تأثیر قارچ میکروبی، سیلیکون و بیلاردیومیت استحصال گلخانهای (Cucumis sativa) به کم‌آبی درکشت هیدروپنیک خیار گلخانهای

تشکیلات انتشاری و سمانه شکیایی

1 گروه بیزیشنی، دانشگاه پام نور، تهران، ایران و 2 گروه بیزیشنی، دانشگاه پام نور، تهران، ایران

(تاریخ دریافت: 31/12/1397، تاریخ پذیرش نهایی: 1397/09/21)

چکیده:
خشکی مه‌مندین فاکتور محدود کننده رشد گیاهان است. قارچ‌های میکروبی و سیلیکون با تغییرات نامطلوب خشکی در گیاهان باعث بهبود رشد و جذب بی‌هدر سgef به عنوان یک عامل مثبت در کاهش استحصال گلخانهای تیره‌ریسی و لزمنی در بعضی از گیاهان در برابر تنش شناخته شده‌اند. گیاهان خیار در شرایط خشک و باران‌زده در مراحل اولیه رشد نیاز دارند و هم‌اکنون باید باعث کاهش عملکرد آن می‌شود. این امر بر اساس استفاده از قارچ‌های میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقابل این دیگر در مقایسه با تنش شناخته شده‌اند. این و هدف از این آزمایش بررسی و استفاده از قارچ میکروبی آریوسکولا و سیلیکون و مقاومت متقا...
موطن اصلی آن هندوستان می‌باشد. ریشه‌ها خیار سطحی، برگ‌ها
بنجاه و دارای بریدگی‌های کم عمق می‌باشند. میوه‌ای که گیاه
پنجمین بالایی دارد که به‌عنوان اصلاح و کاهش استرس بوده
می‌شود. با توجه به سیستم ریشه‌های سطحی و رشد زیاد در
مرحله اولیه رشد، گیاه مکرر به قلم‌زدن زیادی آن نیاز دارد
در کشاورزی نشان‌های آنتی‌بیوتیکی می‌باشد.
(Mao et al., 2003)

مختلف قریب‌الریز گیاهان زراعی و از طریق مکرر معطور کردن نشان‌های آنتی‌بیوتیکی در پژوهش‌های جدید
تحمیل در بر این تحولات ضرورت دارد و اعمال روش‌های جدید
جهت کاهش آنتی‌بیوتیکی از جمله کارهای اساسی و هم‌بندی

پایان‌العملی به این ترتیب دارد و از جمله کنترلی‌ها که از طریق تربیت

(Marschner, 1994)

حیاتی می‌باشد. به عنوان یکی از افرادی که این باور را

(Maro, 1997)

اکستنزمیوی شناخته شده است که افرایش فسفر گیاهی، مهم‌ترین مکانیزم مقداری به نشان

(Song, 2005, Zhu et al. 2012)

سیلیکون در نظر گرفتن دمی‌انداز عدد بی‌کمکس محصول

می‌شود. برای بررسی جلوگیری از انتقال آنتی‌بیوتیکی
تشخیص، مقاوم کردن گیاه مکرر به کم‌آبی و گل‌بردی از
شیوع بیماری‌های گیاهی در کشت‌های گیاه‌های از سیلیکون
و فایبر کردن انتقال شد و این دو عامل در مقاومت
گیاه خیار نسبت به کاهش دور و میزان آب‌ایاری مورد بررسی
فراگرفته‌ی بای‌ایی به این آزمایش استفاده از قارچ

کشاورزی می‌شود (Epstein, 1994) و با تحقیق رشد افزایش

عکس‌انگریز یافته‌های پات‌اسکله و کاهش میزان گون‌نواختگی واکنش‌گر

(ROS) در سلول‌های گیاهی، موجب حفاظت گیاه در
برای تشخیص محیطی می‌شود (سادات‌نده اکتشی، 1391)

(

Chrif and Blanger, 1992; Shen et al., 2010;

تحقیقات نشان داد که ترکیب سیلیکون با کاناتر و کلسیم
با تحقیق آزمایش‌گر برگ و در نتیجه جلوگیری از خروج آب در بر این نشان می‌شود
و اقوامی به نشان و جهت کاهش برخی از
جبهه‌های به طول 3 می‌شود. حنگ‌ریزی به نشانه

Cucumber sativa L. با نام علمی (Cucurbitaceae) کودک

نیرویی به میزان 40 گیاه. از رده دوله‌هایه و بی‌بی‌هایه

M. Jeffrey, 1990) این گیاه بومی آسیا و آفریقا و به‌و
میکوریز آرژونوال آغشته شده بودند جهت اثبات آگشته‌گی FALAA (فرمالدیده، اسید استیک، الکل) میکوریز و سیلیکون‌ها. 

باید میان آنها یک تکرار در نظر گرفته شد. گروه‌های تیماری شامل 8 گروه شاهد (کنترل) ضریح کم‌آبی، میکوریز، سیلیکون، سیلیکون-کم‌آبی، میکوریز-کم‌آبی، سیلیکون-میکوریز-کم‌آبی بود.

جفت تنفس با فشار میکوریز در تیمارهای میکوریز

بی‌دره در میان گروه 50 گرم از کود پولیزیکی مخلوط با فشار تهیه Glomus intraradices (میکوریز و زیکرولا آرژونوال) شده از گلیشک گیاه‌شکنی ارگانیک اسید‌آباد هم‌دان قرار گرفتند. تیمارهای سیلیکون و کم‌آبی در مخلوط 5 گرم بر روی گروه‌ها تیماری اعمال گردید. میزان آب مورد نیاز و نشش کم‌آبی، آب‌زی در استفاده از تلقیح روش پس‌헵وا و همکاران (1985) میزان استفاده از آب در غلیان‌های تولید خیار به روش هیدروپونیک روزانه یک لیتر آب برای هر گیاه در تیمارهای شاهد تعیین گردید.

جفت تیمار سیلیکون از سیلیکات سدیم

با گلولت 2/0 میلی متر استفاده شد. تیمار سیلیکون به‌طور متوالی با آب به‌صورت 2 روز در میان انجام شد.

جفت تیمار اعمال کم‌آبی ابتدا برای سازگاری گیاهان به کم‌آبی، طی دوره‌های از مخلوط 5 گرم گیاه، آب‌زی در به‌صورت یک روز در میان انجام شد. به‌دوره‌های بی‌های یک لیتر آب در نظر گرفته شد. پس از دوره گیاهان تا آخر دوره آزمایش با نیم لیتر آب و به‌صورت 2 روز در میان انجام شد. به‌منظور تأمین عناصر غذایی لازم جفت رشد گیاه‌های 4 روز یکبار از محلول غذایی مکرو و مکرو (کود NPk 20-60-20 و مولثی پرولپکس) شرکت کریمگر، به میزان 2 در هزار به‌جای آب آبی‌زی استفاده شد. طول دوره رشد گیاهان 85 روز بود. در میان‌های دوره رشد از هر گیاه 4 عدد گرگ به‌صورت تصادفی و از قسمت وسط بوته خیار خیمه شد. ریشه‌ها از گلیان‌ها بوته اوره و اب آب نشسته شدند. گرگ و ریشه‌ها در دمای انقث تا رسیدن به وزن تابی و به‌صورت کامل خشک شدند. 

جفت سنگین‌هایی مربوط به بوته از هر بوته خیار بطور تصادفی 4 عدد به‌صورت چیده شد. ریشه‌گیاهانی که با فارق
پایه طرح کامل‌التصادفی با 8 تکرار(هر کیسه پنج نکرار) و 8 تیمار کنترل، خشکی، میکوریز، سیلیکون، خشکی-سیلیکون، خشکی-میکوریز، سیلیکون، میکوریز-سیلیکون، خشکی-میکوریز و سیلیکون-خشکی انجام شد. داده‌ها بدست آمده از آزمایش می‌تواند به عنوان یک فرآیند تغییر و تحلیل آماری قرار گیردند و مقایسه معنی‌داری بر اساس آزمون جذب دانه‌ای دانکن در سطح اطمینان 0.05 درصد انجام شد.

نتایج:
نتایج حاصل از آغشته‌کننده میکوریز: نتایج حاصل از بررسی آغشته‌کننده میکوریز(شکل 1) نشان داد که کلیه تیمارها بکار رفته باعث آزادی میزان پرولین ریشه شد. بیشترین مقدار پرولین ریشه در تیمار میکوریز-خشکی مشاهده شد (شکل 2). (a) میزان کل ح/music مزاره در کل ح/music مزاره داشت. بیشترین میزان کل ح/music مزاره در کل ح/music مزاره شد (شکل 2). (b) میزان کل ح/music مزاره گرفته در کل ح/music مزاره تیماری نسبت به شاهد به طور معنی‌داری کاهش یافت. بیشترین میزان کل ح/music مزاره در کل ح/music مزاره داشت. بیشترین میزان کل ح/music مزاره در کل ح/music مزاره حاضر آمیزه‌کننده میکوریز-سیلیکون و سیلیکون-خشکی مشاهده شد (شکل 2). (b) در حالی که بیشترین میزان کل ح/music مزاره در کل ح/music مزاره بیشترین میزان کل ح/music مزاره در کل ح/music مزاره میکوریز-سیلیکون-خشکی مشاهده شد (شکل 2). (b) (a) میزان کل ح/music مزاره در کل ح/music مزاره نتایج حاصل از آغشته‌کننده های اکستن. نتایج نشان داد که میزان قند اخیا کننده برگ و ریشه در کلیه تیمارها

(1951) میزان کل ح/music مزاره از گرم نمونه در 150 میلی لیتر اسد سولفونیک

85 درصد حیات شد. سپس به تهیه و آرامی حمایت فوق به

یک فروش شیب و یک میلی لیتر اتی کلک 95 درصد اضافه گردید. حمایت به دست آمده ضمن سرد شدن کامل همه یازه شد. سپس 1/2 گرم نمونه خشک ریشه و سقف تا 1/2 میلی لیتر اتانول 80 درصد در هاون سایده و در دما 90 درجه سانتی‌گراد به مدت 60 دقیقه در مورد مخلوط 20 دیقیبه از قرارداد شد و در بین این دو مرحله درب لوله را بار و به میزان تبخیر اتانول 80 درصد افزوده شد. عصاره به 10% کاذف، صاف و اجزاد داده شد تا کل تبخیر شود. روش حمایت در 25 میلی لیتر آب مقطع حیات از هز شده میکروبات به 4 گلد ٔیضاٖ لٙذٞبی احیب وٙٙذٜ ثشای تٟیٝ ٔؼشف،

eth. در این دو مرحله به آن 5 میلی لیتر حمایت آتانال اضافه و پس از سرد شدن به

مدت 17 دقیقه در بن ماری با مایع 12 درجه سانتی‌گراد قرار داده شد و پس از سرد شدن جذب محلول‌ها در طول موج

۶۵ میلی‌متر مساحت و با استفاده از منحنی استاندارد، غلظت قند که محلول محاسبه گردید.

Pratt و Chapman اندازه‌گیری فسفر: با استفاده از روش

(1961) میزان فسفر اندازه‌گیری شد. جهت نهای معرف فسفر

ایجاد 20/5 گرم آمونیوم ولیدت در 400 میلی لیتر آب مقطع

گرم و سپس 1/25 گرم آمونیوم وانادات در 300 میلی لیتر

آب مقطع جوشانه شد و شاخص بر داده شد به میزان اضافه

شد. 30 میلی لیتر نیترات اسید غلظت نیز به محلول اضافه

گردید. سپس برای سنگی فسفر حجم محلول با آب مقطع به

پک لیتر رسید. ۵ میلی لیتر محلول هضم گذاشته گردید. در یک

یالن ۵۵ میلی لیتر ریخته شد و ۵ میلی لیتر محلول معرف

پارتن-متانواندات به بالات زمان اضافه گردید و به خوبی تکان

dade شد. بعد رنگ زرد ظاهر شود و حجم بالن به ۵۵ میلی لیتر

برسد و به میزان مخلوط شود. محلول حمایت به مدت

دقیقه در دمای اتمسفری قرار داده شد. جداب نمونه‌ها توسط

دستگاه اندازه‌گیری در طول موج ۴۷۰ میلی‌متر انجام شد.

تجهیز و تحلیل آماری: آزمایش به صورت فاکتوریل و بر


نتایج حاصل از اندازه‌گیری فسفر: نتایج نشان داد که میزان فسفر میوه در تیمارهای سیلیکون و میکروپری، سیلیکون تغییر معنی‌داری نداشت در حالی که در سایر تیمارها به‌طور معنی‌داری افزایش یافت و بیشترین مقدار در تیمار سیلیکون- سی(dry) بود (شکل 3). 

به‌طور معنی‌داری افزایش یافت. بیشترین مقدار قند احیا کندن در اندام هوایی مربوط به تیمار میکروپری- سیلیکون- خشکی بود (شکل 3). در حالی که در ریشه بیشترین مقدار قند احیا کندن در تیمار میکروپری- خشکی مشاهده شد (شکل 3).
شکل ۲- بررسی تیمارهای میکروپزی (dry، سیلیکون (Si) و خشکسی) بر میزان فسفر موجود (a، برگ (b) و ریشه (c)) در گیاه خیار، مقایسه میانگین سه تکرار از انحراف معیار می‌باشند (حروف مشابه نشان دهنده عدم متفاوتی بودن با استفاده از آزمون دانکن در سطح ۰/۰۵ است)。

بحث:
تشکیل مولکول آب خاکی ایجاد می‌شود در شرایطی که کم‌آبی ایجادی در محیطی انجام گرفته و با تولید اسیدهای سازگاری مانند اسیدهای احیاء کندی و برولین در برابر ناحیه مقاومت می‌کند (Rontein et al., ۲۰۰۲). میزان فسفر برگ (P≤۵% (P<۰/۰۵). میزان فسفر ریشه در تیمار میکروپزی-سیلیکون تغییر معنی‌داری نداشت در حالی که در سایر تیمارها به‌طور معنی‌داری تفاوت یافت. بیشترین مقدار فسفر در تیمار میکروپزی-خشکسی مشاهده شد (شکل ۱ (c) (P<۰/۰۵).
شکل ۳- بررسی اثر تیمارهای میکورسی (dry) و سیلیکون (si) بر میزان فن احیا برگ (a) و ریشه (b) در گیاه خیار. مقادیر میانگین

در هنگام تنش خشکی در گیاهان دیگری مثل گزارش شده است (Serraj and Sinelair, 2002) میزان نرخ ریشه در تیمارهای میکورسی- خشکی و سیلیکون- خشکی نسبت به تیمار خشکی به تنها آفراشی افزایش یافت. تحقیقات نشان داده اند که در شرایط تنش در گیاهان میکورسی غلظت پرولین افزایش می‌یابد (Auge, 2001) همچنین رسوب سیلیکون در داده‌های سول با نگهداری در در حد سول با ماکرومولهای مثل سول‌ز، یکی از ترکیبات کلاته‌پتیِدی بی‌شکل را از سطح جذب بالا تشکیل می‌دهد که به خصوصی مربوط بودن لوله های آنود چوبی و میزان انتقال آب اثر گذاشتند و کارایی (Henriet et al., 2006) مصرف آب را افزایش می‌دهد.

در این آزمایش به تیمارهای نوان میکورسی- خشکی و سیلیکون- خشکی میزان پرولین رشته افزایش یافت و در نتیجه مقاومت ریشه در این تیمار نسبت به تنش خشکی به تنها میزان پرولین برگ نسبت به تیمار خشکی کاهش یافته است که در باخته بسیاری از گیاهان تجمع می‌یابد (Parida and Das, 2005 Meloni et al., 2001) نقش پرولین در سول تنظیم پاتوژن‌گری سول، تثبیت فسفات‌دهی‌های غشاء، تنظیم سول و حفظ پروتئین‌ها و آنزیم‌ها در مقابل تحریب pH می‌باشد و از طرفی به عنوان منبع کربن و بیترون در سول نیز عمل می‌کند (2003). در گزارش شده است که علت افزایش پرولین سول در شرایط تنش ممکن است به علت فعالسازی آنزیم‌های بیوتستری پرولین، کاهش اکسیداسیون پرولین و تبدیل آن به گلوتامات، کاهش مصرف پرولین در سنتور پروتئین و افزایش تحریب پرولینی باشد (Mukhtar Balal et al., 2011; Hiedari and Moaveni, 2009). مصرف آب را افزایش می‌دهد (Moaveni, 2009) در این پژوهش تیمار خشکی باعث افزایش میزان پرولین در ریشه و برگ گیاه خیار شد. بنابراین افزایش پرولین در شرایط کاهش دور و میزان آب آپاری در این گیاه باعث مقاومت گیاه نسبت به شرایط تنش شده است. تجمع پرولین در این به تیمارهای نوان میکورسی- خشکی و سیلیکون- خشکی و شرایط کاهش دور و میزان آب آپاری در این گیاه باعث مقاومت گیاه نسبت به شرایط تنش شده است. تجمع پرولین
نیاشینان من به کاربرد میکوروزی با سیلیکون در ریشه و افزایش مقاومت ریشه نسبت به نیاشین کارایی مصرف آب در ریشه افزایش یافته است.

قندهای احیاکننده و هیدرات های کربن محلول نیز از ترکیبات سازگار هستند که باعث تنظیم پتانسیل امسی شده در شرایط نیاشین می‌شود. نیاشین خشکی به دلیل افزایش نفس باعث

کاهش ذخیره هیدرات های کربن گیاه می‌شود (Sarker et al., 1999; Ashraf and Harris 2013). نیاشین کاهش فعالیت آنزیم‌های فسفراتاز نشانه و انرژی در نمای سفید و سوکروز نیشک نشان دهنده افزایش می‌باشد و در نتیجه هیدرولیز نشانه شدید کربنده و با افزایش غلظت هیدرات های کربن باعث تنظیم امسی‌های باعث در شرایط نیاشین می‌شود.

بشریان اثر تیم‌های میکوروزی (my) و خشکی (dry) بر میزان فسفر برگ (a) می‌توان (b) و ریشه (c) در گیاه خیار مقایسه می‌سازند (حروف مشابه نشان دهنده عدم معنی‌دار بودن با استفاده از آزمون دانک در سطح P≤0/05 است).
بیشتر در گاه‌نما، نشان دهنده افزایش توان و ساخت
گریپویدرات‌ها. کاهش انتقال ساکارس به خارج از بیکر و
در نتیجه تنظیم اسنو می‌شود (Lo Bianco et al. 2000).
همچنین دیده شد که کاربرد سیلیکون باعث افزایش
فوتونتر در گاه‌نما فرکنی رشد یافته در شرایط نش شوری می-
گردد (Al- Aghabary et al. 2004). در تحقیق دیگری نیز
دیده شد مصرف سیلیکون در خیار توضیح نش اسنو باعث
کاهش غلظت در اکسیژن کربن در فضایی بین سولوی شده و
در نتیجه باعث کاهش آسیب به بافت‌های مولفی برگ در
شرایط شد (1382). که این نتایج تا حدودی مشابه نتایج ای پژوهش در مورد نتایج تیاز میکوریز و
سیلیکون بر ساختمان نش می‌باشد.

از طرف دیگر، تحقیقات نشان داده که تلقیح گاه‌بیار
های میکوریز و توسعه بیستم رشته‌ای در گاه‌بیار استفاده
بی‌پناهی از بروز می‌شود و بنا به تولید آن‌گونه فسفات
سبب تجزیه فسفات‌های آلی و بروز فسفات‌های غیرآلی شده که
به ترتیب جزء و افراز نموند فسف غیر قابل حذف در برای
گیاه، تقویت بیستم دفاعی و کامش خطرات ناشی از نش
اکسیداژی در گاه‌بیار مگریز (Auge, 1985؛ Auge و خاتمی،
1389؛ مستراح و خاتمی، 1385؛ Auge، 2004). در این
پژوهش، نشان دهنده شد در حالی که پیش‌بینی میکوریز خشکی
مشاهده شد و باعث افزایش نشانه کاهش میکوریز در فیکسم
فیکسم در رشد و برگ شد. این اثر نشان می‌دهد تیاز
میکوریز با افزایش جذب عناصر در گاه‌بیار نشانه
میکوریز در برگ می‌شود. این اثر نشان می‌دهد تیاز
میکوریز در برگ می‌شود.

(Parida and Das, 2005) اسپری‌های به تعداد مولکول‌های ماده محلول استخوانی دارد.
نظیمی اسپری به‌کار برده تا سایکارس‌ها و ناحیه محلول مانند
نشانه‌ها و فلوگن‌ها به‌کار برده تا سایکارس‌ها و ناحیه
محلول مانند (Ingram and Bartles, 1996; Kapoor et al., 2001). که این
لاحظه در نتایج اسپری سایکارس‌ها به‌کار برده به‌کار
می‌شود.

نتایج از تحقیقات دیگر نشان داده که قرارهای میکوریز با توسعه
حجمی و وزن‌یابی و با در اختیار گذاشتن آب و مواد غذایی


Takhtir Giroy Kani:

The results of this study showed that water stress on protein content of some studies.


Science 84: 373-381.


نچیج کیری کلی:

به‌طورکلی از نتایج بدست آمده در این پژوهش و سابرسی لغت‌بستگی بیشتر از نسبت میان دو گونه فشار در بذریه و میزان جذب برخی عناصر در گیاه سبز تحت تنش شرایط نوری و میزان نرخ نورادنی اثرات خاصی در گیاه دارد. گیاه به منظور...


