سدیم بر طول ساقه و ریشه. ستون‌های با رنگ مشابه، که دارای حروف مشترک هستند، در سطح 5% آزمون چنددامنهای دانکن تفاوت معنی‌داری ندارند.

شکل 2- اثر آبیاری با غلظت‌های مختلف کلرید سدیم بر وزن شاخ‌سازه و ریشه. ستون‌های با رنگ مشابه، که دارای حروف مشترک هستند، در سطح 5% آزمون چنددامنهای دانکن تفاوت معنی‌داری ندارند.

شکل 3- اثر آبیاری با غلظت‌های مختلف کلرید سدیم بر میزان آب پرگ. نقاط دارای حرف مشترک، در سطح 5% آزمون چنددامنهای دانکن تفاوت معنی‌داری ندارند.

Ledkhande et al. در خاک‌های شور دارد (Messedi et al., 2004) و همکاران تعدادی که جنس Sesuvium قاره به رشد در شوری محدود. 600 تا 1000 میلی‌میکروغرام، می‌پاشند و بیان کرده‌اند که این جنس از تجمیع سدیم در شاخ‌سازه جلوگیری می‌کند. در پژوهش‌های غلظت زیاد عناصر سدیم و کلر سبب نشانه‌های اسپرم و پوئی می‌شود (Tester and Davenport, 2003) و بیان‌برنگ در جذب عناصر غلیظ در تمامی اندازه‌های گیاهی اختلاف به وجود می‌آورند. در پژوهش‌های بیان‌برنگ، جنس که جنس در مقایسه با تمامی گیاهان در سطح سلولی رفتار متغیر داشته و
به‌گونه‌ای که بیشترین میزان پرولین مربوط به تیمار آبی‌آبی با کلرید سدیم ۵۰۰ میلی‌مولر (شکل ۱) از لات‌های عمد افزایش پرولین در سیدیلپاس، تنظیم فشار اسلول محیط را بازیاد کرد، که به‌وسیله تنظیم اس‌مون نیز به‌کمک تغییر و تعداد اس‌مون بین سیدیلپاس و اجزای مختلف سلول بالاخره (Ashraf, 1994) یافت.

در حذف ۴۰ میکروگرم (ف. ۳) در کلرید سدیم (Flowers and Colmer, 2008) و در کلرید ده (Colmer et al., 2008) افزایش نسبت آبی در غلتی‌های متوسط شوری است که بسیار کمتر از بزرگداشت برداشته شده است.

در باره فضای افراش (Flowers, et al., 2008) و در با آنزیم غلتی‌های پن (Balonkin et al., 2005) و (بیام) (James et al., 2006) و (یا تغییر در دیواره سلول Liu and (Touchette 2006). و (وجود داده) در پژوهش‌های پیشین بسیاری از تحقیقات سیدیم در واکنش ناپات‌های شوری منسوط با (وی‌شک) را به افراد اضاف پرولین داد (Buru 2010) که در مورد افزایش به‌کمیت (Bennici, 2004). و (علی‌الله) (Corrado 2009) هم‌چنین میزان سیدیم در سطح بالای شوری نشان می‌دهد که کاهش در رشد گیاه یکی از سبب کاهش در (Bennici et al., 2004; Bracci et al, 2008) هم‌سازی داشت.

بررسی میزان پرولین برج‌گیرنده و میزان می‌دهد که مقدار آن با افزایش غلتی کلرید سدیم تا ۵۰۰ میلی‌مولر کاسته شد، ولی با افزایش غلتی کلرید سدیم میزان آن افزایش یافت (Parida et al., 2004).
شکل ۴- اثر آبیاری با غلظت‌های مختلف کلرید سدیم بر پیوند پروتئین بر گیاه. نقاط دارای حرف مشترک در سطح ۵٪، آزمون چندامتیقی دانکن تفاوت معنی‌داری دارند.

شکل ۵- اثر آبیاری با غلظت‌های مختلف کلرید سدیم بر فعالیت آنزیم استکوبیت پراکسیدیژاس. سطح مشترک در سطح ۵٪، آزمون چندامتیقاًی دانکن تفاوت معنی‌داری داده‌اند.

شکل ۶- اثر آبیاری با غلظت‌های مختلف کلرید سدیم بر فعالیت آنزیم سوپراکسیدیژاس. سطح مشترک در سطح ۵٪، آزمون چندامتیقاًی دانکن تفاوت معنی‌داری داده‌اند.

این بررسی در غلظت بالای کلرید سدیم فعالیت آنزیم پراکسیداز کاهش یافته که بیانگر مکانیزم‌های متفاوت برای بیان این دو آنزیم است (Shigeoka et al., 2002). در بسیاری از گیاهان مانند ارزن (Das et al., 1990) و اسپنگر سوپراکسیدیژاس در تشیع شوری با استثنای آنزیم پراکسیداز تجزیه شود. افزایش در فعالیت آنزیم پراکسیداز تحت تنش شوری ۵۰۰ میلی‌مولار، بیانگر کارایی بالای شاخ‌سازه در سمت‌دایی رادیکال‌های آراد است. بالین و وجود در
دانتک نتایج معنی‌داری دارد.

گزارش شده است در تنش‌های زیاد فعالیت آنزیم پراکسیداز کاهش‌پذیران و تیمار فعالیت آنزیم پراکسیداز کاهش‌پذیران با استفاده از تنش‌های تیمار آپاری با کارکرد سدیم 750 میلی‌مترال به طور قابل‌توجهی کاهشی نسبت به تیمار آپاری با کارکرد سدیم 250 میلی‌مترال و پیش‌ترین تنش 7 میلی‌مترال به‌طور قابل‌توجهی کاهشی نسبت به تیمار آپاری با کارکرد سدیم 750 میلی‌مترال بود. (Kasukabe et al., 2004).

نتایج بررسی نشان داد که تنش‌های نشان دهنده خسارت کم‌کارکردی (در اثر پراکسیداز ریز) به عنوان یک فاکتور حاضر افزایش در نشان‌دهنده تیمار شاهد و غلظت‌های زیاد کارکرد سدیم، نشان‌دهنده افزایش اکسیداتیو است و غلظت 750 میلی‌مترال کارکرد سدیم برای یک گیاه ایده‌آل است.

نتایج نشان داد که با افزایش غلظت کارکرد سدیم در آب تنش‌های میزان کربوهیدرات‌های محلول افزایش یافت، باشترین میزان کربوهیدرات‌ها در تیمار آپاری با کارکرد سدیم 750 میلی‌مترال و کاهش‌پذیران در تیمار شاهد (آپاری با 750 میلی‌مترال) مشاهده شد. (نشک‌های بررسی‌های بررسی‌های با رابطه کربوهیدرات‌ها و تحلیل همبستگی افزایش اکسیداتیو است و تیمار کربوهیدرات‌ها نش و تنش در تندباد مسی و جمع‌آوری رادیکال‌های آزاد دارد (Parida et al., 2004). با

شکل 7 - اثر آپاری با غلظت‌های مختلف کارکرد سدیم بر میزان کارفویل. سون‌های با حرف مشترک، در سطح 5% آزمون ثانیه‌ای
کربنیت‌های محلول مانند گلزکر، فورتوکوز، ساکارز اتفاق می‌افتد (Parida and Das, 2005). علاوه بر این برخی محققان (Cakile maritime) اظهار کرده‌اند که در گیاهان تحت شرایط بالا (400 میلی مولار کربنید سدیم) میزان سیبز بالایی کربنید‌های محلول و پروتئین‌ها تجربه‌کرد. همچنین در تحقیق پژوهشگران (Kerepesi and Galiba, 2000) افزایش کربنید‌های محلول پیکری از بهترین محافظات گیاه در شرایط نشیب افتاد. (Dubey and Singh, 1999)

نتایج نشان داد که با افزایش کربنید سدیم در آب آبیاری روند تغییرات پوشه‌های پانسم، سلول‌سازی و سدیم برگ متغیر یکسانی طبیعی کرده‌اند. بی‌گونه‌ای که با افزایش غلظت کربنید سدیم، میزان پوشه سدیم افزایش یافت، که به‌عنوان دسترسی بودن سدیم در اطراف برگ و جذب آن می‌باشد. با افزایش شوری، غلظت

شکل 8- اثر آبیاری با غلظت‌های مختلف کربنید سدیم بر میزان نشیب پوشه. نقاط دارای حرف مشترک، در سطح 5% آزمون چندماثی دانکن تفاوت معنی داری ندارند.

شکل 9- اثر آبیاری با غلظت‌های مختلف کربنید سدیم بر کربنید‌های محلول برگ. نقاط دارای حرف مشترک، در سطح 5% آزمون چندماثی دانکن تفاوت معنی داری ندارند.

افراشی شوری، تبادل دی‌اکسید کربن با محیط کاهش می‌باشد ولی فوستز نسبت به مصرف آسمی‌ها کمتر تحت تأثیر قرار می‌گیرد و بانزارین قندیمی تجربه‌پذیر می‌کنند (Munns, 2002). همچنین در تحقیق شوری به دلیل تحقیق کربنید‌های محلول به محلول، سنت قندیه‌ای محلول از مسیرهای غیر فوستزی تیز افزایش می‌یابد (Hissao, 1973). (Poujol et al., 2000) افزایش کربنید‌های محلول یکی از بهترین محافظات گیاه در شرایط نشیب است. (2004) در آزمایشی بی‌ارقام گندم مشخص شد که در تنش شوری کربنید‌های محلول مانند گلزکر، فورتوکوز، ساکارز و فروکتان افزایش یافت. همچنین بیان کرده که ارقام مقاوم دارای فروکتان بيشتری بودند. (Keles and Oncel, 2004) در پژوهشی مشخص گردید که تحت تنش شوری تجربه
این یکی از مهم‌ترین اثرات شویری در محیط عیار از افزایش
غلظت سدیم در داخل گیاه است. سدیم در محیط خارج از
ریشه و همچنین در داخل گیاه به شدت تغییرات را در تغذیه
(Greenway and Munns, 1980) در شرایط شور جذب پتانسیل سولو-های ریشه
علت مقادیر پتانسیل یا هندسی کلسیم و مسیری
می‌تواند تأثیر شوری قرارگرفته و باعث کاهش محصول
شور (Martinez et al., 2005) با به خود نرسیدن نسبت یوینی
در گیاه تحت شرایط شوری، حاصل داخل جذب سدیم با
پتانسیل است. نشان بین شعاع یوینی هندسی کلسیم و پتانسی
عمل نمایی بین دو مادکر یا پرتوی‌های نقش
شکل می‌سازد. در هالویفت‌ها با نظر می‌رسد که ارتباط بینی بین
جدب یوینی و حمل نمک و وجود داشته باشد و یک در غیر
هالویفت‌ها، برخی گونه‌ها با پایین‌ترین غلظت سدیم در
برگ‌ها و به‌عکس در سیتوپلاسم و برقراری توازن به سیل‌های
غلظت‌های بالاتر یوین سدیم در سیتوپلاسم، یوین سدیم را
مورد تداخل قرار داده که نتیجه این افزایش حمل به
نمک خواهد بود (Parida and Das, 2005).

نتیجه‌گیری کلی:
با توجه به نتایج حاصل، غلظت متوسط کلسیم سدیم
(250 تا 500 میلی‌مول) شرایط مناسبی برای رشد خرده

