تأثیر قارچ میکوریez و سیلیکون بر تولید اسملوتیهای سازگار در افزایش تحمل (Cucumis sativa)

به کم‌آبی درکشت هیدروپنیک خیار گلخانه‌ای

نشانه انتشار ۱ و سمانه شکیبی ۲

۱ گروه زیست شناسی، دانشگاه پایتخت، تهران، ایران و ۲ گروه زیست شناسی، دانشگاه پایتخت، تهران، ایران

(تاریخ دریافت: ۲۸/۱۲/۹۷، تاریخ پذیرش نهایی: ۱۳۹۳/۱۰/۰۱)

چکیده:
خشکی مهم‌ترین فاکتور محدود کننده رشد گیاهان است. قارچ‌های میکوریزی و سیلیکون با تغییرات نامطلوب خشکی در گیاهان بیابان به‌روز و رابط آب و جذب بهتر سلیقه، به عنوان یک عامل مهم در کاهش اثرات نابودی خیار و زمینی در بعضی از گیاهان در پرستش شناخته شده‌اند. کیا خیار کاهش عملکرد آن می‌شود و این امر می‌تواند زاید آب در کشت‌های گلخانه‌ای و ایجاد بیماری‌هایی قارچی می‌کند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکوریزی آربوسکولا و سیلیکون و مقایسه نتایج فیزیولوژی گیاهان تحت شرایط کاهش میزان آب آپارای است. یافته‌های آزمایشی به صورت فاکتوریل بر پایه طرح کاملاً تصادفی با ۴ تکرار با تیمارهای سیلیکون ۲ میلی مولار، قارچ میکوریزی آربوسکولا (G. intraradices) و خشکی در شرایط کشت می‌باشد و در محیط گلخانه‌ای بر روی گیاه خیار انجم شده تایپ نشان داد که تیمار با قارچ میکوریزی به‌طور نهایی و به‌طور هم‌زمان خشکی بعث افزایش میزان مصرف میوه، ریشه و برگ و کاهش محلول برگ و ریشه گیاه شده. تنش خشکی باعث افزایش میزان دار میزان پروپآکئین، قند اکتیو، محلول و کاربرد سیلیکون و اعمال تنش نیز باعث افزایش مقدار قند در میوه، برگ و ریشه گیاه شده. این افزایش در سطح اطمینان ۹۵٪ معنی‌دار شده. بنابراین کاربرد میکوریزی و سیلیکون باعث تولید اسملوتیهای سازگار و مقابله با اسپی ناشی از تنش خشکی در این پژوهش شده.

واژه‌های کلیدی: اسملوتیهای سازگار،تنش کم‌آبی، قارچ میکوریزی، سیلیکون، خیار گلخانه‌ای

مقدمه:
تنش خشکی یکی از مهم‌ترین تنش‌های گیاهی و دومین نشن غیروپنیک بعد از دما محسوب می‌شود که از طرف ایجاد تغییرات آنتانومیک، فیزیولوژیکی و بیوشیمیایی بر جنبه‌های مختلف گیاه و نمو گیاه نتیجه می‌گذارد. اما شدت آن بسته به طول مدت تنش و مركح رشد گیاه متفاوت است (Rontein et al., 2002). در حفیظت تنش خشکی کاهش

نویسنده مسئول، پژوهشکده: shenteshari@gmail.com

شنت شنت شکیبی، دانشگاه پایتخت، تهران
موطن اصلی آن هندوستان می‌باشد. ریشه خیار سطحی، یک گیاه پنجهای و دارای بیدگل‌های کم عضو می‌باشد. میوه این گیاه پنجهای بالایی دارد که باعث احتلال و کاهش ارسید بودن می‌شود. با توجه به سیستم سیستماتیک و رشد زیاد در مناطق اولیه رشد، گیاه مذکور به مقدار زیادی آب نیاز دارد در دشواری شناخت اثرات ناشی از مختلف بر فیزیولوژی گیاهان زراعی و باعث مانند میزان آب موجود در نقاط افراد تحمیل در برابر نشان اثرات ضرورت دارد و عمل روش‌های جدید جهت کاهش اثرات مضر، از جمله کارهای اساسی و مفیدکار بودن این روش باعث افزایش رطوبت محیط و تحریک رشد خیابی و انجام بیماری می‌گردد که در نهایت شاخص مازم به استفاده از قارچ‌گونه می‌گردد. برای بررسی جلب‌گری از آثار ممکن نشان دهنده، مقاوم گیاه مذکور کمبینگ و جلب‌گری از شروع بیماری‌های گیاهی در کشت‌های گلخانه‌ای از سیلکون و قارچ میکروبی استفاده و اثر این در عامل در مقاومت گیاه خیار نسبت به کاهش در نمایانی مورد بررسی قرار گرفت. نتایج بدی از آزمایش‌های استفاده از قارچ میکروبی و سیلیکون مقدار نقد این در عامل در کاهش و نیاز به آب در گیاه خیار گلخانه‌ای بود.

مواز و روش‌ها:

تهیه ماده گیاهی کاشت گیاه و اعمال چسبان: پلوهش حاضر در گلخانه با پوشش پلاستیک و به مساحت 80 متر مربع و در دو ماهه شر و روز 1987 و 1988 درجه سنگین‌گری انجام شد. بذر خیار درختی گلخانه را می‌گذارند (نیوشتندگان بار فرظکشن) از شرکت به‌هناه و استفاده شد. بیشترین آن زمان و چک‌پری بسته به سه ماهه به 4 میلی‌متر از جنس گلخانه‌ای از طول و عرض 1 متر از جنس کارکن پلاستیک و دارای زه‌کش استفاده شد. در هر کارکن پلاستیک 2 عدد بذر کاشته شد و پس از رشد، گیاه‌ها به 4 عدد کاهش یافت و تبادلات گازی برحسب، سبب افزایش میزان آب موجود در گیاه خیار گلخانه‌ای می‌شود و از سوی دیگر تبخیر و تعرق را کاهش می‌دهد (Auge, 2001). افزایش جذب آب توسط میکروبی باعث کم شدن آب‌های سوی و افزایش غلتقهای محلول در ریشه می‌شود که نتیجه آن کاهش پناسیل است (Al-Karei, 2001). قارچ‌های میکروبی قاردن‌اند از طریق تولید کاتیون به آنیون گیاه را افزایش نموده و باعث کاهش متمثل می‌باشد (Mao et al., 2003).

میزان هم‌سانی با گیاه‌های میکروبی باعث گردیده یک عامل مالی در خانه‌های میکروبی (Marschner, 1994) است و نتیجه انشیاری و حاجی‌ها (1389). گزارش شده است که افزایش ضریب گیاهی ممکن است مقاومت به نشان در گیاهان میکروبی است (Song, 2005, Zhu et al. 2012).

سیلیکون و نظر افراد دومین عنصر بعد از آکسیژن محسوب می‌شود. این عنصر باعث مقاومت گیاه در برابر پاک‌ترین ها می‌شود و در نتیجه با کاهش مصرف علفکش‌ها و ماده سمی منع از آلودگی محیط زیست و اثرات ضرر ناشی از استفاده سرموم کشاورزان می‌شود (Epstein, 1994) و با تحریک رشد، افزایش فعالیت آنزیم‌های پدید اکسیده و کاهش میزان گونه‌های واکنش گیاه را (ROS) در سلول‌های گیاهی، موجب حفاظت گیاه در برابر نشان محیطی می‌شود (معادن و انتشاری). 1391 هیمنیچی (1994 و 2005).

میزان کارکرد انرژی و نیروی ابزار در تولید محیط افزایش استفاده‌ای است جیاک می‌باشد (Marschner, 1994). (Hashemi et al., 2010; Torabi et al., 2013) غلتقهای مناسب سیلیکون، باعث افزایش بیماری ته آلوده و جحیم ریشه‌شده که در نتیجه سطح جذب عنصر از محیط افزایش می‌یابد (سیستم و گلخانه‌ای). 1389 می‌باشد

خبر گیاهی یک گیاه گلخانه‌ای، که در زمان و تعرق بزرگ و در نتیجه جلب‌گری از خروج آب در برابر رشد می‌شود و تغذیه به غلتقهای مناسب سیلیکون، باعث افزایش بیماری ته آلوده و حجم ریشه‌شده که در نتیجه سطح جذب عنصر از محیط افزایش می‌یابد (سیستم و گلخانه‌ای). 1389 می‌باشد

Cucumber sativa L. بی‌نام علمی (Cucurbitacae) (Jeffrey, 1990) این گیاه بومی آسیا و آفریقا بوده و می‌باشد (پاورین و کارکرد گیاهی جلد 4، شماره 2010-1394)
میکورز آربوسکولار آنگشتی شده است (فرامن‌داری، اسید استیک، بالگری). FAX (فراهم کننده آنگشتی کل) نژادهای شدن و از راه راجاکورک و میلر جهت اثبات (Rajapakse and Miller., 1992).

میکورز پپرین با استفاده از روش کمپیوتری میزان تیماری در تیمارهای میکوروزی بجای تیمار فلکس و سیسکلازی به روش پیشنهادی (Gromus intraradices) در میزان تیماری، ریشه را به‌طور محلول در لوله آزمایشی بیدار می‌کند. به‌طور مثال، میزان پپرین را حاصله‌ای از میزان پپرین استفاده می‌کند. همگی از این طریق از روش پیشنهادی استفاده می‌کند. در میزان مورد نیاز و نش اکلی نباتی استفاده از گلناهانه تولید خیار به روش هیدروپونیک روزهای بک لیتر آب پای هر گیاه در

جهت اعمال تیمار سیلیکون از سیلیکات سدیم (MERCK) با غلظت ۲/۰ میلی مولار استفاده شد. تیمار سیلیکون بطور مناسب با آب به‌صورت ۲/۰ در میان انجام شد.

جهت اعمال کم‌آبی ابتدا بارای سازگاری گیاهان به کم‌آبی، طی دو هفته از مرحله ۵ پرگی گیاه، ابتلا به صورت یک روز در میان انجام شد و برای هر گیاه یک لیتر آب در نظر گرفته شد. پس از دو هفته گیاهان تا آخر دوره آزمایش با لیتر آب و به صورت دو روز در میان انجام شدند. به مظنه تأمین عناصر غذایی لازم جهت رشد گیاه دو ۴ روز یکبار از محلول غذای میکرو و میکرو (کود NPK ۲۰۰۲-۲۰۰–۲۰۰ و مولتی پروپاکس) شرکت گریمور، به میزان ۲ در هزار به جای آب ابتیایی استفاده شد. طول دوره رشد گیاهان ۸۵ روز بود.

در بیانات دیده‌شده از گزارش که ۴ درصد بگر به صورت تصادفی از قسمت وسط بونه خیار چیده شد، ریشه‌ها از گل‌نها پیروی اورده و آب اتیسته شدند. برگ و ریشه گیاه در دمای اتان توکسین به وزن تناب و به صورت کامل خشک شند.

جهت تست‌های مثبت به میوه از هر بونه خیار به‌طور تصادفی، ۴ عدد میوه چیده شد. ریشه گیاهانی که با قارچ

آنتی‌فیبری میزان قندی‌های محلول با استفاده از روش Fales

آنتی‌فیبری میزان قندی‌های محلول با استفاده از روش Bates
پایه طرح کامل‌ستایی با غیر نکران(همری به عنوان یک نکران) و 8 تیمار کنترل خشکی، میکروب، سیلیکون، خشکی- سیلیکون، خشکی- میکروب، سیلیکون- میکروب، میکروب- سیلیکون- خشکی انجام و داده‌های بدست آمده از آزمایش مسج و تحلیل آماری قرار گرفتن و مقایسه یافته‌ها بر اساس آزمون جنگ دامنه ای دانکن در سطح اطمینان 95 درصد انجام شد.

نتایج:
نتایج حاصل از آشکارسازی مکروژي: نتایج حاصل از بررسی آشکارسازی مکروژی نشان داد که در تیمار‌های میکروژی آشکارسازی انجام شده است (تعکس 1).
نتایج حاصل از اندازه‌گیری بروز ریشه و بک: نتایج نشان داد که کلیه تیمار‌های بکار رفته باعث افزایش میزان بروز ریشه شد. بیشترین مقدار بروز ریشه در تیمار میکروژی- خشکی مشاهده شد. بیشترین تیمار خشکی میکروژی- سیلیکون به شاهد تغییر معنی‌داری نیز در خاج که در سایر تیمارهای بطور معنی‌داری افایش یافت (شکل 1. a).%5
نتایج حاصل از اندازه‌گیری میزان قند‌های محلول: نتایج نشان داد که میزان قند محلول میوئ در دو تیمار میکروژی- خشکی و میکروب- سیلیکونکه معنی‌داری کاملاً مثبت و در سایر تیمار‌ها افایش معنی‌داری داشت. بیشترین میزان قند محلول میوئ در تیمار سیلیکون مشاهده شد (شکل 2. b).%5
نتایج حاصل از اندازه‌گیری میزان خاک‌نبودگی: نتایج نشان داد که کلیه تیمارهای از نظر خاک‌نبودگی ریشه از نظر خاک‌نبودگی بطور معنی‌داری به شاهد تغییر سیلیکون- میکروب- سیلیکون- میکروب- سیلیکون- خشکی مشاهده شد (شکل 2. b).%5
نتایج حاصل از اندازه‌گیری میزان قند محلول بکار رفته در بطور معنی‌داری به شاهد تغییر سیلیکون- میکروب- سیلیکون- میکروب- سیلیکون- خشکی و میکروب- سیلیکون- خشکی به شاهد تغییر سیلیکون- میکروب- سیلیکون- میکروب- سیلیکون- خشکی و میکروب- سیلیکون- خشکی بود (شکل 2. a).%5
نتایج حاصل از اندازه‌گیری حجم محلول: نتایج نشان داد که کلیه تیمارهای ایفا کننده بکار رفته در کلیه تیمارها

(1951) میزان قند محلول اندازه‌گیری شد. برای نتیجه معروف ابتدا مقدار 2/6 گرم آنتروک در 100 میلی لیتر سوونریک، 85 درصد حلال شد. سپس به تدریج آرام محدود محلول فوی به یک ظرف شیشه‌ای 20 میلیلیتر آب متغیر و 15 میلی لیتر اثبات کل 90 درصد اضافه گردید. محلول بسته و 25 میلی لیتر نمونه خشکی ریشه و ساپه یا 2/5 میلی لیتر انحلال 80 درصد در هاوان در سانده و در دمای 90 درجه سانتی‌گراد به مدت 20 دقیقه در دو مسیر 30 دقیقه ای قرار داشته و در هر مسیر در لوله‌ها یا با به میزان تغییر انحلال 80 درصد افزوده شد. عصاره‌ها که کاغذ صاف و اندازه داده شد تا کل تبخیر شود. رسوپ حلال در 2/5 میلی لیتر آب متغیر حل 24 از هر نمونه 200 میکرویلتر در یک لوله آزمایش ریخته و به ان 5 میلی لیتر معروف آنتروک اضافه و پس از سرد شدن به مدت 17 دقیقه در بیبی یا بدایا 49 درجه سانتی‌گراد قرار داده شد و پس از سرد شدن چسب محلول‌ها در طول موج 275 نانومتر خوانده شد و با استفاده از متغیر استاندارد، فلقت‌های محلول محاسبه گردید.

اندازه‌گیری فسفر: با استفاده از روش (1961) میزان فسفر اندازه‌گیری شد. جهت نتیجه معروف فسفر ابتدا 23/5 گرم آمومین مولبد در 400 میلی لیتر آب متغیر آب حل و سپس 23/5 گرم آمومین وانادات در 300 میلی لیتر آب متغیر عصایه گردید. محلول جوشان سرد شد و به معروف شد 250 میلی لیتر تهیه شد. غلظت نیز به محلول اضافه گردید. سپس برای سنجه فسفر حجم محلول با آب متغیر به یک لیتر ریخته شد. 5 میلی لیتر محلول هضم گیاهی در زمان 50 میلی لیتر میکروژی ریخته شد و 5 میلی لیتر محلول معروف بارتون- متانازیت به بالین زده اضافه گردید. به خویی نکان داده شد تا رنگ زرد ظاهر شود و حجم بالین به 50 میلی لیتر برسید و به خویی مخلوط شد. محلول حلال به مدت 30 دقیقه در دمای آزمایش‌گاه قرار داده شد. جداب نمونه‌ها توسط دستگاه اسپکتروفوتومتر در طول موج 470 نانومتر خوانده شد.

تجربه و تحلیل آماری: آزمایش به صورت فاکتوریل و بر
نتایج حاصل از آنالیز گیری فسفر: نتایج نشان داد که میزان فسفر میوه در تیمارهای سیلیکون و میکروپر- سیلیکون تغییر معنی‌داری نداشتند در حالی که در سایر تیمارها به‌طور معنی‌داری افزایش یافت و بیشترین مقدار در تیمار سیلیکون- به‌طور معنی‌داری داشتند.

شکل ۱- بررسی تیمارهای میکروپر- سیلیکون (dry) و خشک‌کردن (my) بر میزان پرولین ریشه (a) و بود (b) در گیاه خیار. مقادیر میانگین سه تکرار = انحراف معیار می‌باشد (حروف مشابه نشان دهنده عدم ممکن بودن با استفاده از آزمون دانکر در سطح P≤0/05 است).
شکل 2 - بررسی تیمارهای میکوروزی (my) و خشکی (dry)، سیلیکون (si) و خشکی (dry)، بر میزان فتله محلول میوه (a)، برگ (b) و رشته (c) در گیاه خیار. مقادیر میانگین سه تکرار ± انحراف معیار می‌باشند (حروف مشابه نشان دهنده عدم معنی‌دار بودن با استفاده از آزمون چالنک در سطح 0/05 است).

بحث:
تشکی شده‌ای بسیار در تیمارهای میکوروزی-سیلیکون و سیلیکون تغییر معنی‌داری نداشته که در سایر تیمارها بطور معنی‌داری افزایش یافته. بیشترین فشار فسفر برگ در تیمار میکوروزی-سیلیکون وجود دارد (P≤%5) (شكل 4). پرورش در سایر تیمارها بطور معنی‌داری افزایش یافته. بیشترین مقدار در تیمار میکوروزی-خشکی مشاهده شد (شکل 1).
شکل ۲- پرورش اثر تیمارهای میکروژی (dry)، میکروژی (si) و خشکی (my) در میزان فضایی اصلی برگ (a) و ریشه (b) در گیاه خیار. مقادیر میانگین

در هنگام تنش خشکی در گیاهان دیگری مثل درت گزارش شده است (2002 Serraj and Sinelair، مقایسه پرولین در سلول. تاریخ همگانی سیلدر-دوکس سلول، تکثیر سفیدیهای غشاها، تنظیم pH سلول و خشکی پروتئینها و آنزیمها در مقیاس تخربی میباشد. و از طرفی به عنوان میکروژی و دیگر بروز در سلول نیز عمل می‌کند (2003 Chen and Murata، 2002؛ Wimmer et al.)

گزارش شده است که علت افزایش پرولین در شرایط تنش می‌تواند باعث عمل تغییرات آنزیم‌های پروتئزی پرولین، کاهش اکسیداسیون پرولین و تبدیل آن به گلوتامات، کاهش مصرف پرولین در سینت پروتئین و افزایش تخربی پروتئین‌ها باشد (Mukhtar Balal et al., 2011؛ Hiedari and Moaveni, 2009).

در این ازمایش همگانی افزایش معنادار میزان پرولین در ریشه و برگ گیاه خیار شد. بنابراین افزایش پرولین در شرایط کاهش دور و میزان آب آبیاری در این گیاه باعث مقاومت گیاه نسبت به شرایط تنش شده است. تجربه پرولین

شکل ۲- پرورش اثر تیمارهای میکروژی (dry)، میکروژی (si) و خشکی (my) بر میزان فضایی اصلی برگ (a) و ریشه (b) در گیاه خیار. مقادیر میانگین

سه تکرار انحراف می‌باشند (حروف مشابه نشان دهنده عدم معنادار بودن با استفاده از آزمون دانکر در سطح ۰/۰۵ است).
نیازمندی داشتیم که بررسی تأثیر میکورین (میو) و سیلیپون (سی) بر میزان فسفر برگ (a)، میوه (b) و ریشه (c) در گیاه خیار مقایسه شود.

نقشه ۴- بررسی تأثیر میکورین (میو) و سیلیپون (سی) بر میزان فسفر برگ (a)، میوه (b) و ریشه (c) در گیاه خیار. مقادیر میانگین‌های تکرار اکثر از داده‌های ساده، عدم معنی‌دار بودن با استفاده آزمون دانک در سطح ۰/۰۵

نشان می‌دهد که افزایش میکورین با سیلیپون در ریشه و افزایش مقاومت ریشه نسبت به تنش کارایی مصرف آب در ریشه افزایش یافته است.

قندهای احیاکننده و هیدرات های کربن محول نیز از ترکیبات سازگار هستند که باعث تنظیم پاسخی سریعاً گیاه در شرایط تنش می‌شود. نشان گذاری خیاری به دلیل افزایش نفس باعث
بهبندی‌ها، کاهش انتقال سیلیکون به خارج از پراکنده‌ها
(Parida and Das, 2005) اطمینان بخشانه تعداد مولکولهای ماه محلول بستگی دارد. تنظیم اُمری از میزان تبدیل بیلی سیلیکون‌های نامحلول مانند نشانه و فرمول به مولکول محلول مانند اولیوگلکوز می‌باشد.
(Singhray and Bartles, 1996; Ingram and Bartles, 1996)

در این تحقیق مشاهده شد که میزان
قدنده‌ای احیاء، کندن و فنده محلول در قسمت‌های مختلف
گیاه با شرایط نش خشکی نسبت به شاهد بطور معنی‌داری
افزایش می‌یابد. از طرفی میزان قدنده احیاء کندن در
تیمار توم میکروئپر- خشکی بطور معنی‌داری نسبت به تیمار
خشکی افزایش یافت. ولی این تیمار تأثیر معنی‌داری بر میزان
قدنده‌ای کندن براک ندارد. در حالت که تیمار توم
سیلیکون- خشکی باعث میزان معنی‌داری میزان این پارامتر در
برگ نسبت به تیمار خشکی شد. بنابراین ملاحظه می‌گردد که
اثر تیمارهای توم سیلیکون- خشکی و میکروئپر- خشکی بر
میزان این پارامتر در رشته و برگ عکس یکدیگر است. از
طرفی تمامی تیمارهای بکار رفته میزان این پارامتر را در
رشته و برگ نسبت به گیاهان شاهد به طور معنی‌داری افزایش داده
است. همچنین میزان قدنده محلول برگ و اندام هوایی در
کلیه تیمارهای بکار رفته افزایش دارد، در حالت که میزان مول‌حلول
میوه در تیمارهای میکروئپر- خشکی و میکروئپر- سیلیکون
شبکه سیلیکون باعث کنترل و خشکی خور معنی‌داری
کاهش یافته که نشان می‌دهد شاید در این شرایط انتقال فندر
از اندام‌های تولید کننده (برگ) به میوه کاهش یافته در حالت
که میزان این پارامتر در رشته و در تیمارهای مشابه به‌طور
مقدار را داشته است و در این شرایط انتقال قند از برگ به
رشته انجام نمی‌شده است. همچنین اعمال تیمارهای خشکی،
سیلیکون، میکروئپر و میکروئپر- خشکی باعث
افزایش میزان قدنده محلول میوه نسبت به شرایط نشش که
شاپرکن این نتیجه را گرفت که این تیمارهای باعث بهبود
کیفیت میوه می‌باشند نظر طعم و میزان قند می‌شود.

تحقیقات دیگر نشان داد که فندرهای میکروئپری با توسعه
حجمی و ورود ریشه و با استفاده گذشتان آب و مواد غذایی
نتیجه گیری کلی:

به طور کلی از نتایج بدست آمده در این پژوهش و سابق پژوهش‌ها چنین استنباط می‌شود که تنش آبی بر میزان قند‌های محلول، قند‌های اخیا و پرولین تأثیر دارد. گیاه به منظور

مراجع:

انتشاری، ش. و حاجی هاشمی، ف. (1389) تأثیر دو گونه فیروز میکوریز آربوسکولار بر گره زایی ریشه و میزان جذب برخی عناصر در گیاه سویا تحت تنش نشان دهنده شوری. مجله علمی و صنایع کشاورزی ایران جلد ٢٤، شماره ٣، صفحه ٣٢٣-٣٣٥.

خوش‌گفتاری منش.الف (1389) بیانیه یپشتره در تغذیه گیاه.

دانشگاه صنعتی اصفهان، ایران. صفحه 316.

سپاس‌خواهی، ع. و کوکرلی، غ. و محمودی، ف. (1385) اصول و کاربرد کم‌آبی. کتاب‌های آبیاری و زه‌کشی ایران.

سامان، م. و انتشاری، ش. (1391) اثر طول زمان پیش تیمار با سیلیکون بر تحمیل شوری در گیاه کاکایان ایرانی. علوم و فنون کشاورزی گلخانه ای، سال سوم، شماره ٢٤، صفحه ٣٠-٣٢.

محقق، ب. شرایوی، م. و قاسمی، س. (1389) تأثیر کاربرد سیلیکون بر قند و عاملکرد و قند خیار در بیشتر میوه پوستی. مجله علوم و فنون کشاورزی گلخانه ای، سال سوم، شماره ٣-٤، صفحه ٣٩-٤٣.

مستانگار، ل. و ضویی، ف. (١۳۸۵) همین‌زیتی میکوریز.

جلد اول انتشارات دانشگاه اصفهان، ایران. صفحه ٧٨-٧٥.

