اثر شدت و مدت زمان اعمال تشگیل کردن سدیم بر روی رشد و برخی شاخص‌های بیوشیمیایی و فتوسنتزی گیاهان (Nicotiana tabacum L).

چکیده:
شکایت‌های پرندگان نیازمند مراقبه و جلوگیری از واردات ماده سمی شده‌اند. به منظور بررسی اثر شدت و مدت زمان اعمال تشگیل کردن سدیم بر روی رشد و برخی شاخص‌های بیوشیمیایی و فتوسنتزی گیاهان نیز استفاده می‌گردد. در این مطالعه اثرات سطح کردن سدیم (0، 5، 10 و 200 میلی‌میلی‌مول کردن سدیم) و سه مرحله زمانی (5 و 12 روز) بر روی نسبت به شاخص افزایش یافته است. نتایج حاصل از تجویز واریانس داده‌ها نشان داد که سطح کردن سدیم، مدت زمان اعمال تشگیل و اثرات متقابل و زمان اثر معنی‌دار در سطح احتمال 1% بر روی نسبت سه‌گانه روزنه‌ای تأثیر گذارد. نتایج نشان داد که تشگیل سدیم بعد از اعمال تشگیل به شاخص به ترتیب ۷۴/ ۷۹/ ۷۰/ ۷۸ و ۷۹/ ۸۲/ ۷۹/ ۸۳/ ۸۴/ ۸۶/ ۸۷ کاهش را نشان داده. این تجربه نشان داده که تحت تنش کردن سدیم ممکن است محدودیت‌های روزنه‌ای عامل اصلی کاهش میزان فتوسنتز در گیاه را باشد.

کلمات کلیدی: پرولین، شاخص‌های فتوسنتزی، کشت هیدروپونیک، هداشت روزنه‌ای، میزان تعرق

مقدمه:
شکایت‌های غیر زیستی و مهم‌اند. شکایت‌های زیستی را تحت آزمون قرار داده و این نتیجه‌ها می‌گذارد. به مثابه کردن سدیم می‌باشد که تحت تنش کردن سدیم می‌باشد که توسط

(Stepien and Johnson, 2009; Kumar et al., 2013)

فرآیند و کارکرد کیفی، جلد 1، شماره 12، 1396

نویسنده مسئول، نشانی پست الکترونیکی: hatamniya60@gmail.com

(نتیج دریافت: 13/11/1394، پذیرش نهایی: 1395/10/21)
Munns et al., 2006.}, and other researchers have confirmed that under certain soil conditions, plants exhibit lower water use efficiency (WUE) [Siebert and Leakey, 2006].

On the other hand, the results of this study show that the application of CO2 fertilisation has a significant impact on the growth and yield of the plants. It has been observed that the use of CO2 fertilisation can increase the yield of vegetables by up to 50% [Reis et al., 2007].

Moreover, the use of CO2 fertilisation has been found to improve the quality of vegetables, resulting in higher levels of nutrients and vitamins [Czerny et al., 2008].

In conclusion, the use of CO2 fertilisation is a promising method for improving the growth and yield of vegetables. It is recommended for vegetable growers to incorporate CO2 fertilisation into their farming practices to achieve higher yields and better quality products.
بِرای اندازه‌گیری محیطی پرولین از روش همکاران (۱۹۷۳) استفاده شد. بر اساس این روش ابتدا ۵۰۰ میلی‌گرم از یافته در ترگ توزیع شده و با یک میلی‌لیتر اسید سولفوسالیسیلیک (۶/۳ در هاون سابیه شد و مسیت محلول را به حالت تیونسی و آب‌دانه داد. در علم‌سازی و منطق‌شکل شد و سپس از فاز روند توسط بیست نمونه‌برداری گردید. میزان جذب پرولین با استفاده از اسپکتروفوتومتر در طول موج ۵۵۰ نانومتر ثبت شد.

"بِرای اندازه‌گیری نگرگره‌های فوتونیکی از روی وَن سپالی و ولینوورث (۱۹۸۵) استفاده شد. به این ترتیب که ۱/۱ گرم از وَن در یک میلی‌لیتر استون ۱۰۰ درصد در هاون سپالی و ولینوورث ثبت شد. عصاره حاصل به مدت ۲۰ دقیقه در ۴۵۰ دور ساتنیروزش. سپس جذب فاز بالایی هر یک از نمونه‌های سانترپوز نشده توسط اسپکتروفوتومتر در طول موج‌هایی از ۸۵۰ nm تا ۵۴۴ nm ثبت شد. بِرای محاسبه کلروفیل a، کلروفیل b، قارچ‌های گیاهی و اکسنتروپانشیفته‌های از فرمول ذیل استفاده گردید (۸ میزان جذب خوانه) شده در هر طول موج توسط اسپکتروفوتومتر نمی‌باشد.

\[
\text{Chl\ a} = 11.75_{\text{A665}} - 2.350_{\text{A645}}
\]
جدول ۱- تجزیه واریانس اثر سطح کلرید سدیم (۰، ۱۰۰، ۲۰۰ و ۵۰۰ میلی مولار کلرید سدیم) مدت زمان اعمال نش کلرید سدیم (۰، ۱۲۰ روز) و اثر مقابل آن بر شاخص‌های رشدی و بیوشیمیایی گیاه توتون

<table>
<thead>
<tr>
<th>میانگین مربوطات</th>
<th>درجه منحنی تغییر</th>
<th>مدت زمان اعمال نش</th>
<th>تیمار کلرید سدیم</th>
<th>اثر مقابل نش و زمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>a/b کاروتنیه ب</td>
<td>کاروتنیه a</td>
<td>کاروتنیه b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>١/٣١ ±١/٣</td>
<td>١/٣١ ±١/٣</td>
<td>١/٣١ ±١/٣</td>
<td>١/٣١ ±١/٣</td>
<td>١/٣١ ±١/٣</td>
</tr>
</tbody>
</table>

*بیان هر صفت، میانگین‌های که حداقل دارای یک حرف مشترک می‌باشند بر اساس آزمون Tukey در سطح احتمال ۵% از نظر آماری فاقد تفاوت معنی‌دار هستند. داده‌ها میانگین‌های ± برآورد است. SE

*برای هر سطح، میانگین‌های که حداقل دارای یک حرف مشترک می‌باشند بر اساس آزمون Tukey در سطح احتمال ۵% از نظر آماری فاقد تفاوت معنی‌دار هستند. SE

جدول ۲- مقایسه میانگین اثر سطح کلرید سدیم (۰، ۱۰۰، ۲۰۰ و ۵۰۰ میلی مولار کلرید سدیم) و مدت زمان اعمال نش کلرید سدیم (۰، ۱۲۰ روز)

<table>
<thead>
<tr>
<th>میانگین مربوطات</th>
<th>a/b کاروتنیه ب</th>
<th>کاروتنیه a</th>
<th>پولیم بر (میلی گرم بر گرم وزن تر)</th>
<th>وزن خشک (گرم)</th>
<th>تنش سدیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>١/٧٣ ±١/٣</td>
<td>٠/٧١ ±٠/٠٢</td>
<td>٠/٧١ ±٠/٠٢</td>
<td>٠/٧١ ±٠/٠٢</td>
<td>٠/٧١ ±٠/٠٢</td>
<td>٠/٧١ ±٠/٠٢</td>
</tr>
<tr>
<td>١/٣١ ±١/٣</td>
<td>١/٣١ ±١/٣</td>
<td>١/٣١ ±١/٣</td>
<td>١/٣١ ±١/٣</td>
<td>١/٣١ ±١/٣</td>
<td>١/٣١ ±١/٣</td>
</tr>
<tr>
<td>٠/٧١ ±٠/٠٢</td>
<td>٠/٧١ ±٠/٠٢</td>
<td>٠/٧١ ±٠/٠٢</td>
<td>٠/٧١ ±٠/٠٢</td>
<td>٠/٧١ ±٠/٠٢</td>
<td>٠/٧١ ±٠/٠٢</td>
</tr>
</tbody>
</table>

داد که به‌شیبین میزان وزن خشک اندام هواپیم مربوط به تیمار شاخص نش در روز ۱۲ بعد اعمال نش (۱/۴۷ گرم) و کمترین آن مربوط به تیمار ۲۰۰ میلی مولار کلرید سدیم در روز ۱۲ بعد
جدول 3 - مقایسه میانگین مربوط به رنگ‌های فتوسنتزی در سطح ۰، ۱۰۰ و ۲۰۰ میلی‌مolars NaCl (۱۲ روز بعد از شروع نشانش‌شوری).

<table>
<thead>
<tr>
<th>کاروتئین (میلی‌گرم بر گرم وزن)</th>
<th>a/b کاروتئین (میلی‌گرم بر گرم وزن)</th>
<th>سطح زمان تشخیص</th>
<th>مدت زمان تشخیص</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4 ± 0.3</td>
<td>۲/۸۴ ± ۱/۷۷</td>
<td>۲۰۰ میلی‌مolar</td>
<td>۰.۰۲۴۷ ± ۰.۰۷۴۵</td>
</tr>
<tr>
<td>۰/۸۸ ± ۰/۸۸</td>
<td>۳/۰۲ ± ۰/۲۸</td>
<td>۱۰۰ میلی‌مolar</td>
<td>۰.۲۹ ± ۰.۱۷</td>
</tr>
<tr>
<td>۰/۷۱ ± ۰/۵۵</td>
<td>۲/۸۱ ± ۰/۱۰</td>
<td>۵۰ میلی‌مolar</td>
<td>۰.۶۵ ± ۰/۵۵</td>
</tr>
<tr>
<td>۰/۸۲ ± ۰/۸۲</td>
<td>۳/۰۲ ± ۰/۲۸</td>
<td>۰ میلی‌مolar</td>
<td>۱۰۰ ± ۰/۱۰</td>
</tr>
<tr>
<td>۰/۵۰ ± ۰/۲۶</td>
<td>۳/۰۵ ± ۰/۳۸</td>
<td>۲۰۰ میلی‌مolar</td>
<td>۰۵۰ ± ۰/۲۷</td>
</tr>
</tbody>
</table>

استاندارد نمونه‌های عمودی نمایشگر میانگین و انحراف معیار مستند. میانگین‌های مربوط به هر ستون که حداقل دارای یک حرف مشترک هستند در سطح ۵/۰٪ اختلاف معنی‌دار دارند.

تریب‌های فتوسنتز کلیسید سدیم، مدت زمان اعمال تنش و تأثیر معنی‌داری در سطح ۵/۰٪ نشان داد (جدول ۳). مدت زمان تنش کلیسید سدیم در سطح ۲۰۰ میلی‌مolar کلیسید سدیم در مقایسه با مشاهد افزایش یافته است. نتایج نشان داد که میزان بروز (جدول ۳) میزان تنش کلیسید سدیم افزایش یافته است. به طوری که بیشترین و کمترین میزان بروز به ترتیب در ۲ و ۱۲ روز بعد از شروع نشان‌شده و بروز میزان کلیسید سدیم در مقایسه با مشاهد سه دوره زمانی ۵، ۱۰ و ۲۰ میلی‌مolar کلیسید سدیم به طور معنی‌داری تحت تأثیر سطح مختلف کلیسید قرار گرفت (جدول ۴).
جدول 4 تجربه وارینس اثر سطح کلرید سدیم (۰،۰۵، ۱۰۰ و ۲۰۰ میلی‌مولار کلرید سدیم) مدت زمان اعمال نش کلرید سدیم (۲،۰ و ۱۲ روز) و اثر متقابل آنها بر شاخص‌های فنوتستی گیاه بدون تربیت

<table>
<thead>
<tr>
<th>شاخص</th>
<th>میزان مفید</th>
<th>اثر</th>
<th>مدت زمان اعمال نش</th>
<th>تیمار کلرید سدیم</th>
<th>اثر متقابل نش و زمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارایی تغذیه</td>
<td>آب لحاظی</td>
<td>غلظت</td>
<td>تعقیب</td>
<td>روزنامه</td>
<td>خالص</td>
</tr>
<tr>
<td>۰/۵۸**</td>
<td>۱۴۴۳**</td>
<td>۳۴۵/۰۶**</td>
<td>۲/۰۲**</td>
<td>۲۸/۰۷**</td>
<td>۰/۰۱**</td>
</tr>
<tr>
<td>۰/۹۷**</td>
<td>۱۴۳۱**</td>
<td>۳۴۵/۰۶**</td>
<td>۲/۰۲**</td>
<td>۲۸/۰۷**</td>
<td>۰/۰۱**</td>
</tr>
<tr>
<td>۱/۸۹**</td>
<td>۱۲۸۹۰**</td>
<td>۲۴۴/۰۷**</td>
<td>۲/۰۲**</td>
<td>۲۸/۰۷**</td>
<td>۰/۰۱**</td>
</tr>
<tr>
<td>۰/۴۲</td>
<td>۵۸/۰۷</td>
<td>۰/۵۸</td>
<td>۹/۷۸</td>
<td>۰/۵۸</td>
<td>۰/۵۸</td>
</tr>
</tbody>
</table>

ظرفیت تغییرات (درصد.)*

* غير معنی‌داری ** معنی‌دار در سطح احتمال ۰/۰۵ *** معنی‌دار در سطح احتمال ۰/۰۱

کل در سطح ۰/۰۵ میلی‌مولار کلرید سدیم در ۱۲ روز بعد از اعمال نش (۰/۵ میلی‌مولار کلرید سدیم) و کمترین میزان آن در تیمار ۲۰۰ میلی‌مولار کلرید سدیم در ۱۲ روز بعد از اعمال نش (۰/۵ میلی‌مولار کلرید سدیم) مشاهده شد (جدول ۴). مقایسه میانگین مربوط به سطح شوری گیاهی نش داد که نسبت کارکردهای ۰: ۵ به طور معنی‌داری تحت تأثیر سطح مختلف اعمال نش قرار گرفته است (جدول ۴). شاخص‌های فنوتستی نتایج حاصل از تجربه وارینس داده‌ها نشان داد که اگر سطح کلرید سدیم مدت زمان اعمال نش و اثرات متقابل نش و زمان اثر معنی‌داری روي میزان فنوتست خالص، هدایت روزنامه، تعقیب، غلظت، تغییرات در اکسید کردن بین سولو و کارایی مصرف آب لحاظی به‌دست آمده در صفت فنوتست خالص و هدایت مصرف آب لحاظی اثر مدت زمان اعمال معنی‌دار نبود (جدول ۴).

نتایج نشان داد که کمترین و بیشترین میزان فنوتست خالص به ترتیب مرطوب به روز ۱۲ بعد از اعمال نش در سطح تیمار ۲۰۰ میلی‌مولار کلرید سدیم (۰/۵ میکرو مول بر متر مربع بر ثانیه) و شامل ۰/۴۳ میکرو مول بر متر مربع بر ثانیه) می‌باشد (جدول ۴). با افزایش سطح کلرید سدیم کاهش معنی‌داری در میزان هدایت روزنامه در صورت زمان اعمال مشاهده شد. در سطح دومی اعمال نش کلرید سدیم اختلاف معنی‌داری بین سطح ۰ و ۱۰۰ میلی‌مولار کلرید سدیم در میزان هدایت
جدول 5- اثر سطح کلرید سدیم مجدّت زمان اعمال تنش کلرید سدیم و برهمکنش آنها در شاخص‌های فتوستری در گیاه توتون

<table>
<thead>
<tr>
<th>کلرید سدیم (میلی مولار)</th>
<th>مدت زمان اعمال تنش کلرید سدیم</th>
<th>فتوستری خالص (میکرو مول بر متر مربع بر ثانیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/5 ±0/19 A</td>
<td>5/4 ±0/11 a</td>
<td>3/8 ±0/24 ab</td>
</tr>
<tr>
<td>3/10 ±0/17 B</td>
<td>3/91 ±0/15 b</td>
<td>3/28 ±0/12 bc</td>
</tr>
<tr>
<td>2/31 ±0/3 C</td>
<td>2/68 ±0/23 cd</td>
<td>2/31 ±0/17 de</td>
</tr>
<tr>
<td>1/53 ±0/19 D</td>
<td>1/31 ±0/18 ef</td>
<td>1/80 ±0/16 ef</td>
</tr>
<tr>
<td>1/34 ±0/17 D</td>
<td>1/39 ±0/13 fg</td>
<td>1/49 ±0/31 fg</td>
</tr>
<tr>
<td>2/05 ±0/39 A</td>
<td>2/71 ±0/20 A</td>
<td>2/05 ±0/20 A</td>
</tr>
</tbody>
</table>

در تعریق (میلی مول بر متر مربع بر ثانیه):

<table>
<thead>
<tr>
<th>میانگین</th>
<th>2/25 ±0/19 A</th>
<th>2/12 ±0/11 abc</th>
<th>2/11 ±0/12 abc</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/20 ±0/17 B</td>
<td>3/17 ±0/11 ab</td>
<td>2/62 ±0/10 a</td>
<td></td>
</tr>
<tr>
<td>1/72 ±0/18 A</td>
<td>1/73 ±0/13 cd</td>
<td>1/77 ±0/17 de</td>
<td></td>
</tr>
<tr>
<td>0/59 ±0/18 C</td>
<td>0/63 ±0/13 fg</td>
<td>1/89 ±0/16 bc</td>
<td></td>
</tr>
<tr>
<td>0/13 ±0/17 D</td>
<td>0/59 ±0/14 cd</td>
<td>0/49 ±0/16 cd</td>
<td></td>
</tr>
<tr>
<td>1/33 ±0/23 C</td>
<td>1/42 ±0/18 B</td>
<td>0/96 ±0/15 A</td>
<td></td>
</tr>
</tbody>
</table>

غلظت دی اکسید کرین (میکرو مول بر مول):

<table>
<thead>
<tr>
<th>میانگین</th>
<th>16/7 ±0/54 A</th>
<th>17/0 ±0/52 a</th>
<th>14/2 ±0/15 ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/9 ±0/51 B</td>
<td>17/0 ±0/53 b</td>
<td>13/9 ±0/54 B</td>
<td></td>
</tr>
<tr>
<td>3/3 ±0/17 C</td>
<td>3/11 ±0/54 def</td>
<td>13/3 ±0/54 bc</td>
<td></td>
</tr>
<tr>
<td>10/5 ±0/20 D</td>
<td>10/7 ±0/17 de</td>
<td>11/9 ±0/54 ab</td>
<td></td>
</tr>
<tr>
<td>9/4 ±0/20 E</td>
<td>9/2 ±0/16 ef</td>
<td>1/2 ±0/17 g</td>
<td></td>
</tr>
<tr>
<td>6/5 ±0/25 B</td>
<td>6/7 ±0/43 B</td>
<td>11/0 ±0/54 B</td>
<td></td>
</tr>
</tbody>
</table>

* برای هر صفر، میانگین‌هایی که حداکثر دارای یک حروف مشترک می‌باشند به‌اساس آزمون Tukey در سطح احتمال 5% از نظر آماری قابل تفاوت می‌دارند. داده‌ها میانگین ± SE است.

مقدار دو سطح 82/8 و 90/9 گزارش گردید (جدول 5). نتایج حاصل از تجزیه واریانس نشان داد که مدت زمان اعمال تنش تأثیر معنی‌داری در سطح 5% بر روی میزان تعریق داشت و همچنین افزایش مدت زمان اعمال تنش کاهش میزان تعریق را به همراه
جدول ۷- اثر سطح کلرید سدیم، مدت زمان اعمال تشک کلرید سدیم و درهمکنش آنها بر هدایت مزوافیلی و کارایی مصرف آب لحظاتی در گیاه

<table>
<thead>
<tr>
<th>کلرید سدیم (میل)</th>
<th>میانگین</th>
<th>مدت زمان اعمال تشک کلرید سدیم (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>است (جدول ۵)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>هدایت مزوافیلی (میل‌های مول‌یکی کربن بر متر مربع بی‌تغییر)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۴۶ ± ۰/۷۶ B</td>
<td>۲/۱۰ ± ۰/۳ cd</td>
<td>۱/۸۳ ± ۰/۱۸ cd</td>
</tr>
<tr>
<td>۱/۹۸ ± ۰/۱۸ B</td>
<td>۲/۱۰ ± ۰/۳ cd</td>
<td>۱/۸۳ ± ۰/۱۸ cd</td>
</tr>
<tr>
<td>۲/۱۳ ± ۰/۱۸ c</td>
<td>۳/۱۰ ± ۰/۷ B</td>
<td>۳/۱۸ ± ۰/۵۳ B</td>
</tr>
<tr>
<td>۳/۴۷ ± ۰/۷۶ B</td>
<td>۳/۱۰ ± ۰/۷ B</td>
<td>۳/۱۸ ± ۰/۵۳ B</td>
</tr>
<tr>
<td>۴/۶۷ ± ۰/۷۶ B</td>
<td>۳/۱۰ ± ۰/۷ A</td>
<td>۳/۱۸ ± ۰/۵۳ B</td>
</tr>
<tr>
<td>۵/۴۷ ± ۰/۷۶ A</td>
<td>۳/۱۰ ± ۰/۷ A</td>
<td>۳/۱۸ ± ۰/۵۳ B</td>
</tr>
<tr>
<td>۶/۴۷ ± ۰/۷۶ B</td>
<td>۳/۱۰ ± ۰/۷ A</td>
<td>۳/۱۸ ± ۰/۵۳ B</td>
</tr>
</tbody>
</table>

نقطه بیانیه‌هایی که مشاهده می‌شود. داده‌ها میانگین ± SE است.

* برای هر صفت، میانگین هایی که با فاصله بازیکشک هم‌ارضی پیش‌بینی براساس آزمون Tukey در سطح احتمال ۵/ زور نظر آماری می‌باشد.

تکاوت معنی‌دار هستند. داده‌ها میانگین ± SE است.

داد. مقایسه میانگین‌ها نشان داد که میزان تعرق در ۲۰۰ میلی مولار کلرید سدیم در مقایسه با شاهد در سه دوره زمانی ۵/۲ و ۱۲ روزه بیشتر بوده و ۹۵/۲ کاهش یافته است.

جدول ۶- نتایج پذیریناری کربن بر مول آب

نتایج نشان داد که مصرف سطح کلرید سدیم به طور معنی‌داری کاهش یافته است. همچنین در سطوح ۱۲ و ۲۰۰ میلی مولار کلرید سدیم (۲۰۰ روز بعد اعمال) میزان کاهش نزول کربن در ۱/ ۴۸۸٪ و ۴۹٪ می‌باشد.

بحث:

نتایج نشان داد که افزایش سطح کلرید سدیم و مدت زمان اعمال نش در وزن خشک گیاه کاهش یافته است. تحت تنش
کلرید سدیم تبادل و استفاده از عناصر معادنی به میزان زیادی کاهش یافته که این عامل یکی از مهم‌ترین نکات کاهش وزن خشک گیاه است. با توجه به اینکه وزن خشک شاخه اصلی جهت ارزیابی عملکرد فوتونستری می‌باشد، کاهش این صفت نشان دهنده کاهش میزان فوتونستری در گیاهان تحت نش‌کاری کلرید سدیم می‌باشد (آقایی و همکاران، 1393).

نتایج مربوط به شاخص‌های کلرید سدیم در این تحقیق نشان می‌دهد که با افزایش غلظت کلرید سدیم و مدت زمان اعمال تنش کلرید سدیم، میزان تحت کلرید سدیم و مدت زمان تحت تنش کلرید سدیم در گیاه بیشتر از طریق دارایی کاهش می‌یابد. به طوری که کمترین میزان آنها مربوط به مدت 200 میلی‌متر کلرید سدیم در 12 روز بعد اعمال نش می‌باشد. نتایج مربوط به کلرید فوتونستری نش می‌باشد که میزان کلرید فوتونستری در سطح کلرید سدیم (۵۰ و ۱۰۰ میلی‌متر کلرید سدیم) افزایش و در سطح بالاتر کاهش یافته است. به نظر میرس‌کریف، که افزایش اندامی میزان کلرید فوتونستری مرتبط با نقص حفاظی این رنگ‌های فیت و زمان که گیاه تحت نش‌کاری کلرید سدیم قرار گرفد با افزایش میزان کلرید فوتونستری خود معی در حفاظت از دستگاه فوتونستری و افزایش تحمیل نسبت به کلرید سدیم دارد. همچنین، نتایج نشان داد که با افزایش مدت زمان تنش کلرید سدیم از 2 روز به 12 روز بعد اعمال نش میزان کلرید فوتونستری ۵ کلرید فوتونستری کل کاهش یافته و میزان کلرید فوتونستری در سطح کلرید سدیم پایین‌افزاری در سطح بالاتر کلرید فوتونستری افزایش یافته است.

بررسی محتوی کلرید سدیم به عنوان جزئی از دستگاه فوتونستری یکی از راه‌های اساسی جهت ارزیابی اثرات تشنج‌های محیطی است (Silva-Ortega et al., 2008). می‌تواند سبب درمان و آسیب رساندن به کلرید پلتر است. Edreva, Qureshi et al., 2005) در کلرید سدیم می‌باشد و می‌تواند سبب درمان و آسیب رساندن به کلرید پلتر است. Edreva, Qureshi et al., 2005) در کلرید سدیم می‌باشد و می‌تواند سبب درمان و آسیب رساندن به کلرید پلتر است.
و در نتیجه فوستریت خاصل کاهش معنی دار نشان داده (با یپی موسی و همکاران، 1983: 148 و همکاران، 1393). نتایج مربوط به پارامترهای فوسرتی نشان داد که با افزایش سطح کلرید سدیم و مدت زمان عامل تنش میزان شاخص‌های فوستریت در گیاه تونو به طور معنی‌داری کاهش یافته است. طوری که کمترین میزان آنها در سطح 200 میلی مولار کلرید سدیم در 12 روز بعد اعمال آن گزارش شده است. فوستریت خاصل، هماهنگ روزنهای نسبت تعرق، غلظت دی اکسید کربن، بین سولوی و هیدرات مزوتی در سطح 200 میلی مولار کلرید سدیم در 12 روز بعد اعمال 0.19/0.94 و 0/148 و 75/59 کاهش نشان داده را نشان داد. نتایج نشان داد که در شرایط تنش کلرید سدیم فوستریت خاصل کاهش یافته است. طور کلی این اعکاژ وجود دارد. فاکتورهایی که باعث کاهش فوستریت خاصل می‌شوند شامل محدودیت‌های روزنهای و غیر روزنهای منش این ایجاد عوامل روزنهای غیر روزنهای به ترتیب از هر دو عامل سبب کاهش فوستریت خاصل می‌شود هنوز طور کامل شناخته نشده است. همان طور که در بالا ذکر شد بسیاری از محققین اعکاژ فوستریت معنی‌داری ندارند که کلرید سدیم می‌باشد (Koyro، 2006، Lu et al.، 2009) و در طرف مقابل عددی دیگری از محققین این ایجاد که محدودیت‌های غیر روزنهای و سبب کاهش فوستریت می‌شوند Dunn and Neales، 1993، Chartzoulakis et al.، 1995، Das نم.) علاوه بر این دسته دیگری از محققین (Neves et al.، 2008 اعکاژ دارد که در شرایطی که تنش کلرید سدیم ملایم می‌باشد صیاغی در سطح پایین کلرید سدیم عامل اصلی کاهش می‌باشد فوستریت محدودیت‌های روزنهای می‌باشد و در سطح بالاتر کلرید سدیم زمانی که تنش نشان نمی‌باشد فوستریتی‌ها غیر روزنهای عامل اصلی کاهش محسوب می‌شود (Everard et al.، 1994، Netondo et al.، 2004). طور کلی تحت شرایط تنش کلرید سدیم فوستریت خاصل کاهش یافته و همکار با آن میزان هداپت روزنهای و نسبت تعرق نیز سبب افزایش سطح کلرید سدیم تا 350 میلی مولار کلرید سدیم و سبب افزایش میزان اشتهای پرولین در دانه رسته‌های هرود و Razavizadeh واریتیه است. مطالعات انجام گرفته توسط Ehsanpour نشان داد که افزایش مدت زمان عامل تنش کلرید سدیم محتوی پرولین برگ افزایش یافته است. نتایج حاصل از این تحقیق نشان داد که تهیه با دیافت بیشتر، به طوری که با افزایش سطح کلرید سدیم و مدت زمان عامل تنش میزان اشتهای پرولین در برگ افزایش یافته و بالاترین میزان اشتهای پرولین در سطح 200 میلی مولار کلرید سدیم (روز دواده بعد از اعمال تنش کلرید سدیم) می‌باشد. باید می‌باشد که پرولین در طی تنش کلرید سدیم ایفا کنید این قابل توجهی می‌باشد که افزایش سطح کلرید سدیم و مدت زمان عامل تنش باعث افزایش میزان اشتهای پرولین شود و همچنین میزان اشتهای پرولین احتمالاً پذیرپردازی توانسته. ارتقاء مسمول تنش کاهش در میزان ثبتی در اکسید کربن در گیاه تونو تحت تنش کلرید سدیم به میزان زیادی به بهبود روزنهای واپسین بوده که سبب کاهش غلظت دی اکسید کربن بین سولوی شده و به هدف رفتن آب از طریق تعرق محدود می‌گردد. به نظر می‌رسد این عامل سبب نیاوردن در جلوگیری از کاهش بیشتر پتانسیل آپ برگ و تیزاسی باعث بیشتری تنش ایفا تیک عامل اساسی جهت جلوگیری از هدر رفتن آب تحت تنش در تونو می‌باشد. تنش کلرید سدیم به طور معنی‌دار پارامترهای مختلف فوستریتی را تحت تأثیر قرار داد به طوری که با افزایش غلظت کلرید سدیم کاهش در پارامترهای فوستریت مشاهده گردید. نتایج بررسی نشان داد که میزان فوستریت خاصل و هداپت روزنهایی به طور مشابهی کاهش یافته است. بنابراین پیشنهاد می‌شود که کاهش فوستریت خاصل عمداً به دلیل کاهش هداپت روزنهایی بوده و به بیشتر روزنهای طرفی فوستریتی برگ را در تونو تحت تنش کلرید سدیم محدود کرده است. در نتیجه تاکید محاسبه بیشتر تنش کلرید سدیم در گیاهان مختلف نشان داد که با افزایش سطح کلرید سدیم میزان هداپت روزنهای
Wilson et al.,(Yang and Lu, 2005)

نتیجه‌گیری کلی:

کاهش در وزن خشک تونتون تحت نشان کلیدی سردی احتمالاً به علت کاهش در جذب و استفاده از عناصر معدنی، کاهش در جذب نیتروژن، کاهش متانولیسم، کاهش فتوستر و یا ترکیبی از همه این فاکتورها می باشد. کاهش فتوستر خالص ناشی از کاهش هدایت روزنهای بوده و کاهش دو شاخص با کاهش نسبت تعرق و غلظت دی اکسید کرین بین سولوی توان شده که باینگر آن واقعیت است که کاهش فتوستر در تونتون ناشی از بسته شدن روزنهها می باشد با به عبارت دیگر محدودیتی های روزنهای عامل اصلی کاهش در میزان فتوستر در گیاه تونتون می باشد.

نمونه:

آقابی، ک. طالب. ن. کوکانی، م. و پژوهندگان. م. (1383) اثر نیترات بر خصایص فیزیولوژیکی و بوشیعیبی دوگونه مرمی گلی فرآیند و کارکرد گیاهی، 96-99. (Salvia)

علیابی، ف. بانی، بس. و قبادی، س. (1394) اثر نیترات بر خصایص شاخص‌های تبادلات گازی برگ در چهار رقم زیتون. فرآیند و کارکرد گیاهی: 12: 50-51.

پایی امینی، ف. ازدانی، ا. و سعیدی، ق. (1393) ارزیابی توان مؤثرهای فتوستری در لایه‌های دابل هایلونید کلازا و روابط آنها با عملکرد دانه در شرایط مزرعه، فرآیند و کارکرد گیاهی 8 55-57.

