اثر برمکنش آبیاری و نیتروژن بر خصوصیات فنولوزیک و شاخه‌های رشد در ذرت دانه‌ای

روزین قبادی، مختبر قبادی، فرزند مندی، سعید جلالی هرمند و بهمن فرهادی بانسوله
گروه زراعت و اصلاح نباتات، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

(تاریخ دریافت: ۱۳۹۰/۰۴/۱۳، تاریخ پذیرش نهایی: ۱۳۹۰/۰۵/۲۰)

چکیده:
این تحقیق با هدف بررسی اثرات سطوح آبیاری و نیتروژن بر زمان وقوع مراحل فنولوزیک و شاخه‌های رشد در دانه‌ای سیگل‌کراس (۱۳۸۵) انجام شد. آزمایش طی دو سال زراعی ۱۳۸۵-۱۳۸۶ در پردیس کشاورزی و منابع طبیعی دانشگاه رازی کرمانشاه و به صورت کردهای بی‌پرداخت شده پایه پر این حنجارهای کامل تصویبی در سه نمونه ایرانی گردید. فاکتور اصلی، تعداد ستون آبیاری شاخص در این آزمایش ۱۰۰ البته و کن‌آب نیتروژن در ۶۰ حالت ارسال توصیف شده بر اساس تغییر آبیاری و کن‌آب نیتروژن خاک بود. نتایج نشان داد که با کاهش مقدار آب مصرفی، ظهور گل‌تاجی و ظهور ایرپیشم‌ها به تأخیر افتاد. افزایش مقدار نیتروژن روی تاریخ ظهور گل‌تاجی و وقوع جریان‌های اولیه تأخیر معنی‌دار نداشت اما سپرپذیری ظهور ایرپیشم‌ها کمیاب بود. حساسیت بیشتر نیتروژن در هر یک از سطوح آبیاری، شاخه سطح نیتروژن و سرعت رشد محصول را افزایش داد، اما افزایش شدت کم آبی از تأثیر مثبت نیتروژن کاست. کاربرد نیتروژن بیشتر در شرایط آبیاری مطلوب، موجب افزایش میزان و سرعت تجمیع ماده خشک و به تأخیر افتاده نتوقف روند تجمیع ماده خشک گردید.

واژه‌های کلیدی: سرعت رشد محصول، شاخه سطح نیتروژن، ظهور ایرپیشم، کم آبی، گرده‌افشانی.

مقدمه:
اگر آبیاری یکی از روشهای افزایش کارایی مصرف آب برای افزایش میزان محصول تولیدی به ازای واحد آب مصرفی است، در صورت استفاده منطقی و مدرن‌سازی شده از روش کم آبیاری، میزان کاهش محصول در برای منفعت حاصل از مقدار آب ذخیره شده تا ناوذ خواهد بود. با توجه به اینکه در شرایط کم آب، جذب عناصر غذایی به ویژه نیتروژن کاهش می‌یابد، در جنین شرایطی نیز برقراری نامن اب و نیتروژن مصرفی ضروری به نظر می‌رسد (عیساییان، ۱۳۸۲).

ghobadi.m@razi.ac.ir

نویسنده مسئول، نتشان پست الکترونیکی: گدایی مسعود، دانشگاه کرمانشاه
شابه‌های رشد، وزن خشک کل و عملکرد دانه در تأثیر قرار می‌دهد (لک و همکاران، 1389 و همکاران، 1392). در گزارش کردمندی که سرعت رشد در مرحله بزرگ‌گرایی افزایش یافته و کمیابی کربن به‌مدت دایم باعث کاهش اندازه‌برگ می‌شود. در طرفین با اخبار مقدار مناسب نیتروژن می‌توان ترکیب معادلی از شاخه‌های رشد در کانوپی درست بافت و موجب به‌هم‌کاری را فراهم آورده. بر اساس گزارش‌های موجود، افزایش مصرف نیتروژن از طریق افزایش سطح برگ و درون‌فکری نور موجب به‌هم‌کاری سرعت محصول (Crop Growth Rate) و (Relative Growht Rate) افزایش سرعت رشد نسبی نیز در سرعت جذب خالص Net Assimilation Rate سرعت جذب خالص از دست می‌دهد. مطالعات نیتروژن گزارش شده است (لک و همکاران، 1389) در آزمایش خشکو و بحران (1394) كمیابی آب و Leaf Area نیتروژن به‌کارهای شاخه‌ساز سطح برگ (Index) سرعت رشد محصول سرعت رشد نسبی و سرعت جذب خالص شد. بین مقایس شاخه‌ساز سطح برگ و سرعت رشد محصول با وزن خشک کل و عملکرد دانه در تأثیر مستقیم و دادار (حجار و بحرانی، 1394) کریمی و همکاران، 1388 و 1391, 1991.

این تحقیق با منظور بررسی تأثیر سطوح مختلف آبی و مقایسه نیتروژن مصرفی بر زمان و فواید فناوری و شاخه‌های رشد در دانه‌های در شرایط آب و هوایی شهرستان کرمان‌شهر انجام شد.

مواد و روش‌ها:

این تحقیق به دو مسّر (93-94 و 1394) در مزرعه تحقیقاتی پرنس کشاورزی و منابع طبیعی دانشگاه علی‌رغم شرایط 1342 درجه و 21 دقیقه شمالی، طول جغرافیایی 67 درجه و 9 دقیقه شرقی. ارتفاع 1319 متر از سطح دریا) انجام شد. بر اساس تفسیرنهایی اقلیمی دمایی، قبیل منطقه سرد و نیمه خشک می‌باشد.

منطقه مورد نظر دارای متوسط بارندگی سالانه ۴۱۷ میلی‌متر.
برگی بوته‌های اضافی نکت شدند.

بر اساس نتایج آزمون خاک، نبی‌تیروزون درت، در سال اول 350 و در سال دوم 500 کیلوگرم کود از هکتار تعیین گردید (جدول 1). با توجه به سطح در نظر گرفته شده برای تیمار تیروزون، مقادیر کود از این هر کرت محاسبه شد. در نتیجه سطح تیروزون به صورت یکسومی شد. از این زمان آغاز مهیا که۴/۷ از آغاز مهیا به علت گرفتن اغلب و پیش‌بینی و چهار سطح تیروزون شال ۱۴۰ دصرد (N100%)، ۱۰۰ دصرد (N75%) و ۷۵ دصرد (N50%) توصیه شده بار اساس نتایج آزمون خاک در کرت‌های فرعی قرار داشتند.

مراحل آماده‌سازی زمین به صورت شخم‌پایی، دیسک بهره‌ای، تست‌سنگ زمین انجام شد. در هر دو سال بار اساس تایج آزمون خاک، فسفر به میزان ۱۷۴ کیلوگرم در هکتار کود سوپرفسفری برای استفاده در داخل کود سوپرفسفری استفاده شد. طول هر کرت شش متر و عرض آن سه متر شالی چهار خط کشت بوته. در نتیجه این و کشت نکشت با پیش‌بینی کرده‌های فرعی کود ردیف به عنوان حاشیه در نظر گرفته شد. فاصله رديف‌های کشت ۲۵ سانتی متر و تراکم بوته ۴۰ تراکم کشت ۴۵ هزار بوته در هکتار در نظر گرفته شد. کشت درشت دانهای رقم سیگنیکاراس ۴/۷ در هفته دوم اردیبهشت ماه به صورت دستی در عمل می‌پنج سانتی متر ریز پشت انجام شد. در هر کمت به صورت‌بند پذیر بامیه شده با قارچ‌کش و بیماری، قرار داده شد. به منظور رصد و تراکم مطلوب در مرحله زمانی...
در 90 درصد از بوته‌های هر کرت، تاریخ وقوع رسیدن فیلوپازیک نبوده است (آزادی و همکاران، 1389). جهت محاسبه سطح زمینی که در مراحل مختلف رشد، از هر کرت سه بوته به طور تصادفی برداشت شد. جهت انتخاب گیری وزن شکل، نمونه‌ها به مدت 18 ساعت در دمای 27 درجه سانتی‌گراد، سپس توزین شدند. برای ایجاد اختلال نهایی گرفته شده برای هر کرت از اختبار گیاهان فرما گرفته شد. با این اختلال نهایی، کرتها توسط لوله‌ای گل‌انگشت حرارت و حجم آب ورودی به کرتها با کنترل کنترل گردید.

\[\text{LAI} = a + b \times 4 \times \exp \left(\frac{x - c}{d} \right) \]

که در آن \(a \) و \(b \) زمان رسیدن به حداکثر حداکثر عوامل حساس متغیر \(c \) به سطح و در فرمول \(d \) و لکا از کشت است. سپس از کشت کشت در روز، سرعت رشد نسبی (RGR) به حساب (Total Dry Weight) در روز و وزن شکل کل بر حسب گرم در روز و وزن شکل کل بر حسب گرم در روز تهیه شد. با استفاده از معادلات 4، 5 و 6 از کشت (Gardner et al., 1985) استفاده شد.

\[\text{GRF} = \frac{a \times b \times c \times \exp \left(-c \times x \right)}{\left(1 + b \times c \exp \left(-c \times x \right) \right)^2} \]

\[\text{RGR} = \frac{b \times c \times \exp \left(-c \times x \right)}{\left(1 + b \times c \exp \left(-c \times x \right) \right)} \]

\[\text{TDW} = \frac{a}{\left(1 + b \times \exp \left(-c \times x \right) \right)} \]

در این معادلات، \(a \) حداکثر تجمع ماده شکل، \(b \) نیروی محاسبه، \(c \) سرعت رشد نسبی و \(x \) زمان بر حسب روز یک سال کشت است. در پایان فصل رشد یک بوته از جذور اثرات حاشیه‌ای، بوته‌های دوم مترمربع از در روز میانه هر کرت برداشت شد. پس از شکل شدن بوته‌ها، اندازه حجم آب وزن روز شکل کل بر حسب گرم در مترمربع برابر هر نیوتن قلم. از نظر نحویت و ارتفاع دوم هر کرت، تاریخ وقوع رسیدن فیلوپازیک نبوده است. فشار بخار در ارتفاع دوم هر کرت، تاریخ وقوع رسیدن فیلوپازیک نبوده است. شد منحنی فشار بخار اشعه نسبت به درجه حرارت در نقطه‌ها که درجه حرارت دانشگاه (کیلو پاسکال) از 40 درجه حرارت (کیلو پاسکال) تا 15 درجه حرارت (کیلو پاسکال) شار گرم یا داخل خاک (مکانول) از روز و شب (غصیره و کم‌شکنی، 1387). در نهایت دو روش آبیاری طبق معادله (۳) محاسبه و مقدار آب در نظر گرفته شده برای هر کرت در انتهای گیاهان قرار گرفته. آب‌سربازی کرتها توسط لوله‌ای گل‌انگشت حرارت و حجم آب ورودی به کرتها با کنترل کنترل گردید.

\[b = \text{میزان آب (میلی‌متر در مترمربع در هر روز)} \]

\[\text{سعت کشت (مترمربع) x نتیجه‌گیری روزانه (میلی‌متر در هر روز)} \]

ملاحظه: در طول فصل ردش گیاه‌ها، ایجاد شد. تاریخ وقوع مراحل مختلف نفس‌پذیدی برای یک از هر کرت، تاریخ انتهای انگامت: زمانی که گل‌های نجاتی در 50 درصد بوته‌های هر کرت به اندازه 0 تا 15 سانتی‌متر از نیم گره‌ها بیرون آمد به عنوان تاریخ ظهور گل نجاتی نیست. کشت از گرده‌افشانی: زمانی که محور اصلی گل نجاتی در 50 درصد از بوته‌های هر کرت در حال آزاد کردن دانه گردید. بوته‌های تاریخ شروع گرده‌افشانی بیافزایش شد. کشت از هر کرت در مترمربع از بوته‌های هر کرت به دو سانتی‌متر رسیده به عنوان تاریخ ظهور ابست. شد.

فجاعه گردش‌افشانی تا ظهور ابست:

تفاوت بین تاریخ ثبت شده برای مراحل ظهور (Interval)

برای تعیین تاریخ وقوع رسیدن فیلوپازیک، از همه هر از ظهور ابست، در هر کرت به سه دانه از دانه‌های پیش‌بندی، پیپ دیاپازی یا سیاپ بررسی شد. پس از اطمنان از ایجاد لای میانه.
تجلیل‌های آماری و مقایسه میانگین‌ها به روش SAS

در سطح پنج درصد با استفاده از نرم‌افزار آماری LSD

انجام شد. در تجزیه‌مرکز، سال به صورت اثر تصادفی با استفاده از نرم‌افزار آماری LSD

سطح آماری و نت‌های بی‌ستحکمی را به ترتیب در نظر گرفته شدند. به منظور بررسی معادل‌های و رسم نمودارها نیز به ترتیب از نرم‌افزارهای Excel و Slide Write استفاده شد.

نتایج و بحث:

از کاست‌ها نت‌های مثبت گزارش گردید: اثر سال در سطح پنج درصد و سطح مختلف آبیاری در سطح پنج درصد با تعداد روز سه‌شنبه شده از کاست‌ها نت‌های مثبت معنی‌دار بود (جدول 2). تأثیر ضعیف تری نیاز حداکثری بود به‌طور کلی به‌طور متوسط 37/5 و 71/5 روز به ترتیب برای سال اول و سال دوم. تنها کم‌این فاصله کاست‌ها نت‌های مثبت گزارش داد. از نظر زمان لازم برای ظهور گل‌نامی شده در مقایسه با سال اول به طور معنی‌داری کاهش یافت (به طور متوسط 37/5 و 71/5 روز به ترتیب برای سال اول و سال دوم). همچنین به‌طور کلی به‌طور متوسط 37/5 و 71/5 روز بعد از کاست‌ها گیاه وارد زایشی شد (جدول 3) تا فاصله تیم مایکل و همکاران (2013) در گیاهی دست آمده در کمبود آب گزارش کرده. در آزمایش تیم مایکل و همکاران (2013) نیز مقدار نیازی نسبت به مقدار آب اثر کمتری بر زمان ظهور گل‌نامی شده مورد چند که با کمبود نیازی به‌طور مثبت اثار آن در کاست‌های مثبت نت‌های مثبت گزارش داد.

از کاست‌ها نت‌های مثبت گزارش گردید: اثر سال در سطح پنج درصد و آبیاری در سطح پنج درصد با تعداد روز از کاست‌ها شروع گردید. نت‌های معنی‌دار بود (جدول 2). شروع
جدول 2- تجزیه واربینان مرکب صفات اندازه‌گیری شده (میانگین مربعات)

<table>
<thead>
<tr>
<th>سال</th>
<th>X</th>
<th>Y</th>
<th>N</th>
<th>X*Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>یک</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>دو</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>سه</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>چهارم</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

جدول 3- مقایسه میانگین اثر سال، آبیاری و نیتروژن برای صفات اندازه‌گیری شده

<table>
<thead>
<tr>
<th>سال</th>
<th>بازه‌ی امکان‌پذیری در سطح پنج درصد</th>
<th>میانگین</th>
<th>نریجه داده</th>
<th>یک درصد</th>
<th>0.05 درصد</th>
<th>0.01 درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>یک</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>دو</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>سه</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>چهارم</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>پنجم</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های دارای جزئی مشابه با اساس آزمون LSD در سطح پنج درصد اختلاف معنی‌دار دارند.
اثط تطّوکٌص آتیاضی ٍ ًیتطٍغى تط ذصَصیات فٌَلَغیک ٍ ضاذص ّایتیاضی (چًٞاٙ ٝ ١ٌ٘اضاٙ،
اکتماب ١ای ُطزٟ تا ظ٢ٞض اتطیكٖ ٌٗ٘ٚ اؾت حتی تا تؼس اظ ٛیاطی ًٖ آتی قف، تا ١لت ضٝظ ُعاضـ ًطزٛس. تأذیط
نیتعیتیٚ ُطكت (رسّٝ
1387)
(پٜذ زضنس) هطاض ُطكت (رسّٝ
1381)
(پٜذ زضنس) هطاض ُطكت (رسّٝ
1385 سهپری و همکاران 1381) 120
(پٜذ زضنس) هطاض ُطكت (رسّٝ
1382)
2012
Dawadi and Sah
1381
et al
1382
et al
1383
et al
1384
et al
1385
et al
2009
(Chad Tوسط
تٜف قسیس ظ٢ ٞض اتطیكٖ ٌٗ٘ٚ اؾت حاکت. ایٚ ٗل٢ٕٞ ً٠ آؿاظ آظاز قسٙ
Girardin, (Mariana et al., 2003)
2014
(Anderson et al., 2014)
40
آب ٗهطكی، كانٔ٠ تیٚ ُطزٟ
120
al
2014
(Lauer, در آزمایش حاضر فاصله
2009)
2012
Dawadi and Sah
120
ال. (1981)، کم آبی در زمان ورود به فاز زایی باعت تأثير
تیکتال بیشتر یا در نظر ابزار نسبت به ظهر کل تاجی می‌شود، این
مطلب دارد که همکاران (2007) بیان کردند که در شرایط تنفس، تشكل
گل‌های مادر نسبت به گل‌های نیش بیشتر به تعویق می‌افتند، در
نتیجه فاصله گردشی فاسمی تأثیر ابزار بیشتر می‌شود. در
نتش یا شبد ظهر ابزار ممکن است حتی تا بعد از
پخش دانه‌های گردش به تعویق بیان نشود. این موضوع منجر به عدم
سلول‌های رشته‌های ابزار است (جوکان و همکاران،
1385 سهپری و همکاران 1381) تأثیر ظهر ابزار
را در شرایط کم آبی تا گرفت. تأثیر
در شروع گردشی فاسمی و ظهر ابزار در اثر تنفس کم آبی
(Chad Tوسط
تٜف قسیس ظ٢ ٞض اتطیكٖ ٌٗ٘ٚ اؾت حاکت. ایٚ ٗل٢ٕٞ ً٠ آؿاظ آظاز قسٙ
Girardin, (Mariana et al., 2003)
2014
(Anderson et al., 2014)
40
آب ٗهطكی، كانٔ٠ تیٚ ُطزٟ
120
al
2014
(Lauer, در آزمایش حاضر فاصله
2009)
2012
Dawadi and Sah
120
ال. (1981)، کم آبی در زمان ورود به فاز زایی باعت تأثير
تیکتال بیشتر یا در نظر ابزار نسبت به ظهر کل تاجی می‌شود، این
مطلب دارد که همکاران (2007) بیان کردند که در شرایط تنفس، تشكل
گل‌های مادر نسبت به گل‌های نیش بیشتر به تعویق می‌افتند، در
نتیجه فاصله گردشی فاسمی تأثیر ابزار بیشتر می‌شود. در
نتش یا شبد ظهر ابزار ممکن است حتی تا بعد از
پخش دانه‌های گردش به تعویق بیان نشود. این موضوع منجر به عدم
سلول‌های رشته‌های ابزار است (جوکان و همکاران,
1385 سهپری و همکاران 1381) تأثیر ظهر ابزار
را در شرایط کم آبی تا گرفت. تأثیر
در شروع گردشی فاسمی و ظهر ابزار در اثر تنفس کم آبی
(Chad Tوسط
تٜف قسیس ظ٢ ٞض اتطیكٖ ٌٗ٘ٚ اؾت حاکت. ایٚ ٗل٢ٕٞ ً٠ آؿاظ آظاز قسٙ
Girardin, (Mariana et al., 2003)
2014
(Anderson et al., 2014)
40
آب ٗهطكی، كانٔ٠ تیٚ ُطزٟ
جدول 4- مقایسه میانگین اثر مقایل دوگانه سال در آپاری برای صفات اندازه‌گیری شده

<table>
<thead>
<tr>
<th>سال</th>
<th>آپاری</th>
<th>دیاوند</th>
<th>کشت</th>
<th>نتیجه‌گیری</th>
<th>معنی‌داری</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987 a</td>
<td>24/26 a</td>
<td>4/10 a</td>
<td>3/19 a</td>
<td>88/42 b</td>
<td>I120%</td>
</tr>
<tr>
<td>1987 b</td>
<td>33/95 a</td>
<td>5/25 a</td>
<td>9/42 b</td>
<td>I100%</td>
<td></td>
</tr>
<tr>
<td>1988 a</td>
<td>33/34 a</td>
<td>4/08 ab</td>
<td>91/00 b</td>
<td>I80%</td>
<td></td>
</tr>
<tr>
<td>1987 b</td>
<td>19/87 d</td>
<td>5/17 c</td>
<td>93/00 a</td>
<td>I60%</td>
<td></td>
</tr>
<tr>
<td>1986 d</td>
<td>22/45 b</td>
<td>3/25 a</td>
<td>77/47 e</td>
<td>I120%</td>
<td></td>
</tr>
<tr>
<td>1986 cd</td>
<td>31/87 b</td>
<td>4/98 bc</td>
<td>98/49 f</td>
<td>I100%</td>
<td></td>
</tr>
<tr>
<td>1986 e</td>
<td>20/35 c</td>
<td>7/67 c</td>
<td>83/40 e</td>
<td>I80%</td>
<td></td>
</tr>
<tr>
<td>1987 e</td>
<td>12/77 e</td>
<td>8/82 f</td>
<td>80/40 d</td>
<td>I60%</td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های دارای خوشه مشابه در حرکت کردن بر اساس آزمون LSD در سطح پنج درصد اختلاف معنی‌دار ندارند.

جدول 5- مقایسه میانگین اثر مقایل دوگانه آپاری در نتیجه‌گیری صفات اندازه‌گیری شده

<table>
<thead>
<tr>
<th>سال</th>
<th>آپاری</th>
<th>دیاوند</th>
<th>کشت</th>
<th>نتیجه‌گیری</th>
<th>معنی‌داری</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987 a</td>
<td>4/10 d</td>
<td>2/25 f</td>
<td>160/00</td>
<td>I120%</td>
<td></td>
</tr>
<tr>
<td>1987 b</td>
<td>0/41 d</td>
<td>9/87 de</td>
<td>118/17</td>
<td>N90%</td>
<td></td>
</tr>
<tr>
<td>1988 a</td>
<td>0/72 b</td>
<td>5/74 b</td>
<td>131/74</td>
<td>N100%</td>
<td></td>
</tr>
<tr>
<td>1987 b</td>
<td>0/91 a</td>
<td>14/75 a</td>
<td>130/75</td>
<td>N140%</td>
<td></td>
</tr>
<tr>
<td>1986 d</td>
<td>1/11 f</td>
<td>12/00 gh</td>
<td>N20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986 cd</td>
<td>4/74 d</td>
<td>13/50 g</td>
<td>N20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986 e</td>
<td>5/95 b</td>
<td>6/56 h</td>
<td>N20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987 e</td>
<td>1/17 f</td>
<td>11/17 i</td>
<td>N20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986 e</td>
<td>4/95 d</td>
<td>2/17 f</td>
<td>N20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987 e</td>
<td>5/85 d</td>
<td>2/22 ef</td>
<td>N20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987 e</td>
<td>14/10 j</td>
<td>11/17 i</td>
<td>N20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987 e</td>
<td>16/43 h</td>
<td>11/17 j</td>
<td>N20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987 e</td>
<td>16/56 h</td>
<td>11/41 j</td>
<td>N20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987 e</td>
<td>16/57 f</td>
<td>11/41 j</td>
<td>N20%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های دارای حرکت مشابه بر اساس آزمون LSD در سطح پنج درصد اختلاف معنی‌دار ندارند.

باوری گل‌های و کاهش عملکرد دانه مرشود (چوبان و همکاران، 2015). رابطه منفی بین زمان گردهاشگری و ابریشم دهی یا عملکرد دانه گردو‌نشین شده است (Molla et al., 2014).

کاشت نا رسیدن فیزیولوژیک: اثر سال (در سطح پنج درصد اختلاف معنی‌دار ندارند)
در سال‌های اخیر تحقیقات چون در طول دوره رشد گیاه درت و میانگین درجه حرارت روزانه بیشتر از سال‌های قبل، بر اثر فناوری‌های رسانه‌های مطرح نیترژن بین‌شیری، تعداد زیادی کاهش طول دوره رشد، موجب کاهش معنی‌داری از مقدار شاخ‌سرخ طبیعی در مقایسه با سال اول بود (۶/۴۵ تا ۶/۱۲۰ درصد نیاز آی) در تیمار شدت کم ای) ۱۰۰ درصد نیاز آی به دلیل اثر کم‌بود آب بر جذب مواد غذایی، مقدار نیترژن مصرفی تأثیر رسانه نیترژنی مصرفی تأثیری نداشت (جدول ۶). در شرایط تنش نیترژن کم ای) حتی اگر نیترژن به میزان کافی در حاکم وجود نداشد که قادر به جذب آن نبود. ای) آب جذب مواد غذایی توسط ریشه‌ها و انتقال از طریق ریشه به بخش هواپیمایی را کاهش می‌دهد. این دوره مربوط محدود می‌شد. به علاوه قابلیت نفوذی‌پری غشاء خشک می‌شد و نهایتاً قدرت توانایی نیترژن، علیرغم کاهش مدت زمان از کاستن تا ظهور گل‌نامی و ظهور ابریشم زمان تا وقوع رسانه نیترژنی پیشرفت بیشتر شد. افرازی طول دوره بر ضر دانه نتیجه گل‌دهی زودتر و رشد دبیری لبه سیاه است. در شرایط مطلوب‌های طول دوره هوری افرازی نیترژنی افرازی می‌پایان (به طوری که مقدار شاخ‌سرخ طبیعی در همه تیمارها تقریباً یکسان بود. با گذشت زمان، افرازی سطح برگ روند خطي بیب افزایش داشته و بنا بر شاخ‌سرخ طبیعی، سطح برگ به دلیل نیترژن، تأخیر در زمان ظهور گل‌نامی، سطح برگ به حداقل مقدار خودرسنی رسید. سپس به دلیل ساده‌تری برگ‌ها روی یکدیگر و ریز کردن برگ‌های پایینی، روند نهایی در پی گرفت. در مراحل ابتدایی زمان، کاهش نیترژن وحشی داشت. این موضوع احتمالاً به دلیل زمان مصرف نیترژن است. زیرا در سوم نیترژن در مراحل نیترژنی و ظهور گل‌نامی رسانه نیترژنی بیکاری و بگیر به علت روانه‌ای در اثر مشخصات فنی نیترژنی و شاخص‌های...
جدول 6- مقایسه میانگین اثر مقاومت دوگانه سال در نیتروژن بارای صفات ازدده گیاه

<table>
<thead>
<tr>
<th>سال</th>
<th>شاخص سطح برگ</th>
<th>نیتروژن</th>
<th>سرعت رشد محصول (کمیت در برابر)</th>
<th>سرعت رشد نسبی (کمیت در برابر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1391</td>
<td>N40%</td>
<td>I120%</td>
<td>0.048</td>
<td>0.049</td>
</tr>
<tr>
<td>1392</td>
<td>N40%</td>
<td>I120%</td>
<td>0.057</td>
<td>0.059</td>
</tr>
<tr>
<td>1393</td>
<td>N40%</td>
<td>I120%</td>
<td>0.067</td>
<td>0.070</td>
</tr>
</tbody>
</table>

در هر سنتو، میانگین‌های داده‌های حروف مشابه در هر فاکتور بر اساس آزمون LSD در سطح پنج درصد اختلاف معنی‌دار دارند.

جدول 7- مقایسه میانگین اثر مقاومت سه گانه سال در آبیاری در نیتروژن بارای شاخص سطح برگ

| میانگین‌های داده‌های حروف مشابه در هر فاکتور بر اساس آزمون LSD در سطح پنجم درصد اختلاف معنی‌دار ندارند. |}

شکل‌نمایی‌ها و گزارش داده‌های در مورد آزمون‌های تأثیرگذار و همکاران (1391) مطابقت دارد. از آن‌ها در تیم‌های نیتروژن 120 و 100 درصد نیاز آبی، با استفاده از مقدار بین‌النهران، شاخص سطح بروک زودتر به حداکثر مقدار خود رسیده به علت دیگر از اثر کم‌های نیتروژن ظهور کننده و حصول حداکثر شاخص سطح بروک در دیرتر رخ داد. با افزایش وزن کم آبی، از تأثیر مثبت کاربرد نیتروژن بر افزایش شاخص سطح بروک کاسته شد. به نظر می‌رسد دلیل این امر کاهش جذب نیتروژن در شرایط کمبود استفاهه شد. بعث علاوه‌های در مراحل اولیه، رشد کند گیاه و در نتیجه اختصاص کم مواد فتوسنتزی به بروک‌ها، باعث یکنواختی تولید بروک در مقدار متفاوت نیتروژن مصرفی می‌شود. در مراحل بعد، مقدار بین‌النهران اثر زیادی بر تولید بروک‌ها بر جای گذاشته. تأثیر مشابه به توسط طرق‌الاسلامی (1391) و سهیروی و همکاران (1381) گزارش شده است. با اعمال نشکم آب به دلیل اثر کم‌های بروک آب بر کاهش طول دوره رشد و تسهیل روند پروری بروک‌ها، حداکثر سطح بروک سریع‌تر حادث
شکل 1- اثر سطوح مختلف دیگر بر وزن برگ در سطوح آبیاری ۱۲۰ درصد (a)، ۱۰۰ درصد (b)، ۸۰ درصد (c)، ۶۰ درصد (d).

(سوم تا چهارم سال ۱۳۹۳، سوم راست سال ۱۳۹۴)
آب باشید.

سرعت رشد محصول (CGR) اثر سال (در سطح یک درصد)، ایالابی (به درصد) و اثر مقاطع سال در ایالابی (یک درصد)، ایالابی در نیتروژن (به درصد). سال در نیتروژن (یک درصد) بر سرعت رشد محصول در مراحل گل‌دهی معیار دار بود (جدول 2). سرعت رشد محصول در سالول در شرایط تمام 100 و 80 درصد نیاز آبی (به ترتیب 33/3 و 33/3 گرم بر متر مربع در روز) اختلاف معنی دار نداشتند. اما نشان شدید کم 60 درصد نیاز آبی (سرعت رشد محصول را به طور معنی‌داری کاهش داد (19/8) گرم بر متر مربع در روز). در سال دوم با کاهش مقدار آب سرعت رشد محصول کاهش یافت. کمترین مقدار سرعت رشد محصول به میزان 133 گرم بر متر مربع در روز با تأمین 60 درصد نیاز آبی در سال دوم به دست آمد (جدول 5). با افزایش شدت کم آب، میزان برق و به دنبال آن سرعت تخمین گیاه افزایش و سطح برگ کاهش می‌یابد. در نهایت از سرعت رشد محصول کاهش خواهد شد (کل و همکاران. 1389). همکاران (2014) و Molla دادرسی و همکاران (1391) نتایج مشابهی در رابطه با تأثیر کم آب بر سرعت رشد محصول گزارش کردند. در تمام سطح ایالابی، افزایش مصرف نیتروژن موجب افزایش سرعت رشد محصول شد. مصرف نیتروژن بیشتر، از طرف افزایش سطح و دوام برگ موجب افزایش نور دربایت و سرعت رشد محصول بیشتر. بیشترین سرعت رشد محصول در مرحله گل‌دهی (35/5 گرم بر متر مربع در روز) به تیمار تأمین 100 درصد نیاز آبی و 140 درصد نیاز نیتروژن تعلق داشت. هرچند که به تیمارهای تأمین 100 درصد نیاز آبی و 140 درصد نیاز نیتروژن مصرف (4/5 گرم بر متر مربع در روز) کمترین مقدار سرعت رشد محصول با تأمین 100 درصد نیاز آبی و 40 درصد نیاز نیتروژن (6 گرم بر متر مربع در روز) به دست آمد (جدول 6). سرعت رشد محصول تحت تأثیر شاخص سطح برگ و میزان فتوستن در هر یک سطح برگ (سرعت جدیح خالص) در افزایش سرعت رشد محصول در تیمارهای بزرگ‌تر به دلیل تأثیر مثبت مقادیر بیشتر آب و نیتروژن بین خصوصیات می‌باشد. Darbandi (2011) و طبیعی‌الاسلامی و همکاران (1391) نیز تأثیر مثبت کاربرد نیتروژن بر افزایش سرعت رشد محصول ذرت در سطح مختلف ایالابی گزارش کردند. در رابطه با اثر متقابل سال و نیتروژن، در سال اول مصرف نیتروژن بیشتر سرعت رشد محصول را به طور معنی‌داری افزایش داد.

در سال دوم بیشترین سرعت رشد محصول با کاربرد 100 درصد نیاز نیتروژن به دست آمد (جدول 6).

میانگین سطح برگ در هر یک سطح برگ مشخص می‌شود که تقریباً همان میزانی در روند تغییرات این دو شاخص وجود داشته. سرعت رشد محصول نتیجه دریافت نور توسط برگ‌ها، کارایی صرف نور و مدت زمان دریافت نور توسط برگ‌ها می‌باشد (کل و همکاران. 1389). سطح برگ عامل مهمی در جذب نور و دیکشن‌کردن است. بنابراین با تغییر سطح برگ، سرعت رشد محصول نیز دچار تغییر می‌شود. در اینبار دوره رشد به دلیل کامل نبودن پوشش گیاهی و جذب نور کمتر، سرعت رشد محصول پایین بود. با افزایش شاخص سطح برگ، به دلیل دریافت بیشتر نور و در نتیجه رشد محصول بیشتر ایفاش یافت تا اینکه در بخش کلیه بیشترین مقادیر رسید، چون با توسه سطح برگ در زمان کلیه، قسمت بیشتری از نور گذاب کانوئی می‌شود. اگر شب و روز برگ‌ها سرعت رشد محصول نیز کاهش یافته‌است. اختلاف سرعت رشد محصول بین ترکیبات مختلف تجاری در انتظار و انعکاس فعل رسید. به دلیل محضودیت سطح فتوستن کنده در اندیش فصل رشد و روز برگ‌ها در انعکاس فعل رسید ملاحظه نمود. اما در بخش کلیه گازی اختلاف بین تجاری بیشتر شد (شکل 2). نتایج آزمایش گلدانی و همکاران (1380) و چنگ و همکاران (1380) در رابطه با روی نگاه تغییرات سرعت رشد محصول با نتایج آزمایش حاضر مطابقت دارد (شکل 2).
شکل 2- اثر سطوح مختلف نیتروژن بر سرعت رشد محصول در سطح آپارتمان ۱۲۰ درصد (a)، ۱۰۰ درصد (b)، ۸۰ درصد (c) و ۶۰ درصد (d) (سوم چپ سال ۱۳۹۳، سوم راست سال ۱۳۹۴)
سرعت رشد نسبی (RGR): اثر سال (در سطح یک درصد)، آبیاری (یک درصد) و اثر مقاومت سال در آبیاری (یک درصد) و سال در نیتروژن (یک درصد) بر مقادیر سرعت رشد نسبی معنی‌دار (جدول ۳). سرعت رشد نسبی در سال اول بیشتر از سال دوم بود (به ترتیب ۷۲/۷۱ و ۸۲/۷۱) گرم بر گرم در روز. گرم بر گرم در دوم اجرای آزمایش از طریق تزریق نمو و کاشت نسبت بافت‌های مرسیمی به بافت‌های بیشتر در طول دوره رشد منجر به کاهش سرعت رشد نسبی شد.

در بین سطح آبیاری، بیشترین سرعت رشد نسبی به تأمین ۸۰ درصد نیاز آبی به ترتیب ۷۲/۷۱ و ۸۲/۷۱ گرم بر گرم در روز بیشتر از سایر سطوح آبیاری بود. در سال اول و دوم بیشترین سرعت رشد نسبی تایم آزمایش ۱۲۰ درصد آبی به ترتیب ۷۲/۷۱ و ۸۲/۷۱ کمتر از سایر سطوح آبیاری بود (جدول ۵).

تأثیر سطوح مختلف تیتر نیتروژن بر سرعت رشد نسبی معنی‌دار بود. در آزمایش لک و همکاران (۱۳۸۹) نیز تأثیر مقدار متفاوت تیتر نیتروژن بر سرعت رشد نسبی معنی‌دار بود. به عقیده آنها هر چند کاهش سرعت رشد نسبی به هنگام کاربرد تیتر نیتروژن بیشتر قابل اندازه‌گیری بود (به مقدار تیتر اولیه بیشتر)، اما به توجه افزایش بیشتر در ماده خشک اضافه شده نسبت به وزن اولیه، کاربرد تیتر نیتروژن تأثیر معنی‌داری بر این تغییرات نداشت.

در تمام ترکیبات تیماری، سرعت رشد نسبی با افزایش سن گیاه کاهش یافت (شکل ۳). در مراحل اولیه رشد چون تمام ماده خشک، حاصل تولید بیش در بیش باعث مقدار سرعت رشد نسبی بالا است و پس از مرحله کاشت می‌پاید. علت کاهش سرعت رشد نسبی در طول دوره رشد و تیمار بیشتر از هیچ کمیتی، این نمایندگی نسبت بافت‌های خشک و مؤثر در رشد یعنی مرسیمی به بافت‌های توانایی پاته که از نظر رشد و تولید غیر عاملی می‌باشد کاهش می‌پاید. به عبارت دیگر در بخش‌هایی که به گیاه اضافه

 وزن خشک کل (TDW): اثر سال، مقاشر مختلف آب و سطح نیتروژن بر وزن خشک کل در سطح یک درصد معنی‌دار بود (جدول ۷). در سال دوم به طور متوسط ۱۵۸/۳۸ گرم وزن خشک در سال تولید شد که در مقایسه با سال اول ۱۴۷/۳۸ گرم بر متر مربع کمتر بود. کنترل شدن درد در نتیجه تورم دمای زایمان و دمای دید و طول دوره تولید ماده فتوسنتزی و در نتیجه مقدار تولید ماده خشک را کاهش داد. افزایش شدت کم آب و وزن خشک کل کاهش یافت. بیشترین میزان ماده خشک تولیدی (۱۰۸۰ گرم بر متر مربع) با تأمین ۱۲۰ درصد نیاز آبی به دست آمد. این مقدار در شرایط تأمین ۱۰۰، ۸۰ و ۶۰ درصد نیاز آبی به ترتیب ۱۹۷۵، ۱۷۱۹ و ۱۵۴۴ گرم بر متر مربع بود. سطح نیتروژن مصرفی نیز وزن خشک کل در واحدهای سطح را به طور معنی‌داری تحت تأثیر قرار داد. به طور کلی وزن خشک
شکل ۳- اثر سطوح مختلف نیتروژن بر سرعت رشد نسبی در سطوح آبیاری ۱۲۰ درصد (a)، ۱۰۰ درصد (b)، ۸۰ درصد (c) و ۶۰ درصد (d) (سمت چپ سال ۱۳۹۳، سمت راست سال ۱۳۹۴).
 تصویر ۴- اثر سطوح مختلف نیترژن بر وزن نشکل کل در سطوح آبیاری ۶۰ (a)، ۸۰ (b) و ۱۰۰ درصد (c) و ۱۲۰ درصد (d). (سمت چپ سال ۱۳۹۳، سمت راست سال ۱۳۹۴).

مصروف نیترژن موجب افزایش وزن نشکل در واحد سطح شد. هر چند که تفاوت بین کاربرد ۱۴۰ درصد و ۱۰۰ درصد خشک ذرت توسط سایر محققان (جلیلیان و همکاران، ۱۳۹۳؛ نیاز گزارش شده است. افزایش (Earl and Davis, 2003).
میزان و سرعت تجمع ماده خشک و به تأخیر افتادن توقف در روند تجمع ماده خشک شد (شکل 4).

نتیجه‌گیری کلی:
نتایج آزمایش نشان داد که در شرایط کم آبی ظهور گل ناجی، گرده‌افشانی و ظهور ابریشم‌ها به تاخیر افتاد. اما رسیدن فیزیولوژیک زودتر خاک و طول دوره بر شکل (فواصل زرده گردیدین تابیت: فیزیولوژیک) کوتاه شد. مقدار نیتروژن مصرفی بر زمان ظهور گل ناجی و شروع گرده‌افشانی تأثیر معنی‌داری نداشت. اما افزایش مصرف نیتروژن، ابریشم‌ها و زودتر ظهور شدند و رسیدن فیزیولوژیک در برخی حادثه یافت. کاربرد نیتروژن پیشتر در شرایط ابریشمی مطلوب، موجب افزایش میزان و سرعت تجمع ماده خشک و به تأخیر افتادن توقف روند تجمع ماده خشک شد. به طور کلی افراشی هم زمان مقدار آب و نیتروژن مصرفی از طریق افراشی سطح و دوام برک و افراشی طول دوره می‌تواند اثرات منفی بر خصوصیات رشدی ذرت اعمال کند. اما در شرایط کم آب مصرف نیتروژن زیاد بر خصوصیات رشدی ذرت تأثیر منفی نداشت.

نتایج نشان داد که در ابتدای دوره رشد به دلیل کوچک بودن بوته‌ها، تجمع وزن خشک از روند کندی برخورد بود و تفاوت‌های عین سطح مختلف آب‌باری و نیتروژن از این نظر مشاهده نشد. از ورود رونا تجمع وزن خشک به مرحله خشک، تفاوت اثر مصرف مختلف آب‌باری و نیتروژن بر وزن خشک مشکل تر شد. در نهایت تغییرات وزن خشک، روند تابیت در پیش گرفت. در بوته‌هایی که آب کمتری دریافت کردند، شاخص سطح برق کمر، طول دوره رشد کوتاهتر و وضع زده‌های رسیدن فیزیولوژیک عامل مهمی در عدم دستیابی به وزن خشک بیشتر بود. افزایش مصرف نیتروژن به خصوص در شرایط مطلوب آبی موجب افراشی نیتروژن شد.

منابع:
چرخ، ع. و زرگر، ج. (1394) تغییرات عملکرد ذرت سنگال کراس (Zea mays L.) دریافتی در لایه‌های مختلف آبی و کود نیتروژن با استفاده از شاخص‌های تحلیل به نش خشکی، مجله علوم زراعی ایران 53:89-98.
چرخ، ع. و زرگر، ج. (1394) تغییرات عملکرد ذرت سنگال کراس (Zea mays L.) دریافتی در لایه‌های مختلف آبی و کود نیتروژن با استفاده از شاخص‌های تحلیل به نش خشکی، مجله علوم زراعی ایران 53:89-98.
حمیدی، آ. و دیباغ، محمدی نسب، ع. (1388) بررسی تأثیر نیتروژن و سطح مختلف نیتروژن بر فنولزیم دو هیدرید متوسطر در ذرت، مجله علوم کشاورزی ایران 63:787-840.
Zea mays - 366 فطآیٌس ٍ کاضکطز گیاّی،جلس 6، ضواضُ21، 1396

