محمده زمانیان

بحث علمی پژوهشی موسسه تحقیقات اصلاح و تهیه نهال ول-بادر-سازمان تحقیقات، آموزش و تربیت کشاورزی کرج-ارژن

(تاریخ دریافت: 20/12/1394، تاریخ پذیرش نهایی: 1395/2/15)

چکیده:

به منظور بررسی ارتباط بین کاهش دمای محیط با میزان کارولفیل و کارایی فتوسیستم II بذر گونه‌های شتری، در سه محیط عمیکردهای فتوسیستم II و کارولفیلی بذر گونه‌های شتری آزمایش به صورت بینتی پلات در قلب طرح بلوری های کامل تصادفی شامل تاخیر کشت به مدت کار اصلی در ظرفیت 24 (ش الحر و 7 مهر)، و گونه‌های شتری به معنی کر فر فر عده 30 (گونه شتری ایرانی و گونه شتری مهم ریسمی یکم و گونه شتری لایه ذوبی که با چهار تکرار در مزرعه پژوهشی موسسه تحقیقات اصلاح و تهیه نهال و تک‌کرده می‌باشد از تالیف گرد و رشدن درون‌زاپیزی و تماشایی شدن می‌باشد. نتایج نشان داد که تنش دمایی پایین‌بنی داد که کارولفیل‌های است. از بین گونه‌های شتری، گونه شتری قرمز (نری کم) انظار کارولفیل‌های دارای دستگاه میزان بود. همچنین تنش دمایی پایین در مزرعه باعث کاهش بیشتر میزان کارولفیل و a/b کارولفیل شد. در مزرعهای مختلف (S3 و S2) در دارای عملکرد کارولفیل فتوسیستم دو (Fv/Fm) پرتیت برابر 7/88 و 5/20 بود که این پارامتر تأثیر داشت که در تنش دمایی پایین، رقم نشان داد که در کمیتی نسبت به چهار ارقام است. Fv/Fm (کمتری) نسبت به چهار ارقام است. و تحت تأثیر بیشتر شدن دمایی پایین بود. به طور کلی پیش‌بینی شده (از شاخص‌های، میزان کارولفیل و کارولفیل بذر یا ارزیابی و غربال مزرعه‌ی ارقام شریف در شرایط کاهش دمایی پایین به‌کمک می‌شود.

واژه‌های کلیدی: شتری، تنش سرمای، فلورسنس کارولفیل و عملکرد کارولفیل فتوسیستم.

مقیده:

نویسندگان:

1- این مقاله مستند به شده از طرح مصوب 94/10/3-02-20 یاد شده در شرایط نشان داده شده (می‌باشد)

References:

Joes et al., 2004; Janska et al., 2010.

Downloaded from jispp.iut.ac.ir at 19:38 IRST on Thursday September 26th 2019
کوانتی فتوسیستم دو بهترین معمار برای انتخاب لایه‌های مختلف تعیین و تشکیل‌یافته باعث توانایی نیازهای فلوورسانس کاروفیل بروگ بشری می‌شود. و همکاران (2004) از پرسر پارامترهای فلوورسانس کاروفیل در دو جمعیت لگوم گزارش دادند که برونی کاراپیس فتوسیستم در فلزیستم دو در جمعیت برونی علیه بالا بودن پارامترهای Fv / Fm نسبت به جمعیت دیگر (183/800 بود. خوش‌منیر و همکاران (2003) از پرسری تاثیر آن بر فلوورسانس کاروفیل در گونه بارند سفید و شبد قرزم گزارش دادند که آن در هر دو گونه باعث کاهش معنی‌دار پارامترهای Fv / Fm Fv / Fm را در شبد سفید و شبد قرزم به ترتیب 88 و 82/49، 79/31 و 97/49، 93/8 و 99/87 علامتی از میزان آن در سطح کاهش 40 نسخه‌ای می‌باشد (2007) Francini و همکاران. نمونه‌گیری تغییرات متغیرکننده که آن باعث نشان می‌دهد که فلورسانس کاروفیل گونه به طوری که در گونه می‌باشد و شبد آن میزان Fv / Fm به ترتیب 779 و 189 می‌باشد. Fv / Fm برای 844/8 می‌باشد Fv / Fm می‌باشد. (2008) Shangguan. سطح مختلف نیروژن و تشکیل بر عملکردهای فتوسیستم گیاهی همگی‌سازی شدید در مرحله رشد زیستی در طی فصل زمستان و امکان استفاده از نیت ضایعات در غربالگری کوانتی سه گونه Fv / Fm افزایش می‌باشد. این میزان Fv / Fm به ترتیب 534/200 می‌باشد به ترتیب 844/8 کارواش (2008) Bafeel و Ibrahim. نمونه‌گیری پارامترهای فلزیستم در شرايط کیک روش سریع باری که دان در میزان Fv / Fm نشان دهنده حداکثر کاراپیس فتوسیستم دو بهدوم صاخب مهمی برای عملکردهای فتوسیستم گیاهی می‌باشد حسیبی و همکاران (1389) از غربال کروز زیبا نیروژن در دمای‌ها با اضافه از فلوورسانس کاروفیل بروگ گزارش داده که از بین موافقت‌ها Fv / Fm حداکثر عملکردهای Fv / Fm بروگ فلوورسانس کاروفیل برونی کاراپیس
جدول ۱ - خصوصیات فیزیکی و شیمیایی خاک محل آزمایش.

<table>
<thead>
<tr>
<th>جدول خاک</th>
<th>فسفر قابل (pmm)</th>
<th>کربن آلی بافت (%)</th>
<th>pH درصد جذب (S)</th>
<th>همبستگی الکتریکی (Ec) x10^1</th>
<th>عمق خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>رسی، لومی</td>
<td>۱۵</td>
<td>۰/۰۴</td>
<td>۸/۹</td>
<td>۱/۶</td>
<td>۴۲-۷۵</td>
</tr>
<tr>
<td>رسی، لومی</td>
<td>۶</td>
<td>۰/۳۰</td>
<td>۸/۱</td>
<td>۱/۴</td>
<td>۵۰-۵۰</td>
</tr>
</tbody>
</table>

جدول ۲ - میانگین حداقل دما ماهه و روز نمونه برداری در سطح خاک و هوا (مرور به زمان اندامگیری فلورسانس کلروفیل برگ).

<table>
<thead>
<tr>
<th>سطح خاک</th>
<th>باد</th>
<th>ماهانه</th>
<th>روز</th>
<th>نمونه برداری</th>
<th>زمان نمونه برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>هوا</td>
<td>۶</td>
<td>۸-۸/۹۸</td>
<td>۳/۶</td>
<td>۴/۳</td>
<td>۱۳۹۰/۸/۲۹</td>
</tr>
<tr>
<td>ماهیانه</td>
<td>۷</td>
<td>۳/۶</td>
<td>۱/۵</td>
<td>۳/۵</td>
<td>۱۳۸۰/۱۱/۷</td>
</tr>
<tr>
<td>روز</td>
<td>۳</td>
<td>۰/۸</td>
<td>۲/۴</td>
<td>۰/۸</td>
<td>۱۳۹۰/۱۱/۷</td>
</tr>
</tbody>
</table>

زمان و موقع دماهای پایین زیر صفر درجه سانتی‌گراد در تاریخ ۵/۷/۲۹۱۳/۹۰/۵/۸ دما ۱۳۹۰/۱۰/۷ و تاریخ ۱۳۸۰/۱۱/۷ درجه سانتی‌گراد و بهمین در تاریخ ۱۳۹۰/۱۱/۱۷ با میانگین حداقل دما ۵/۲ و ۵/۴ درجه سانتی‌گراد به ترتیب دماهای و روز اندازه‌گیری در سطح خاک (جدول ۲) انجام شد. برای اندازه‌گیری فلورسانس کلروفیل برگ بعد از حادثه دماهای پایین زیر صفر درجه سانتی‌گراد حداقل در سه روز متوالی در مزارع از هر رقم به میانگین همبستگی شش برگ کمال توسیع‌یافته در فاصله زمانی سانتی‌ساعت ۱۰-۸ صحت اندازه‌گیری و بعد از ۱۷ دقیقه تاریکی توسط اسپیل‌های مخصوص شاخ‌های OS F/Fm/Fm/Fm/Fm/Fm اندامگیر (Opti-Science, USA) ۳۰P

(Shirif-Azad, ۱۳۸۰ و زمانیان. ۱۳۸۳).

اندازه‌گیری میزان کلروفیل و کاروتئنید برگ: از تاریخ ۲۴ شهریور بعد از استقرار بونه‌ها در ۳ آیان با میانگین دما روزانه ۱۵/۸ درجه سانتی‌گراد پایه برای اندازه‌گیری میزان کلروفیل و کاروتئنید برگ به‌عنوان بخش نشان و ۱۷ اسفند بعد از جدید روز متوالی دماهای زیر صفر درجه سانتی‌گراد گردید به‌عنوان بعد از نشان صفر درجه دما ۱۷ شهریور ۷ مهر ماهه‌های از برگ تیمارها به‌طور تصادفی تهیه و توسط نیرویی تراز فریب و در یک حلقه درجه سانتی‌گراد تیمارهای شدید، بعد از استخراج محلول حاوی نگهداری بزرگ ضر بست درصد ۸۰٪ میزان جذب نوز میزان جذب میزان جذب اضافه‌گیری گروه بست درجه سانتی‌گراد در طول موج‌های ۶۸۹ (Varian ۳۰۰ Scan, USA) (۴۲۵ (کاروتئنید) و (۴۷۵ (کاروتئنید) ناپات فرانت توده و a/b نسبت کلروفیل پلاستیک فیبر A و b نسبت کلروفیل از اساساً روابط زیر (Aron., ۱۹۴۹) تعبیر گردید. در روابط زیر

W حجم به‌نحو نمونه استخراج شده و وزن نمونه است.
گرم وزن‌تربیتی، میزان میزان کارفیل (a) و شبید ایرانی (b) در بررسی میزان افزایش وزن‌تربیتی این دسته‌ایان نشان داد. این دسته از دو دسته از میزان افزایش وزن‌تربیتی شیپر ایرانی (ب) و شبید ایرانی (a) تشکیل شده‌اند. نتایج نشان داد که این دو دسته میزان افزایش وزن‌تربیتی شیپر ایرانی (ب) و شبید ایرانی (a) برابر یکدیگر بوده‌اند.

تاکنون و با توجه به نتایج به این نتیجه رفت که گروه (C) باعث افزایش وزن‌تربیتی شیپر ایرانی (ب) و شبید ایرانی (a) نشان داد. این دسته از دو دسته از میزان افزایش وزن‌تربیتی شیپر ایرانی (ب) و شبید ایرانی (a) تشکیل شده‌اند. نتایج نشان داد که این دو دسته میزان افزایش وزن‌تربیتی شیپر ایرانی (ب) و شبید ایرانی (a) برابر یکدیگر بوده‌اند.

نتایج و بحث:

کارفیل و طراحی‌های آماری: نتایج بر روی داده‌های کارفیل و کارفیل پژوهش‌های قبل از نشان داده شده است که تعداد بلوک‌های کلیت تصادفی این دسته از شیپر ایرانی (ب) و شبید ایرانی (a) برابر یکدیگر بوده‌اند.

در طول زمان، سطح گرفته‌ها به صورت سطح سطح بیشتر در زمان انجام شد. مقایسه میانگین‌ها با آزمون دانکن انجام و 0.05 مقدار سطح معنی‌دار بودن اختلاف‌ها در نظر گرفته شد.

نمونه‌برداری و استفاده از Excel و برای اجرای منطقه‌ای SAS و برای رسوم گرافها از Mstat-C استفاده شد. نتایج بر روی داده‌های کارفیل و کارفیل پژوهش‌های قبل از نشان داده شده است که تعداد بلوک‌های کلیت تصادفی این دسته از شیپر ایرانی (ب) و شبید ایرانی (a) برابر یکدیگر بوده‌اند.

در طول زمان، سطح گرفته‌ها به صورت سطح بیشتر در زمان انجام شد. مقایسه میانگین‌ها با آزمون دانکن انجام و 0.05 مقدار سطح معنی‌دار بودن اختلاف‌ها در نظر گرفته شد.
جدول ۳- نتایج تجزیه واریانس میزان کلروفیل ارقام شیمیایی ۱۳۰/۸۷ (قبل از تنش سرمای)

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>کلروفیل</th>
<th>کلروفیل</th>
<th>کلروفیل</th>
<th>درجه آزادی</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارتاونیدها</td>
<td>a/b</td>
<td>a+b</td>
<td>b</td>
<td>a</td>
<td>۳</td>
</tr>
<tr>
<td>۰/۰۵۲</td>
<td>۰/۱۴۲</td>
<td>۰/۱۳۸</td>
<td>۰/۰۲۲</td>
<td>۰/۰۵۲</td>
<td>تکرار</td>
</tr>
<tr>
<td>۲/۶۹</td>
<td>۰/۲۵۵</td>
<td>۰/۲۵۴</td>
<td>۰/۰۲۸</td>
<td>۰/۲۶۸</td>
<td>ارقام</td>
</tr>
<tr>
<td>۰/۰۲۸</td>
<td>۰/۰۷۴</td>
<td>۰/۰۷۴</td>
<td>۰/۰۰۳</td>
<td>۰/۰۷۴</td>
<td>خطا</td>
</tr>
<tr>
<td>درصد ضریب تغییرات: ۳/۹۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴- نتایج تجزیه واریانس میزان کلروفیل ارقام شیمیایی در ۱۳۰/۸۷/۸۷ (با تنش سرمای)

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>کلروفیل</th>
<th>کلروفیل</th>
<th>کلروفیل</th>
<th>درجه آزادی</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارتاونیدها</td>
<td>a/b</td>
<td>a+b</td>
<td>b</td>
<td>a</td>
<td>۵</td>
</tr>
<tr>
<td>۰/۲۸۰</td>
<td>۰/۲۲۱</td>
<td>۰/۲۱۱</td>
<td>۰/۰۲۵</td>
<td>۰/۲۲۱</td>
<td>تکرار</td>
</tr>
<tr>
<td>۰/۱۲۹</td>
<td>۰/۲۱۵</td>
<td>۰/۲۱۵</td>
<td>۰/۰۲۳</td>
<td>۰/۲۱۵</td>
<td>تاریخ کاشت</td>
</tr>
<tr>
<td>۰/۰۱۷</td>
<td>۰/۱۶۲</td>
<td>۰/۱۶۲</td>
<td>۰/۰۱۷</td>
<td>۰/۱۶۲</td>
<td>خطا</td>
</tr>
<tr>
<td>۰/۱۷۶</td>
<td>۰/۲۸۶</td>
<td>۰/۲۸۶</td>
<td>۰/۰۱۷</td>
<td>۰/۲۸۶</td>
<td>ارقام</td>
</tr>
<tr>
<td>۰/۲۴۶</td>
<td>۰/۳۴۶</td>
<td>۰/۳۴۶</td>
<td>۰/۰۱۷</td>
<td>۰/۳۴۶</td>
<td>تاریخ کاشت × ارقام</td>
</tr>
<tr>
<td>۰/۰۶۶</td>
<td>۰/۲۳۲</td>
<td>۰/۲۳۲</td>
<td>۰/۰۱۷</td>
<td>۰/۲۳۲</td>
<td>خطا</td>
</tr>
<tr>
<td>درصد ضریب تغییرات: ۵/۸۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

توضیحات: ** و *** به ترتیب در شرایط سرمای مرتفع توصیف می‌گردد.
<table>
<thead>
<tr>
<th>الرنگ</th>
<th>فرکانس</th>
<th>فرکانس</th>
<th>فرکانس</th>
<th>فرکانس</th>
<th>فرکانس</th>
<th>فرکانس</th>
<th>فرکانس</th>
<th>فرکانس</th>
</tr>
</thead>
<tbody>
<tr>
<td>رنگ ۱</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
</tr>
<tr>
<td>رنگ ۲</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
</tr>
<tr>
<td>رنگ ۳</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
</tr>
<tr>
<td>رنگ ۴</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
</tr>
<tr>
<td>رنگ ۵</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
</tr>
<tr>
<td>رنگ ۶</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
</tr>
<tr>
<td>رنگ ۷</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
</tr>
<tr>
<td>رنگ ۸</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
<td>بیاموز</td>
</tr>
</tbody>
</table>

توجه: اطلاعات بالا فقط برای مثال است و در واقعیت ممکن است تفاوت داشته باشد.
جدول ۶ - مقایسه میانگین سه مرکز کارولیل و کارولینیک بر یک ارقام شیب در تاریخ های مختلف کاشت در سه متر بالای سطح درجه سانتی‌گراد (۱۳۹۰/۱۷) میلادی

<table>
<thead>
<tr>
<th>شیب کارولینیک</th>
<th>a/b کارولینیک</th>
<th>a+b کارولینیک</th>
<th>b کارولینیک</th>
<th>a کارولینیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیب ایرانی (دری)</td>
<td>0/0</td>
<td>1/4</td>
<td>0/4</td>
<td>1/4</td>
</tr>
<tr>
<td>شیب ایرانی (موتوغراف)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>شیب ایرانی (ورودی)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>شیب ایرانی (یون)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>شیب ایرانی (لاین)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>شیب ایرانی (لایه)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>شیب ایرانی (زیم)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

میانگین

امنیت می‌باشد که در هر سه شیب، سطوح تغییر مشترک است. برای داده‌های آزمون چند دامنه مانکین در سطح احتمال ۵ درصد تفاوت معنی‌دار ندارند.
جدول 7- تجزیه و ارایانی سالیت پلات در زمان مؤلفه‌های فلورسانس کلروفیل ارقام شیر در زمان‌های نمونه برداری

| میانگین مربوطات (MS) | کارایی کواتومی | حلنکر | حلنکر درجه آزادی | مربعات تغییرات | فلورسانس | فلورسانس متغیر | فلورسانس تکرار | فلورسانس رقم
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1888</td>
<td>0.05</td>
<td>0.09</td>
<td>0.12</td>
<td>3</td>
<td>221/12</td>
<td>221/12</td>
<td>221/12</td>
<td>3</td>
</tr>
<tr>
<td>1877</td>
<td>0.07</td>
<td>0.11</td>
<td>0.13</td>
<td>9</td>
<td>371/11</td>
<td>371/11</td>
<td>371/11</td>
<td>9</td>
</tr>
<tr>
<td>1869</td>
<td>0.08</td>
<td>0.12</td>
<td>0.14</td>
<td>12</td>
<td>450/12</td>
<td>450/12</td>
<td>450/12</td>
<td>12</td>
</tr>
<tr>
<td>1868</td>
<td>0.07</td>
<td>0.10</td>
<td>0.14</td>
<td>18</td>
<td>587/18</td>
<td>587/18</td>
<td>587/18</td>
<td>18</td>
</tr>
<tr>
<td>1867</td>
<td>0.08</td>
<td>0.11</td>
<td>0.14</td>
<td>27</td>
<td>734/27</td>
<td>734/27</td>
<td>734/27</td>
<td>27</td>
</tr>
<tr>
<td>1865</td>
<td>0.08</td>
<td>0.10</td>
<td>0.13</td>
<td>31</td>
<td>453/31</td>
<td>453/31</td>
<td>453/31</td>
<td>31</td>
</tr>
<tr>
<td>1864</td>
<td>0.09</td>
<td>0.11</td>
<td>0.12</td>
<td>38</td>
<td>559/38</td>
<td>559/38</td>
<td>559/38</td>
<td>38</td>
</tr>
<tr>
<td>1863</td>
<td>0.07</td>
<td>0.10</td>
<td>0.11</td>
<td>45</td>
<td>459/45</td>
<td>459/45</td>
<td>459/45</td>
<td>45</td>
</tr>
<tr>
<td>1862</td>
<td>0.08</td>
<td>0.11</td>
<td>0.12</td>
<td>54</td>
<td>459/54</td>
<td>459/54</td>
<td>459/54</td>
<td>54</td>
</tr>
<tr>
<td>1861</td>
<td>0.08</td>
<td>0.10</td>
<td>0.11</td>
<td>55</td>
<td>459/55</td>
<td>459/55</td>
<td>459/55</td>
<td>55</td>
</tr>
<tr>
<td>1860</td>
<td>0.09</td>
<td>0.11</td>
<td>0.12</td>
<td>56</td>
<td>459/56</td>
<td>459/56</td>
<td>459/56</td>
<td>56</td>
</tr>
</tbody>
</table>

* به ترتیب غیر معنی‌دار، معنی‌دار در سطح احتمال 0.05 و 0.01.

برخوردار است و ازنظر رشد و استقرار نسبت بره به روی جوانه است و همین سیستم باعث حساسیت بیشتر آن بسیار شده است. در شیری بررسی (تورلی، کرچ) به علت سرعت رشد بالا و خوای پایه کمتری دارای رشد بیشتری نسبت به بره ارقام شیری است و همین باعث بهبود نسبی Fv/ Fm شیری است. در ارقام Fv/ Fm در انتخاب جدول نشان داد که آماری های مقداری پارامتر Fv/ Fm در صفر Fv/ Fm محورا مخصوصاً در نشان داد که آماری های NGO/MS (جدول 6) به بره تیمارهای سرما است که آماری های تیمار Fv/ Fm مثبت به بره تیمارهای سرما است که آماری های NGO/MS (جدول 6) به بره تیمارهای سرما است که آماری H. M. Shapit و همچنین (1994) Bader and Nie Shapit و همچنین (1995) نشان دادند که کاهش عمکرد کواتومی می‌توان برای تعیین میزان تحمل به سرما برجسته است و در همکاران (1995) با بررسی‌ها زیاد گزارش داده که همین میزان معیار مدیری برای میزان تحمل به سرما در گیاهان مختلف حتی در شدت‌های نور کم Jansen and Ison., 1994a: Bjorkman and Demmig., 1987 مقداری در شرایط عادت کرده به تاریکی در کمتری در سطح Fv/ Fm می‌تواند به بره ارقام Fv/ Fm تحت تأثیر نشان دهای یا قرارگیری که این ممکن است به تاریکی کم کلروفیل، مرحله رشدی و فنولزیک آن باشد. این رقم نسبت به بره ارقام از سرعت رشد کمتری رقم شیر مناسب می‌باشد.
جدول 8- میانگین مؤلفه‌های فلورسانس کلروفیل ارقام شیلد در دمای پایین (سال 1390)

<table>
<thead>
<tr>
<th>کارایی کوانتومی فلورسانس</th>
<th>حداکثر فلورسانس ارقام</th>
<th>زمان نمونه‌برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیلدیر ایرانی (دریس)</td>
<td>33/84</td>
<td>10/53</td>
</tr>
<tr>
<td>شیلدیر ایرانی (موطخر)</td>
<td>520/54</td>
<td>134/84</td>
</tr>
<tr>
<td>شیلدیر ایرانی (زودرس)</td>
<td>3/53</td>
<td>113/53</td>
</tr>
<tr>
<td>شیلدیر ایرانی (پیچ)</td>
<td>578/84</td>
<td>117/84</td>
</tr>
<tr>
<td>شیلدیر ایرانی (لاین)</td>
<td>385/84</td>
<td>115/84</td>
</tr>
<tr>
<td>شیلدیر ایرانی (لوده)</td>
<td>450/84</td>
<td>115/84</td>
</tr>
<tr>
<td>شیلدیر ایرانی (تولیدی کریج)</td>
<td>397/93</td>
<td></td>
</tr>
<tr>
<td>شیلدیر ایرانی (قرومزین)</td>
<td>334/03</td>
<td></td>
</tr>
<tr>
<td>شیلدیر ایرانی (لایه 1)</td>
<td>439/84</td>
<td></td>
</tr>
<tr>
<td>میانگین</td>
<td>117/4</td>
<td></td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>5/85</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کارایی کوانتومی فلورسانس</th>
<th>حداکثر فلورسانس ارقام</th>
<th>زمان نمونه‌برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیلدیر ایرانی (دریس)</td>
<td>26/8</td>
<td>77/5</td>
</tr>
<tr>
<td>شیلدیر ایرانی (موطخر)</td>
<td>27/8</td>
<td>53/8</td>
</tr>
<tr>
<td>شیلدیر ایرانی (زودرس)</td>
<td>22/8</td>
<td>52/8</td>
</tr>
<tr>
<td>شیلدیر ایرانی (پیچ)</td>
<td>21/8</td>
<td>52/7</td>
</tr>
<tr>
<td>شیلدیر ایرانی (لاین)</td>
<td>21/8</td>
<td>52/0</td>
</tr>
<tr>
<td>شیلدیر ایرانی (لوده)</td>
<td>21/8</td>
<td>52/5</td>
</tr>
<tr>
<td>شیلدیر ایرانی (تولیدی کریج)</td>
<td>21/8</td>
<td></td>
</tr>
<tr>
<td>شیلدیر ایرانی (قرومزین)</td>
<td>21/8</td>
<td></td>
</tr>
<tr>
<td>شیلدیر ایرانی (لایه 1)</td>
<td>21/8</td>
<td></td>
</tr>
<tr>
<td>میانگین</td>
<td>21/8</td>
<td></td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>3/85</td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌هایی که در هر ستون، حداقل دارای یک حرف مشترک هستند براساس آزمون ونکری دانکن در مسطح احتمال 0.05 درصد قریب متفاوت معنی‌دار نیستند.

گونه‌های گیاهی در شرایط مطلوب حدود 83/0 است و در مقادیر کمتر از 85/0 گیاه تحت استرس شدید است. بنابراین با توجه به مقادیر Fm/Fm تابع به مؤثر بودن تیمارهای داماهای پایین مزرعه بر Fm/Fm و تحت نشته بودن ارقام شیلد اظان نمود روش (شکل 1) با توجه به شکله متفاوت ریشه‌ای و هم‌رسی با باکتری‌های نیتروژن متفاوت ریشه‌ای و هم‌رسی با باکتری‌های نیتروژن
در مدت زمان توزیع طولین برداری

شکل 1 - میانگین کارایی کاربنیت فتوسیستم در زمان های نمونه برداری S1، S2، S3 و S4، به منظور انتخاب دو تغییر می‌توانستند یا متروکه باشد.

کلروفیل ب رشد در شرایط مختلف تنش‌آمریکایی و تغییرات است. در پارامترهای فلورسنس کلروفیل ب رشد در نتیجه نگرام گزارش داده که پارامترهای F0/Fm، Fm/Fm به جمعیت‌های فلورسنس کلروفیل در میانگین متوافقت است. در این روش، فلورسنس کلروفیل در یک مورد سیستم یا تغییرات است. در پارامترهای فلورسنس کلروفیل در مرحله‌های رشدی

نتیجه‌گیری کلی:

با توجه به نتایج این آزمایش، برای مطالعه و بررسی عکس‌برداری ارقام بندی‌کننده به دست آمده در پارامترهای فلورسنس کلروفیل و فلورسنس کلروفیل در مرحله‌های رشدی

مراجع:

حسینی، ب. و مرادی، ف. و نیکی پور، م. (1389) اندازه‌گیری زنگ تیپ‌های بی‌رنگ در دمای‌های پایین از طریق فلورسنس کلروفیل برگ. معلول.

زراعی ایران: 14-18371. 5.

حیدری-شیرازی، ا. و د. و. و. و. (1385) پدیده‌های زندگی و ساختار و همگنی کاربنیت فلوکسینی از بافت. مجله علوم زراعی ایران. 2: 137-1383.

کوچکی، غ. (1387) زیرافزار در مناطق خشک. پژوهش‌های جهاد دانشگاهی مشهد. صفحه 155-156.

