تأثیر محلولیات پروپونین بر برخی شاخه‌های فیزیولوژیک گیاه چغندرنگد
در شرایط کمبود آب (Beta vulgaris L.)

حمیده غفاری‌ا، محمدرضا تدبیر، و حمید رضوی
گروه زراعت، دانشکده کشاورزی، دانشگاه شهرکرد. گروه زراعت و اصلاح نیانثی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

(تأخیر دریافت: 14/12/1394، تاریخ پذیرش نهایی: 12/11/1395)

چکیده
به منظور ارزیابی پاسخ‌های رشد گیاه چغندرنگد در محیط‌های پرولین و کم آبیاری در مراحل مختلف رشد، آزمایشی به صورت کرت‌های خرد شده در قالب طرح بلع‌کاری کامل تصادفی با سه تکرار در ۱۳۹۴ مزارزی تحفظی دانشگاه شهرکرد اجرا شد. عامل اصلی: تیمار آبیاری در ۳ سطح (۰/۰۰، ۵۰ و ۱۰۰ درصد نیاز آبیاری) و عامل فرعی: ۳ سطح محلولیات پروپونین (محلولیات با آب (شاهد)، ۵ و ۱۰ میلی مولار). پایه بافت نشان داد نش خشکی باعث کاهش شاخه‌پایداری غشا و میزان سیزینگی برق شد و تیمار محلولیات ۱۰ میلی مولار پروپونین، باعث افزایش نسبت گیاه و افزایش این دو صفت تحت تیمار کم آبیاری شد. نش خشکی سبب کاهش شاخه‌پایداری برق، سرعت رشد محصول، سرعت گذش خالص و وزن خشک ادامه‌هواپی و ریشه چغندرنگد متاثر می‌گردد. سرعت و زمان کاهش صفات در سطح کم آبی‌های پیشرفت از تیمار شاهد بود و در تیمار محلولیاتی ۱۰ میلی مولار پروپونین، سرعت و زمان کاهش مقدار صفات کمتر بود. مچ‌هایی شاخه‌پایداری برق، سرعت رشد محصول و وزن خشک ادامه‌هواپی با وزن خشک ریشه بین تیمارهای مورد بررسی همبستگی بالایی وجود داشت. بنابراین کاربرد پروپونین به عنوان اصلاح سازگار در تنظیم اسمزی گیاه چغندرنگد و نش حفاظتی از طیف و آکائی فیزیولوژیکی تحت نش خشکی متوفر می‌باشد.

کلمات کلیدی: محلولیات برق، سیزینگی برق، شاخه‌پایداری غشا، شاخه‌های رشد.

مقدمه
نشته‌های محیطی از عوامل مهم که به عملکرد گیاهان زراعی در سطح جهان هستند. خشکی در بین نشته‌های محیطی به عنوان مهم‌ترین عامل محورکننده رشد و توسعه گیاهان زراعی در اکثر نقاط جهان شناخته شده است. اگرچه شدت و تأثیر نش خشکی بر حبیب مقدار، زمان و توزیع بارندگی، ویژگی خاک و مدیریت مزروعه متغیر است اما گرم شدن کره زمین باعث افزایش نش خشکی در بسیاری از مناطق شده است (Hojati et al., 2011). تولید چغندرنگد به عنوان گیاهی

نویسنده موضوعی، نشانی پست الکترونیکی:
mrtadayon@yahoo.com
حلی برای مقابله با اثرات نشش خشکسی متوسط و بالا استفاده از همچنین Hlawong کرد. همچنین کاربرد خارجی پرولین منجر به یافتن اثرات نشش خشکسی در حال حاضر می‌شود. خسایس خاصی در محلول پرولین اثرات نشش خشکسی را کاهش داده که از راهکارهای مهم در به‌نوازیدن برای افزایش مقاومت به خشکسی آن است که به‌صورت جالبی پژوهش‌های اخیر حاصل شده است. این پژوهش‌ها یافته‌ها و نتایج سایر مطالعات نیز نشان‌دهنده منجر به افزایش مقاومت به خشکسی می‌باشد. (Kowalczyk et al., 1995, Kocheva and Georgiev, 2003)

متل این اثرات می‌تواند به‌عنوان نوری اثرات مهمی بر رشد و عملکرد گیاهان در تاریکان به‌طور قابل توجهی به‌عنوان کاهش توجهی به‌عنوان Kowalczyk اشارات ناشی از نشش هیوگره و کاهش توجهی به‌عنوان هوا (2000). هر گونه خشکسی جهت سازمانه ریشه چگان و دکتر ناتور اثرات ساختاری آتی آهنینی شده و دریافت‌ناتور کاهش می‌یابد که نتیجه آن، بررسی زود هنگام خشکسی ساختاری ریشه چگان در نتیجه تأثیر گزارش خشکسی و ماده خشک و کاهش درصد قند است (مرزیایی و رضوانی, 1386).

همچنین یافته‌ای به‌نوعی مثبت را در گیاه‌ها دارد که به‌عنوان پژوهش‌های اخیر برای تجربه در گیاه‌ها نیز بکار آمده است. (Bewley, 1979, Hua et al., 2002)
جدول 1- تناوب تجزیه خاک

عمق	نیترژون	فسفر قابل تشکیل سیلت رس	شل سیلت رس	شل و جذب	جذب‌کردن	گیاه	نمایش‌گری تراکم	رطوبت	pH	میزان نمایش‌گری	یادداشت
cm	%	(mg/kg)	%	(dsm/s)	(cm)						
0-15	38	28	17%	1/2	4/0						
15-20	24	18	17%	1/3	4/3						
20-30	38	28	17%	1/2	4/0						
30-40	24	18	17%	1/3	4/3						

(با طول جغرافیایی 50 درجه و 51 دقیقه شرقی و عرض جغرافیایی 23 درجه و 19 دقیقه شمالی) انجماد شد. تیمار‌های آزمایش شامل تیمار آبیاری در 3 صورت می‌باشد: نیاز آبیاری گاهی و مولاری پروتون در 3 صورت (مولاریسی با آب فیبره(شامه) و 10 میلی مولار(بود). نیاز کودی مزرعه به حسب نتایج آزمایش خاک (جدول 1) صورت گرفت. و میزان نمایش‌گری نیترژون و ضخامت سطحی با دست انگام شد. تیمار آبیاری آزمایش تا قبل از کاربرد تیمار کم آبیاری برحسب شرایط آب و هوا و تخلیه رطوبتی خاک و بررسی تخلیه آب سطحی آب آب و 65 درصد در برابر 65 درصد بود انجماد شد. نیاز آبیاری گاهی به پایه اندامگیری تغییرات رطوبت خاک با دستگاه رطوبت سنج تشکارب مدل 300 و مطالعات روشن فرشی و همکاران (1382) با روش برداری شد. با استفاده از این دستگاه بنر رطوبت خاک تعیین شده و زمان رسیدن به حد رطوبت تخلیه مجزا (Membrane Available Deficit) 75 و 50 درصد به ترتیب به میزان 75 و 40 درصد آب مصرفی تیمار شاهد دریافت کردند. مقدار رطوبت طبق رابطه 1 محاسبه شد.

\[
O_{	ext{MAD}} = O_{IC} - (O_{IC} - O_{WPW}) \cdot \text{MAD}
\]

رابطه 1:

دراین رابطه: \(O_{IC} = \text{رطوبت حجمی در طول زمان زراعی مزرعه} \), \(O_{WPW} = \text{رطوبت حجمی در نزدیک‌ترین پذیرفته دامنی} \) و \(\text{MAD} = \text{ضریب تخلیه مجزا} \). زمانی که رطوبت خاک به حد پایینی رطوبت سطحی آب هست (\(\theta_{MAD} \)) می‌باشد. عمق آب آبیاری بر اساس کم‌کننده رطوبت خاک می‌باشد. رابطه 2 اعمال شد.

\[
d = (O_{IC} - O_{WPW}). D
\]

رابطه 2:

\[
V = d \times A \times 1000
\]

نیک تزاراد (1390).

CGR = (W-W1)/(T2 - T1)GA

LAI = LA/GA

NAR = CGR/LAI

سطح زمین اشغال شده توسط گیاه، W و وزن خشک گیاه و GA

زمان نمایش‌گری گاهی T

یک ماه قبل از برداشت ریشه، سطح در اندامگیری نشته (Membrane Stability Index) اکلولاریت (به عنوان معیاری از آسیب به سلول) طبق روش
در تیمار محلولی‌پاشی 10 میلی‌مومرت پروتئین، افزایش 13 درصدی نسبت به تیمار شاهد (محلولی‌پاشی) با آب را نشان داد (جدول 3). اثر متقابل تیمار آپارادی و تیمار پروتئین بر شاخص پایداری غشا و میزان سیزین‌گی برگ معنی‌دار شد (جدول 2).

به‌طور کل، کمترین شاخص پایداری غشا با تریک مربوط به تیمار آپارادی و محلولی‌پاشی 10 میلی‌مومرت پروتئین و متغیر آپارادی و محلولی‌پاشی متغیر آپارادی و محلولی‌پاشی با آب بود (جدول 4). پژوهشگران گزارش کردند که موارد اسپزی بی‌دریافتی از ارتفاع زیادی از طریق تغییر شکل بانده می‌تواند بی‌دریافتی بی‌دریافتی با پایداری پرتابلی و غشا می‌شود (2000) مشخص شد که پروتئین با فسفولی‌پاشی غشا در ارتباط است و از طریق کاهش رادیکالهای آزاد تغییر شده است. از غشا محروم شده‌اند. منجر به تغییر در محیط‌کارولی به غشا و واکنش کوتاه‌مدت به نشان کم آبی و رنگی از عوامل مهم در حفظ ظرفیت لازم است، توانایی پاکسازی غشا و شاخص پایداری غشا و میزان سیزین‌گی برگ: رابطه اثر تیمارهای کم آپارادی و پروتئین، بر شاخص پایداری غشا و میزان سیزین‌گی برگ (عدت کارولی تر) معنی‌دار شد (جدول 2).

شاخص پایداری غشا در تیمار کم آپارادی 75 و 50 درصد نسبت به تیمار آپارادی کامل (شاهد) با ترتیب 20 و 30 درصد کاهش یافته و شاخص پایداری غشا در تیمار محلولی‌پاشی کم آپارادی پرتابلی غشا و میزان سیزین‌گی برگ (عدد کارولی تر) معنی‌دار شد (جدول 2).

نکته این است که پرتابلی غشا در تیمار محلولی‌پاشی کم آپارادی با تریک پرتابلی (آب) داشت (جدول 3). میزان سیزین‌گی برگ در تیمارهای کم آپارادی 75 و 50 درصد نسبت به تیمار آپارادی کامل (شاهد) به ترتیب 18 و 22 درصد کاهش داشت و میزان سیزین‌گی برگ

شکل و بخت

شاخص پایداری غشا و میزان سیزین‌گی برگ: اثر تیمارهای کم آپارادی و پروتئین بر شاخص پایداری غشا و میزان سیزین‌گی برگ (عدد کارولی تر) معنی‌دار شد. به‌طور کل، کمترین شاخص پایداری غشا با تریک مربوط به تیمار آپارادی و محلولی‌پاشی 10 میلی‌مومرت پروتئین و متغیر آپارادی و محلولی‌پاشی متغیر آپارادی و محلولی‌پашی با آب بود (جدول 4). پژوهشگران گزارش کردند که موارد اسپزی بی‌دریافتی از ارتفاع زیادی از طریق تغییر شکل بانده می‌تواند بی‌دریافتی بی‌دریافتی با پایداری پرتابلی و غشا می‌شود (2000) مشخص شد که پروتئین با فسفولی‌پاشی غشا در ارتباط است و از طریق کاهش رادیکالهای آزاد تغییر شده است. از غشا محروم شده‌اند. منجر به تغییر در محیط‌کارولی به غشا و واکنش کوتاه‌مدت به نشان کم آبی و رنگی از عوامل مهم در حفظ ظرفیت لازم است، توانایی پاکسازی غشا و شاخص پایداری غشا و میزان سیزین‌گی برگ: رابطه اثر تیمارهای کم آپارادی و پروتئین، بر شاخص پایداری غشا و میزان سیزین‌گی برگ (عدت کارولی تر) معنی‌دار شد (جدول 2).

شاخص پایداری غشا در تیمار کم آپارادی 75 و 50 درصد نسبت به تیمار آپارادی کامل (شاهد) با ترتیب 20 و 30 درصد کاهش یافته و شاخص پایداری غشا در تیمار محلولی‌پاشی کم آپارادی پرتابلی غشا و میزان سیزین‌گی برگ (عدد کارولی تر) معنی‌دار شد (جدول 2).

نکته این است که پرتابلی غشا در تیمار محلولی‌پاشی کم آپارادی با تریک پرتابلی (آب) داشت (جدول 3). میزان سیزین‌گی برگ در تیمارهای کم آپارادی 75 و 50 درصد نسبت به تیمار آپارادی کامل (شاهد) به ترتیب 18 و 22 درصد کاهش داشت و میزان سیزین‌گی برگ

شکل و بخت

شاخص پایداری غشا و میزان سیزین‌گی برگ: اثر تیمارهای کم آپارادی و پروتئین بر شاخص پایداری غشا و میزان سیزین‌گی برگ (عدد کارولی تر) معنی‌دار شد. به‌طور کل، کمترین شاخص پایداری غشا با تریک مربوط به تیمار آپارادی و محلولی‌پاشی 10 میلی‌مومرت پروتئین و متغیر آپارادی و محلولی‌پашی متغیر آپارادی و محلولی‌پашی با آب بود (جدول 4). پژوهشگران گزارش کردند که موارد اسپزی بی‌دریافتی از ارتفاع زیادی از طریق تغییر شکل بانده می‌تواند بی‌دریافتی بی‌دریافتی با پایداری پرتابلی و غشا می‌شود (2000) مشخص شد که پروتئین با فسفولی‌پاشی غشا در ارتباط است و از طریق کاهش رادیکالهای آزاد تغییر شده است. از غشا محروم شده‌اند. منجر به تغییر در محیط‌کارولی به غشا و واکنش کوتاه‌مدت به نشان کم آبی و رنگی از عوامل مهم در حفظ ظرفیت لازم است، توانایی پاکسازی غشا و شاخص پایداری غشا و میزان سیزین‌گی برگ: رابطه اثر تیمارهای کم آپارادی و پروتئین، بر شاخص پایداری غشا و میزان سیزین‌گی برگ (عدد کارولی تر) معنی‌دار شد (جدول 2).

شاخص پایداری غشا در تیمار کم آپارادی 75 و 50 درصد نسبت به تیمار آپارادی کامل (شاهد) با ترتیب 20 و 30 درصد کاهش یافته و شاخص پایداری غشا در تیمار محلولی‌پاشی کم آپارادی پرتابلی غشا و میزان سیزین‌گی برگ (عدد کارولی تر) معنی‌دار شد (جدول 2).

نکته این است که پرتابلی غشا در تیمار محلولی‌پашی کم آپارادی با تریک پرتابلی (آب) داشت (جدول 3). میزان سیزین‌گی برگ در تیمارهای کم آپارادی 75 و 50 درصد نسبت به تیمار آپارادی کامل (شاهد) به ترتیب 18 و 22 درصد کاهش داشت و میزان سیزین‌گی برگ
جدول 2- تجزیه واریانس تیمارهای آبیاری و پرولین از نظر شاخص پایداری غشا (MSI) و عدد کلروفیل متر

<table>
<thead>
<tr>
<th>SPAD (units)</th>
<th>MSI (%)</th>
<th>درجه آزادی</th>
<th>معنی تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/14*</td>
<td>6/21*</td>
<td>2</td>
<td>تکرار</td>
</tr>
<tr>
<td>33/8/8*</td>
<td>6/22/5</td>
<td>2</td>
<td>آبیاری</td>
</tr>
<tr>
<td>3/9</td>
<td>10/63</td>
<td>4</td>
<td>خطای اختیاری (آبیاری × تکرار)</td>
</tr>
<tr>
<td>6/8/8</td>
<td>4/6.32</td>
<td>2</td>
<td>پرولین</td>
</tr>
<tr>
<td>3/1/7/7</td>
<td>4/9/23</td>
<td>4</td>
<td>آبیاری × پرولین</td>
</tr>
<tr>
<td>2/9/9</td>
<td>9/5/8</td>
<td>12</td>
<td>خطای فرعی</td>
</tr>
</tbody>
</table>

ضرب نتایج

جدول 3- مقایسه میانگین اثر تیمارهای آبیاری و پرولین بر شاخص پایداری غشا (MSI) و عدد کلروفیل متر

<table>
<thead>
<tr>
<th>SPAD (MSI)</th>
<th>عامل آزمایشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمارهای آبیاری</td>
<td></td>
</tr>
<tr>
<td>100 درصد آبیاری (شاهد)</td>
<td>6/21/9</td>
</tr>
<tr>
<td>75 درصد آبیاری</td>
<td>6/8/5</td>
</tr>
<tr>
<td>50 درصد آبیاری</td>
<td>4/5/8</td>
</tr>
<tr>
<td>LSD</td>
<td>متوسط</td>
</tr>
<tr>
<td>بیرون مولکول</td>
<td>4/2/7</td>
</tr>
<tr>
<td>مولکول</td>
<td>مولکول</td>
</tr>
<tr>
<td>5 میلی مولار</td>
<td>6/9/5</td>
</tr>
<tr>
<td>مولکول</td>
<td>مولکول</td>
</tr>
<tr>
<td>10 میلی مولار</td>
<td>4/5/2</td>
</tr>
<tr>
<td>LSD</td>
<td>متوسط</td>
</tr>
</tbody>
</table>

در هر ستون و برای هر واحد آزمایشی، میانگین هایی که حداکثر دارای یک حرف مشترک هستند، بر اساس آزمون حداکثر تفاوت معنی‌دار (LSD) در سطح 5 درصد اختلاف معنی‌دار ندارند.

سطح برگ وجود داشت اما مقادیر این کاهش بین تیمارها یکسان نبود، به طوری که، کاهش شاخص سطح برگ در تیمار 50 درصد آبیاری نسبت به تیمار آبیاری کامل (100 درصد) و محلولی با آب آب 43 درصد بود و در حالتی که این کاهش در تیمار 10 میلی مولار پرولین 34 درصد بود و در واقع محلولی با 10 میلی مولار پرولین باعث افزایش 25 درصدی شاخص سطح برگ در سطح نش 45 درصد نسبت به محلولی با آب (شاهد) شده است (شکل 1).

شاخص سطح برگ در 90 روز پس از سبزشدن در همه هواپیما و ریش در گیاه چند لیوان شده که با تأخیر این آزمایش مطالب نداشت.

شاخصهای رشد: برنده تغییرات شاخص سطح برگ، سرعت رشد محصول و سرعت جذب خاکی بهره‌های چند لیوان نشان داد که قبل از اعمال تیمارها روکش افزایشی سطح برگ در همه تیمارها مشابه بود از 45 روز پس از سبزشدن و افزایش دمای محیط، شاخصهای رشد در همه تیمارها با سرعت بیشتری افزایش یافت (شکل‌های 2 و 3). در تیمارهای محلولی‌نشین با کاهش منزان آبیاری، کاهش شاخص
جدول ۴- مقایسه میانگین‌های اثر مقیاس آبیاری در پرولین بر شاخی پایداری غشا (MSI) و عدد کرومین‌مرت (SPAD)

<table>
<thead>
<tr>
<th>SPAD (Units)</th>
<th>MSI (%)</th>
<th>سطح پرولین</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۵/۲۴</td>
<td>۶/۸۸</td>
<td>مطلق محولی پاشی</td>
</tr>
<tr>
<td>۴۷/۳۸</td>
<td>۶/۸۷</td>
<td>محلولی ۵ میلی مولار</td>
</tr>
<tr>
<td>۴۸/۲۳</td>
<td>۶/۸۳</td>
<td>محلولی ۱۰ میلی مولار</td>
</tr>
<tr>
<td>۳۹/۲۲</td>
<td>۵/۵۰</td>
<td>عدد محلولی</td>
</tr>
<tr>
<td>۳۳/۹۵</td>
<td>۵/۸۸</td>
<td>محلولی ۵ میلی مولار</td>
</tr>
<tr>
<td>۴۵/۸۴</td>
<td>۲/۱۴</td>
<td>محلولی ۱۰ میلی مولار</td>
</tr>
<tr>
<td>۳۰/۲۱</td>
<td>۴/۴۹</td>
<td>عدد محلولی</td>
</tr>
<tr>
<td>۳۷/۳۶</td>
<td>۴/۱۱</td>
<td>محلولی ۵ میلی مولار</td>
</tr>
<tr>
<td>۳۷/۷۸</td>
<td>۵/۹۵</td>
<td>محلولی ۱۰ میلی مولار</td>
</tr>
</tbody>
</table>

LSD (۵%) ۴/۱۳

میانگین‌هایی که حداکثر دارای یک حرف مشترک هستند، بر اساس آزمون حداکثر تفاوت معنی‌دار (LSD) در سطح استانداردهای ۵ درصد اختلاف معنی‌داری ندارند.

تندي کاهاش یافته است که یک جدی خود رسي و پس از آن یا نزديک شدن به اختر فصل و ريزگرها بسن، شاخ صفح برك کاهاش یافته (شکل ۱). سرعت رشد محصول نيز در اوايل رشد کم و در ۹۰ روز پس از سبز شدن به هدل افرايش تدريجي و جذب نابي خورشيد همگان با افرايش سطح برك و در نتيجه افرايش سرعت تجمع ماه خشک در گياهان افرايش یافته و پس از به هدل مسس ريزگرها، شبخ
شدن بركها و احتمالاً در سبب قرار گرفتن تعادی از بريكها و کاهاش تفوق نور به داخل سبب انداد گياه، از سرعت رشد محصول کاهش شده و اين روند توزالي تا پايان دوره رشد ادامه داشته است. از طرفی، در شرایط خشک، به شکل کاهاش توسه و سطح برك و کاهاش ميزان فستونت و موضوع پيير و ريزگرها براي اثر شده است و بتيارين، امکان سرعت جذب خالص و سرعت رشد محصول بيشتر را فراهم ميکنند. در مطالعه و همکاران (۲۰۰۷) Yildiz Aktas و Diepenbrock (۲۰۰۰) نشان دادن پرولین، نمجر به افرايش سطح برك گياه تحت شرایط نشگ شد. يا نوجه به ملاحظات کاهاش شاخ صفح برك در اثر اعمال تنش خشکي در كنار مشاهده شده است و کاهاش سرعت فستونت، موجب بريگهاي کوچك تر در شرایط نشگ خشکي از یک طرف و زوال بريگها

تیمارها ب حرکت مقدار خود رسي و پس از آن یا نزديک شدن به اختر فصل و ريزگرها بسن، شاخ صفح برك کاهاش یافته (شکل ۱). سرعت رشد محصول نيز در اوايل رشد کم و در ۹۰ روز پس از سبز شدن به هدل افرايش تدريجي و جذب نابي خورشيد همگان با افرايش سطح برك و در نتيجه افرايش سرعت تجمع ماه خشک در گياهان افرايش یافته و پس از به هدل مسس ريزگرها، شبخ
شکل 1- روند تغییرات شاخص مسطح برگ چند جنگلی در برهمکنش تیمارهای پروپون و آبیاری

شکل 2- روند تغییرات سرعت رشد محصول چند جنگلی در برهمکنش تیمارهای پروپون و آبیاری
فازیت کارکردگی، جلد ۷، شماره ۲۶، سال ۱۳۹۷

شکل ۳- روند تغییرات سرعت جذب خالص جغدیان در برهمکشی تیمارهای پرولین و آبیاری

از طرف دیگر می‌شود.

وزن خشک اندام هواپی و ریشه: وزن خشک اندام هواپی و ریشه جغدیان در مراحل اولیه رشد، با سرعت کمتری افزایش یافته و این سرعت افزایش برای اندام هواپی بیشتر از ریشه بود. وزن خشک اندام هواپی و ریشه جغدیان در اواسط مراحل رشد، با سرعت بیشتری افزایش یافته، که این روند پس از وزن خشک ریشه از پایان دوره رشد به صورت افزایشی پایدار در مراحل کاهش اندام هواپی، ۹۰ روز پس از سیرشدن به حداقل رسید و پس از آن به دلیل کاهش رشد رویشی و ریشه بیشتر مسن، وزن خشک اندام هواپی کاهش یافته (شکل ۴ و ۵). در این مرحله گیاه بیشتر می‌توانست خود را صرف افزایش وزن ریشه و تجویز نقد کرده است. روند تغییرات وزن خشک اندام هواپی و ریشه در تیمارهای آبیاری و پرولین نشان می‌دهد که در تمامی مقداری پرولین، با کاهش میزان آبیاری و وزن خشک اندام هواپی و
شکل ۴- روند تغییرات وزن خشک اندازه‌های چندنفره در برهمکنش تیمارهای پروتئین و آب‌بری.

شکل ۵- روند تغییرات وزن خشک رشد چندنفره در برهمکنش سطوح پروتئین در سطح مختلف آب‌بری.

تاثیر محلولپاشی پروتئین بر روند تغییرات انسداد و رشد چندنفره فیزیولوژیک گیاه چندنفره...
نتیجه‌گیری‌های غیر‌زمینه‌کننده (Jasim et al., 2012) نشان داد که در مراحل اولیه رشد، بین شاخص‌های رشد و وزن خشک اندازه‌های گیاه چگان‌رطوب‌ند با وزن خشک ریشه همبستگی وجود داشت اما با ادامه روند رشد گیاه، این همبستگی افزایش یافت. این روند نشان داد که با افزایش شاخص سطح برگ، وزن خشک اندازه‌های و سرعت رشد محصول و وزن خشک ریشه به عنوان معیار مهم چگان‌رطوب‌ند آفزایش یافت (شکل 6). نتیجه‌گیری نشان داد که شاخص سطح برگ با وزن خشک اندازه‌های گیاه (R^2=0.87) شکل a، وزن خشک ریشه (R^2=0.83) شکل b و سرعت رشد محصول (R^2=0.95) شکل c همبستگی بالایی داشت (شکل 7).
تفاوت محلول‌های پرولین بر برخی شاخص‌های فیزیولوژیک گیاه چگان‌تردند...

شکل ۷- ارتباط بین شاخص سطح بی‌گی بر روی وزن خشک اندازه‌گیری شده و وزن خشک ریشه و سرعت رشد محصول در سطوح مختلف آبیاری و پرولین

نتیجه‌گیری

نتایج این پژوهش نشان داد که کمبود آب و به عبارتی تنش خشکی، باعث کاهش شاخص‌های رشد و صفات فیزیولوژیک در گیاه چگان‌تردند. از طرفی، محلول‌های پرولین بر روی گیاه، باعث تغییر بی‌سابقه در سطح و مقدار شاخص‌های رشد و صفات فیزیولوژیک گیاه چگان‌تردند.

منابع

امامی، ی. و نیک نژاد. مقدمه‌ای بر فیزیولوژی عملکرد گیاهان زراعی. انتشارات دانشگاه شیراز. ۵۷۰ صفحه.

امیری ده احمدی، س. ر. پارسیا، م. نظامی، ا. و گنجعلی، غ. ۱۳۸۹. تاثیر تنش خشکی در مراحل مختلف رشدی بر شاخص‌های رشد در (Cicer arietinum L.) در شرایط گلخانه. نشره پژوهش‌های حیوانات ایران، 2(2): ۸۴-۸۹.

پورموسوی، م.، کلی، م.، دانشیا، ج.، قربانی، ا. و بصیری، ن. ۱۳۸۶. بررسی تاثیر تنش خشکی و کود دامی بر محتوای رطوبت، میزان پایداری غشا سولول و محتوای بی‌گی سویا. مجله علم کشاورزی و منابع طبیعی، 14: ۹-۱.

