تأثیر قارچ میکوریژی و سیلیکون بر تولید اسپوملت‌های سازگار در افزایش تحمل

(Cucumis sativa)

چکیده:
خشکی مهم‌ترین فاکتور محدود کننده رشد گیاهان است. قارچ‌های میکوریژی و سیلیکون با تغییرات نامطلوب خشکی در گیاهان باعث بهبود روابط آب و جذب و بهبود فسفر به عنوان یک عامل مهم در کاهش آرایشات نازک‌شده و زیستی در بعضی از گیاهان در برای نشان دهنده کاهش خیار قارچ‌های میکوریژی و سیلیکون در حیاتی که از این رو که یکی از آزمایش‌های این مطالعه به‌صورت فاکتوریل بر پایه طرح کاملاً تصادفی با تکرار به favarshahi سیلیکون یک مولأ، قارچ میکوریژی آربوسکولا (Glomus intraradices) و خشکی در شرایط کشت هیدروپونیک در محیط گلخانه‌ی روی گیاه خارج شد. نتایج نشان داد که تاکید بر بارث قارچ میکوریژی به تنهایی و به همراه خشکی باعث افزایش معنی‌دار میزان فسفر میوه، ریشه و برگ و قد محلول برگ و ریشه گیاه شد. تنش خشکی باعث افزایش معنی‌دار میزان پروپالن، فقد احکام‌های و محلول و کاربرد سیلیکون و اعمال تنش نیز باعث افزایش معنی‌دار مقدار قد مپروپالن، برگ و ریشه گیاه شد. این افزایش در سطح اطمینان 95% معنی‌دار شد. بنابراین کاربرد قارچ میکوریژی و سیلیکون باعث تولید اسپوملت‌های سازگار و مقابله با اسپ ناشی از تعلافی در این پوست‌شنگ شد.

واژه‌های کلیدی: اسپوملت‌های سازگار، گیاه کم‌آبی، قارچ میکوریژی، سیلیکون، خاکگیرنده‌ها،

مقدمه:
تنش خشکی یکی از مهم‌ترین نیازهای گیاهی و دومین نشان از این اثبات گیرندگی‌های محلول و پولی پتانسیل ایپای در خاک است و در چنین پاسخگویی گیاه به بیش از جذب آب، از طریق انباشت ترکیبات تعویض کننده
امسری از جمله کربوهیدرات‌های محلول و پولی پتانسیل (Zhao, 2000; Rabe and Almadini, 2005) امسری سلول را کاهش می‌دهد.
قارچ‌های میکوریژی بر روابط آب گیاه تأثیر می‌گذارند.
بندين صورت چا با تاثیر بر میزان آب بافت‌های گیاهی و
نوبه‌نشین مسئول، نشانی پست الکترونیکی: shenteshari@gmail.com
موطن اصلی آن هندوستان می‌باشد. ریشه خیار سلطان، برگ‌ها
بین‌البین دیگرگونی‌های کامل می‌باشد. میوه این گیاه
پانسیم بالایی دارد که باعث انحلال و کاهش استبدبات بدن
می‌شود. با توجه به سیستم ریشه‌های سطحی و رشد زیاد در
مرحله اولیه رشد، گیاه مزکور به مقدار زیادی آب نیاز دارد
در کشاورزی شناخت این گیاه نیز (Mao et al., 2003)
مختلفی نسبت به زراعت گیاهان زراعی و باعث به‌منظور افزایش
تولید در حیاط فضورت دارد و اعمال روش‌های جدید
جهت کاهش اثرات مصرف از جمله کارهای اساسی و مفید می-
باشد. این را با توجه به این که گیاه در مراحل اولیه رشد
احترام به آب زایی دارد و کهنده گیاه فوق‌العاده مقدر
زیادی آب طی دوره تهیه و ترکیب آب کافیه می‌شود و این امر باعث
افزایش رطوبت محیط و تحرک آب کافیه بیماری‌ها و
ایجاد بیماری مگرده که در نهایت شاخص مزیم به استفاده از
افزایش بیماری مکرر می‌گردد. برای بررسی جلوگیری از این تا مطلوب
نش خشکی، مقاوم کردن گیاه مزکور به کم‌آبی و چلگیری
شروع بیماری‌های گیاهی که در کشت‌های گیاهانی از سیلسیون
و قارچ میکروژیست‌ساخته شد و اثر این دو عامل در مقاومت
گیاه خیار نسبت به کاهش در مردان آبیاری مورد بررسی
قارچ‌گرفت. نتایج بانوان هدف از این آزمایش استفاده از قارچ
میکروژیست سیلسیون و مقایسه نتایج این دو عامل در کاهش
نیاز به آب در گیاه خیار سلگناهایی بود.

میوه و روش‌ها:

تهیه ماده گیاهی، کاشت گیاه و اعمال تیمار: پژوهش حاضر در
گلخانه با پوشش پلاستیکی و به مساحت ۸۰ متر مربع و در
دمای شب و روز +۱۲ و +۳۰ درجه سانتی‌گراد انجام شد.
بذر خیار درخت‌گلخانه را نگهداری می‌کرد (نیمی از کشت
تیمار) از شرکت به‌طور ثابت و استفاده شد. بست کشت از پرلایت
و کوکوپتیا به نسبت ۳:۱ اخوان و جهت کشت بذرها از
جهت‌های به طول ۳ و عرض ۵ متر از جنس کارتن پلاستیک
و دارای زهکش استفاده شد. در هر کارتن پلاستیک
عدد بذر کاشته شد و پس از رشد، گیاه‌های باه ۴ عدد کاهش یافت و

تیادلات کاری برداز، سبب افزایش میزان آب موجود در
باته‌های گیاهی می‌شود و از سوی دیگر نیز تحقیق را
کاهش می‌دهد (Auge, 2001). افزایش گذر آب توسط
میکروژیست، باعث کم شدن اثرات بیماری‌سان و افزایش
غلظت فلوری محلول در ریشه می‌شود که تجربه کاهش
پتانسیل است (Marschner, 1994; Vicente-sanchez et al., 2013)
همچنین هر ساله برای رشد گیاه می‌تواند از طریق ترکیب گیاهی آر از
از اثرات نا مطلوبی که کم‌آبی محافله کند.

Azcon and Barea; 1992; Vicente-sanchez et al., 2013)
(Al-Karaki, 2000) قارچ‌های
میکروژیست قادرند از طریق ترکیب گیاهی آر از
افزایش سفر گیاهی، مهم‌ترین مکانیسم مقاومت به نشین
گیاهان میکروژیست است (Song, 2005, Zhu et al 2012)
سیلسیون از نظر سیلوو در دو عنصر بعد از اکسیژن محصول
می‌شود. این عنصر باعث مقاومت گیاهی در حیاط پاتولوژی می‌شود
و در نتیجه با کاهش مصرف علف‌کشی و مواد سمی مانع از
آلوگی محیط زیست و اثرات ضرر ناشی از استعمال سموم
کشاورزی می‌شود (Epstein, 1994) و با تحرک رشد، افزایش
فعالیت آنزیم‌های باد اکسیده و کاهش میزان گونه‌های واکنشگر
کسب می‌کند در سلول‌های گیاهی، موجب حفاظت گیاه در
برابر تنش‌های محیطی می‌شود (سعادت‌نامه و انتشاری
1391ب). همچنین

تحقیقات نشان داده که ترکیب سیلسیون با پشتن و کلسیم
پا می‌باشد اکسیژن. گیاه، که از قطع روشه و نرخ برگ و
در نتیجه جلوگیری از خروج آب در حیاط نیاز می‌شود
و تغییر با غلظت مناسب سیلسیون، باعث افزایش ریشد و حجم
ریشد شده که در نتیجه سطح جذب عنصر از محیط افزایش
می‌یابد (خوشنگفتگان مشهور ۱۳۸۹).

خیار گیاهی یک پاکسال، کلر که از رده دوده‌ای‌ها و تیره
Cucumber sativa L. به نام علمی (Cucurbitaceae)
کدوریان (گونه‌ها) (Jeffery, 1990) این گیاه بومی آسیا و آفریقا بود و

می‌باشد (Al-Karaki, 2000). قارچ‌های
میکروژیست قادرند از طریق ترکیب گیاهی آر از
افزایش سفر گیاهی، مهم‌ترین مکانیسم مقاومت به نشین
گیاهان میکروژیست است (Song, 2005, Zhu et al 2012)
سیلسیون از نظر سیلوو در دو عنصر بعد از اکسیژن محصول
می‌شود. این عنصر باعث مقاومت گیاهی در حیاط پاتولوژی می‌شود
و در نتیجه با کاهش مصرف علف‌کشی و مواد سمی مانع از
آلوگی محیط زیست و اثرات ضرر ناشی از استعمال سموم
کشاورزی می‌شود (Epstein, 1994) و با تحرک رشد، افزایش
فعالیت آنزیم‌های باد اکسیده و کاهش میزان گونه‌های واکنشگر
کسب می‌کند در سلول‌های گیاهی، موجب حفاظت گیاه در
برابر تنش‌های محیطی می‌شود (سعادت‌نامه و انتشاری
1391ب). همچنین

تحقیقات نشان داده که ترکیب سیلسیون با پشتن و کلسیم
پا می‌باشد اکسیژن. گیاه، که از قطع روشه و نرخ برگ و
در نتیجه جلوگیری از خروج آب در حیاط نیاز می‌شود
و تغییر با غلظت مناسب سیلسیون، باعث افزایش ریشد و حجم
ریشد شده که در نتیجه سطح جذب عنصر از محیط افزایش
می‌یابد (خوشنگفتگان مشهور ۱۳۸۹).

خیار گیاهی یک پاکسال، کلر که از رده دوده‌ای‌ها و تیره
Cucumber sativa L. به نام علمی (Cucurbitaceae)
کدوریان (گونه‌ها) (Jeffery, 1990) این گیاه بومی آسیا و آفریقا بود و
میکوریز آرباسکالا آغوشته شده بودند چون این تبعیضی که در فیکساتور FAA (فرمالدیده. اسید استیک. کل) نگهداری شدند و از رش را راپازک و میلر جهت این آگشته (Rajapakse and Miller., 1992) بررسی میکوریز و سیلیکون-میکوریز-کمیابی. سیلیکون-

جهت تلقیح با فارم میکوریزی در تیمارهای میکوریزی پذیره در مجازات گرم از کود پولیتزیکی مخلوط با فارم جهت قرار Glomus intraradices میکوریز وآرباسکالا شده از کلینیک گیاه‌شناسی ارتقای اقدام همان قرار گرفتند. تیمارهای سیلیکون و کمیابی در مراحل 5 بر روی میکوریزی تیمار اعمال گردید. میزان آب مورد نیاز و تنش کمیابی آبیاری با استفاده از تغییر روش سیاست عایق و همیاران (1385) و میزان استفاده از آب در پلخانه تولید خیار به روش هیدروپونیک روزانه یک لیتر آب برای هر گیاه در تیمارهای شاهد تعیین گردید.

جهر اعمال تیمار سیلیکون از سیلکات سدیم (MERCK) سیلیکون به‌طور متوالی با آب به‌صورت ۲ رو در میان انجام شد.

جهت اعمال کمیابی ابتدا برای سازگاری گیاهان به کمیابی، طی دو هفته از مرحله ۵ گرگی گیاه، آبیاری به‌صورت یک روز در میان انجام شد. برای هر گیاه یک لیتر آب در نظر گرفتند. پس از دو هفته گیاهان تا آخر دوره آزمایش به‌صورت یک لیتر آب و به‌صورت دو روز در میان آبیاری شدند. به‌نظر امتحانی عناصر غذایی لازم جهر رشد گیاههای ۴ روز یک‌بار از محلول غذایی مکرو و میکرو (۲۰ NPK ۲۰–۰–۲۰ انجام پرولپکس) شرکت گرومور، به میزان ۲ در هزار به‌صورت آب آبیاری استفاده شد. طول دوره رشد گیاهان ۸۵ روز بود. در بیان دوره رشد از هر گیاه ۴ عدد برگ به‌صورت تصفیه و از قسمت رسته بونه خیار چیده شد. ریشه‌ها از گل‌دانه‌ها بیرون آورد و آب آب شنیدند. برگ و ریشه‌ها در دمای انقابی تسدید و در زون تابی به‌صورت کامل خشکی شدند. جهر سنگین‌سازی‌ها مرتب به‌صورت از هر بونه خیار یک‌بار تصادفی۴ عدد میوه چیده شد. ریشه‌گیاهانی که با چاپر
بایه طرح کمال تصادفی با دو تکرار (هر گیاه بعنوان یک تکرار) و 8 تیمار کنترل، خشکی، میکوریز، سیلیکون، خشکی-سیلیکون، خشکی-میکوریز، سیلیکون-میکوریز و میکوریز-سیلیکون، در استان آزماش مونتاژ و تحقیق و تحلیل آماری قرار گرفتن و مقایسه میانگین آنها براساس آزمون چند دامنه ای داننک در سطح اطمینان 95 درصد انجام شد.

نتایج:
نتایج حاصل از آغازگری میکوریز: نتایج حاصل از بررسی آغازگری و تیمار داده که در تیمارهای میکوریز آغازگریان انجام شده است (عکس ک)
نتایج حاصل از اندازه‌گیری پرولین ریزه و برگ: نتایج نشان داد که کلیه تیمارهای با کار رنگ باعث افزایش میزان پرولین ریزه و بیشترین مقدار پرولین ریزه در تیمار میکوریز-خشکی مشاهده شد (شکل 1). میزان پرولین برحسب میکوریز-سیلیکون نسبت به شاهد تغییر معنی‌داری نداشت در حالی که در سایر تیمارها بطور معنی‌دار آغازگری یافته (شکل 1 b). (P≤%5)
نتایج حاصل از اندازه‌گیری میزان قند ماهی: نتایج نشان داد که میزان قند محلول مایع در دو تیمار میکوریز-خشکی، میکوریز-سیلیکون، خشکی-میکوریز، خشکی-سیلیکون، میکوریز-سیلیکون و میکوریز-سیلیکون مشاهده شد (شکل 2). در حالی که بیشترین میزان قند محلول ریزه بطور معنی‌داری افزایش یافت، بیشترین میزان قند محلول برحسب کلیه گروه‌های تیماری نسبت به شاهد بطور معنی‌داری افزایش یافت. بیشترین میزان قند محلول برحسب کلیه گروه‌های مربوط به تیمار میکوریز-سیلیکون مشاهده شد (شکل 2 a). (P≤%5)
نتایج حاصل از اندازه‌گیری ایفای‌آمیز: نتایج نشان داد که میزان قند ماهی اخیاکنده برحسب کلیه تیمارها ابتدا مقدار 0.4 گرم آنتون در 200 میلی لیتر اسفنج سولفوریک 55 درصد حل شد. سپس به تدریج و آرامی محلول فوک به یک فوری شیب‌ساید 20 میلی لیتر اب میاق و 15 میلی لیتر اب کلک 90 درصد اضافه گردید. محلول بسته آماده ضمن سرد شدن کمال ی هده شد. سیس 72 درصد تهیه نشان ریشه و ساقه 1/5 میلی لیتر این اثاث 50 درصد در هوا سایه و در دمای 90 درجه سانتی‌گراد به مدت 20 دقیقه در دور مارف 30 دقیقه ای قرار داده شد و در بین این دور مارف درب لویه‌ها را بان با به میزان تیمار اثاث 80 درصد افزوده شد. عصاره‌ها با کاغذ صاف و انجا داده تا کار کش نشان تیمار شود. رسوب حاصل در 1/5 میلی لیتر آب میاق حل شده می‌باشد از هم ریشه 200 میکرویتر در یک لویه آزمایشی ریشه و به آن 5 میلی لیتر مکثر آنتون اضافه و پس از سرد شدن به مدت 17 دقیقه در 5 مارف با دیام 19 درجه سانتی‌گراد قرار داده شد دیس 1/2 از سرد شدن گاز محلول‌ها در طول موج 245 نانومتر خوناده شد و با استفاده از منحنی استاندارد، غلظت نتیجه محلول محاسبه گردید.

اندازه‌گیری فسفر: با استفاده از روش (1961) میزان فسفر اندازه‌گیری شد. جهت بهمراهی روش فسفر ابتدا 20/5 گرم آمونیوم متلاید در 400 میلی لیتر آب میاق محلول حل و سپس 1/25 گرم آمونیوم وانادات در 300 میلی لیتر آب میاق محلول جذب محلول‌ها در طول موج 245 نانومتر خوناده شد و با استفاده از منحنی استاندارد، غلظت نتیجه محلول محاسبه گردید. سپس برای سنجش فسفر محلول با آب میاق به یک لیتر رسید. 5 میلی لیتر محلول هضم شد که گاهی در یک بالن 50 میلی لیتر خواند و 5 میلی لیتر محلول مکثر بارتون-متانوانت با بالان زده اضافه گردید و به خوبی نکان داده شد، رنگ زرد ظاهر شود و حجم بالن به 50 میلی لیتر برسد و به خوبی محلول شود. محلول حاصل به مدت 30 دقیقه در دمای آزمایشگاه قرار داده شد. جداب نمونه‌ها نتیجه دستگاه اسپکتروفوتومتر در طول موج 470 نانومتر خوناده شد.

نتایج و تحلیل آماری: آزمایش به صورت فاکتوریل و بر
نتایج حاصل از اندازه‌گیری فسفر: نتایج نشان داد که میزان فسفر میوه در تیمارهای سیلیکون و میکروزیت-سیلیکون تغییر معنی‌داری نداشت. در حالی که در سایر تیمارها به طور معنی‌داری افزایش یافت و بیشترین مقدار در تیمار سیلیکون-میکروزیت بود.

به طور معنی‌داری افزایش یافت. بیشترین مقدار پندراحا کننده در اندام هوا از مربوط به تیمار میکروزیت-سیلیکون- خشکی بود (شکل 3ب). (P≤5% در حالت که در ریشه بیشترین مقدار پندراحا کننده احیا کننده در تیمار میکروزیت- خشکی مشاهده شد (شکل 3ب).
میانگین سه تکرار ± انحراف معیار می‌باشد (حروف مشابه نشان دهنده عدم متفاوتی بودن با استفاده از آزمون دانکن در سطح 0.05 است).

بحث:
نحوه تمایلی که در تیرجه کاهش پتانسیل آب خاک ایجاد می‌شود در شرایط تنش کم‌آی باعث شده است تنش قرار گیرد و با توجه انسولین خاص دانش‌آموزان دانش‌آموزان احیاء کننده و برای اولین بار تنش مقاومت می‌کند (Rontein et al., 2002). این آمیده‌ای است که در سیستم‌های ذخیره شده و احتمالاً در حفاظت از ساختاری میکروکولها رضیت و سنتز دیواره‌سولی نقص دارد و با آغاز کاهش پتانسیل آبی کاهش
شکل ۳- تأثیر فرآوری میکروفیوزری (my) و سیلیکون (si) بر میزان قطر احیای پوک (a) و ریشه (b) در گیاه خیار. مقادیر میانگین

در هنگام تنظ شکرچی در گیاهان دیگری مثل ذرت گزارش شده است (Serraj and Sinelair, 2002) نقض شد. (Parida and Das, 2005 Meloni et al., 2001) پرولین رشته در تیمارهای میکروفیوزری- خشک و سیلیکون- خشکی تنظ به تیمار شکری به نهاده‌ای افزایش یافته. تحقیقات نشان داده این که در شرایط تنظ در گیاهان میکروفیوزری غلظت پرولین افزایش می‌یابد (Auge, 2001) همچنین رسوب سیلیکون در دیورهای سول با ماکرومولکول‌های مثل سولز، پکین، کلیروپنتین‌ها و لیپوژن ترکیب شده و ترکیبات کلوپیدی در سطح جذب بالا تشکیل می‌دهد که بر خصوصیت متراز بودن لوله‌های آن در چوبی و میزان انتقال آب گذشتگی و کارایی مصرف آب را افزایش می‌دهد (Henriet et al., 2006).

در این آزمایش تیمار میکروفیوزری- خشک و سیلیکون- خشکی میزان پرولین رشته افزایش یافته و در نتیجه مقاومت ریشه در این تیمار نسبت به تنظ خشکی به نهاده میزان پرولین یک برابر نسبت به تیمار خشکی کاهش یافته است که در باخته سیب‌گلی از گیاهان تجمع می‌یابد (Parida and Das, 2005). تقلیل قیمت پرولین در سول تنظ خور خور بروکس سول، تثبیت سفوف‌پیشه غشاء سول و حفظ بروکس‌ها و آنزیم‌ها در مقابل تحریب pH می‌باشد و از طریق به عنوان معیار دهه و نیروز در سول نیز (Chen and Murata, 2002; Wimmer et al., 2003) عمل می‌کند (2003) گزارش شده است که عنوان افزایش پرولین در شرایط تنظ ممکن است به عنوان عاملی آنزیم‌های پروتئزی پرولین، کاهش اکسیداسیون پرولین و تبدیل آن به گلوتامات، کاهش مصرف پرولین در سنت پروتئین و افزایش تحریب پروتئین باشد (Mukhtar Balal et al., 2011; Hiedari and Moaveni, 2009).

در این پژوهش تیمار خشکی باعث افزایش معیاری میزان پرولین در ریشه و پوک گیاه خیار شد. بازاریان افزایش پرولین در شرایط کاهش دور و میزان آب اپاری در این گیاه باعث مقاومت گیاه نسبت به شرایط تنظ شده است. تجمع پرولین
نکتهٔ ۴- بررسی اثر تیمارهای میکوروز (my)، سیلیکون (Si) و خشکی (dry) بر میزان فسفر برگ (P)، میوه (a) و ریشه (b) در گیاه خیار. مقادیر میانگین‌های تکرار ± انحراف میانگین (حروف مشابه نشان دهنده عدم معنادار بودن با استفاده از آزمون داکن در سطح ۰/۰۵ است.

کاهش ذخیره‌های هیدرات‌های کربن گیاه می‌شود (Sarker et al., 1999; Ashraf and Harris 2013) نقش‌ریزیهای فسفر-پلاز نشانه و انورتاز در برگ کاهش و سوکروز فسفر در زمان افزایش می‌یابد و در نتیجه هیدرولیز نشانه تشکیل گردیده و با افزایش غلظت هیدرات‌های کربن باعث تنظیم اسمری یافته در شرایط نشان می‌دهد. با کاهش میکوروز با سیلیکون در ریشه و افزایش مقاومت ریشه نسبت به نشانه کربنی و مصرف آب در ریشه افزایش یافته است. قندهای احیاکنده و هیدرات‌های کربن محلول نیز از ترکیبات سازگار هستند که باعث تنظیم پاتن‌سازی اسمروی گیاه در شرایط نشان می‌شود. تنش خشکی به دلیل افزایش نفس باعث

![Graph A](image1.png)

![Graph B](image2.png)

![Graph C](image3.png)
تأثیر فاکتور های میکروبریزی و سیلیکون بر تولید اسپرولینه سارگار در... 112

(Parida and Das, 2005) امروزی پایه‌گذار ماه محلول بستگی دارد. تنظیم اسپرولینه برای سیلیکون‌های نامحلول مانند تیمار تأمین میکروبریز- خشکی با ساختار معناداری تنبیخ بی‌دیابی محلول مانند اولگوکسانکایسی، ساکارو و کلوبر تنظیم می‌شود (Ingram and Bartles, 1996).

در این تحصیل مشاهده شد که میزان کندن در اعیا حیاتی لب و مواد محلول در قسمت‌های مختلف گیاه در شرایط تناسب خشکی نسبت به شاهد به‌طور معناداری افزایش یافته‌است. از طرفی میزان کندن اعیا حیاتی کننده در تیمار تأمین میکروبریز- خشکی با معناداری تنبیخ بی‌دیابی محلول مانند اولگوکسانکایسی، ساکارو و کلوبر تنظیم می‌شود. همچنین میزان فاکتور های میکروبریزی و اندازه‌های در

کلیه اعیا به‌طور معناداری افزایش یافت. در حاصل که میزان کندن محلول مانند اعیا حیاتی با میکروبریز- خشکی شاهد بی‌دیابی محلول مانند اولگوکسانکایسی، ساکارو و کلوبر تنظیم می‌شود.

که این میزان کندن در اعیا حیاتی لب و مواد محلول در قسمت‌های مختلف گیاه در شرایط تناسب خشکی نسبت به شاهد به‌طور معناداری افزایش یافته‌است. از طرفی میزان کندن اعیا حیاتی کننده در تیمار تأمین میکروبریز- خشکی با معناداری تنبیخ بی‌دیابی محلول مانند اولگوکسانکایسی، ساکارو و کلوبر تنظیم می‌شود. همچنین میزان فاکتور های میکروبریزی و اندازه‌های در
Science 84: 373-381.

Science 84: 373-381.

Science 84: 373-381.

