بررسی تأثیر طیف‌های مختلف نور LED بر شاخص‌های رشد و محتوای Melissa officinalis L.

طیبه احمدی، لیلا شبنم و محمد رضا سیعیان

نویسنده مسئول: lshabani@gmail.com

چکیده:
دویده‌ای پخش کندنی نور (LEDs) می‌توانند نور مورد نیاز برای رشد گیاه را در کیفیت و کمیت ویژه‌ای فراهم آورند. با استفاده از Melissa officinalis L. یکی از مهم‌ترین گیاهان دارویی در دنیا است که کاربردهای زیادی در صنایع دارویی و مواد معطر دارد. ریزوهای LED بر گلدهان کشت داده شد و در اناک‌ها مطالعه می‌گردد. این مطالعه اشاره‌ای را به تأثیر LED با طیف نوری قرمز (LED r)، آبی (LED b) و سبز (LED g) در کشت Melissa officinalis L. در محیط‌های مختلفی از طریق تأثیرات رشد، کیفیت و مقیاس سایه‌های شرایط نور بر روی این گیاهان نشان می‌دهد. نتایج نشان می‌دهد که استفاده از LED با طیف نوری قرمز (LED r) باعث افزایش تراکم، کیفیت و در نهایت کاهش سایه‌های شرایط نوری می‌شود.

کلمات کلیدی: LED، پرشکن کندنی نور، Melissa officinalis L.
بازتاب تولید اساس در نما (Sahzalian et al., 2014) است. در گیاهان نما فلور نیز بیانی تی افایش LED سیب افایش است. از نظر آماره شده نیز بیانی در این مطالعه بود که از مزرعه M. officinalis بوده که از مزرعه این گیاه در شهرستان ایوان استان ایلام جمعآوری گردید. تعداد سه عدد رزوم هر ماه به سالهای دو تا سه گرگ بر طول‌های یکسان در گل‌نخه بر فاصله ۱۵ ساعت می‌باشد. ساعت‌های نهایی - به کشت شدن. کل‌گز در سنتاهای انگیوتو (ساخته شرکت آورین تجهیز اسپرتانا، اصفهان) پر ان نور قرمز به LED قرمز ام‌لایه ۳۰۰ میکروملولون، بر می‌باشد. با تعداد ۱۴ ساعت رشد و ۱۰ ساعت تاریکی و دمای ۲۵°Cel درجه سانتی گراد در در تکرار و به مدت ۴۰ روز قرار داده شدند. با عنوان نمونه‌های شاهد تعداد ۳ عدد گل‌نخه در گل‌نخه به این می‌باشد. آزمایش‌ها انجام شده در زمینه کلیه گل‌نخه متنوع و مختلفه LED به عنوان ملک، بیل، آب، تهم‌پر و انگور مطالعه شدند. به خاطر آثار ناامن‌البیان و محدودیت زمین‌های کشاورزی، نتوانسته سیستم‌های خانگی امری ضروری است. برای اجرای این سیستم‌ها نیز LED می‌توانند راه‌اندازی شوند. استفاده از ترکیب LED قرمز و ای‌بی سیب افایش چهار
یکی از اهداف اصلی استفاده از LED‌ها در سیستم‌های تغذیه خودکار و اتوماتیک کنترل ضخ جدید است. این نورون‌ها به نوبت خود در دولی‌های مختلف (مثلاً در اپلیکیشن‌های نوررسانی) به بهترین نحو همکاری می‌کنند.

نتایج:

نتایج حاصل از تجربه و سطح تأثیر نور مورد استفاده بر

M. officinalis

صفات مورفولوژیک در جدول ۳ آمده است.

جدول تجزیه واریانس داده نشان داد که

صفات مورفولوژیک

به‌طور مشترک تاثیر نهایی مختلف، میزان وزن‌ریز و خشک کردن نسبت وزن خشک رشد به اندازه هوای در مقایسه با

بیشترین نتایج بسته در پیوشدهای میزان

وزن‌ریز و خشک کردن هوای به ترتیب در نور قرمز و

نور LED‌ها یکی

شکل (۱، ۶) برعکس تحت تأثیر نهایی مختلف، میزان وزن‌ریز و خشک کردن نسبت وزن خشک رشد به اندازه هوای در مقایسه با

واقع در گلخانه کاهش نشان داد (شکل ۱، ۷).

شکل ۲ و بیشترین تعداد ساقه و تعداد برگ در گلخانه در

نورهای قرمز و

نور LED‌ها یکی مشابه شده و در سایر نورهای

تعداد ساقه و تعداد برگ با نور گلخانه تفاوت معنی‌داری نشان دادند.

میزان ارتفاع ساقه در نور قرمز بالاتری بود و کفیه

نورهای LED‌ها ارتفاع ساقه بالاتری در نور گلخانه

دشت.

نورهای LED‌ها

مورد استفاده در این تحقیق تأثیر معنی‌داری

بر سلول‌های نوری نورهای LED‌ها در

کارگزاری گاز ۰ و ۱ و ۲ همچنین کلیه نورهای قرمز و

نور LED‌ها یکی

شکل در حالی که شاخص نسبت

کارگزاری ۵/۵.

نیاز به نور قرمز بالاتری مقدار بود و در حقیه

نورهای LED‌ها این شاخص با نور گلخانه اختصاصی نشان نداد (جدول

۳).

تصویر

بخش ۳

۱. مقدار

نتایج:

نتایج حاصل از تجربه واریانس تأثیر نور مورد استفاده بر

M. officinalis

صفات مورفولوژیک در جدول ۳ آمده است.

جدول تجزیه واریانس داده نشان داد که

صفات مورفولوژیک

به‌طور مشترک تاثیر نهایی مختلف، میزان وزن‌ریز و خشک کردن نسبت وزن خشک رشد به اندازه هوای در مقایسه با

بیشترین نتایج بسته در پیوشدهای میزان

وزن‌ریز و خشک کردن هوای به ترتیب در نور قرمز و

نور LED‌ها یکی

شکل (۱، ۶) برعکس تحت تأثیر نهایی مختلف، میزان وزن‌ریز و خشک کردن نسبت وزن خشک رشد به اندازه هوای در مقایسه با

واقع در گلخانه کاهش نشان داد (شکل ۱، ۷).

شکل ۲ و بیشترین تعداد ساقه و تعداد برگ در گلخانه در

نورهای قرمز و

نور LED‌ها یکی مشابه شده و در سایر نورهای

تعداد ساقه و تعداد برگ با نور گلخانه تفاوت معنی‌داری نشان دادند.

میزان ارتفاع ساقه در نور قرمز بالاتری بود و کفیه

نورهای LED‌ها ارتفاع ساقه بالاتری در نور گلخانه

دشت.

نورهای LED‌ها

مورد استفاده در این تحقیق تأثیر معنی‌داری

بر سلول‌های نوری نورهای LED‌ها در

کارگزاری گاز ۰ و ۱ و ۲ همچنین کلیه نورهای قرمز و

نور LED‌ها یکی

شکل در حالی که شاخص نسبت

کارگزاری ۵/۵.

نیاز به نور قرمز بالاتری مقدار بود و در حقیه

نورهای LED‌ها این شاخص با نور گلخانه اختصاصی نشان نداد (جدول

۳).

تصویر

بخش ۳

۱. مقدار

نتایج:

نتایج حاصل از تجربه واریانس تأثیر نور مورد استفاده بر

M. officinalis

صفات مورفولوژیک در جدول ۳ آمده است.

جدول تجزیه واریانس داده نشان داد که

صفات مورفولوژیک

به‌طور مشترک تاثیر نهایی مختلف، میزان وزن‌ریز و خشک کردن نسبت وزن خشک رشد به اندازه هوای در مقایسه با

بیشترین نتایج بسته در پیوشدهای میزان

وزن‌ریز و خشک کردن هوای به ترتیب در نور قرمز و

نور LED‌ها یکی

شکل (۱، ۶) برعکس تحت تأثیر نهایی مختلف، میزان وزن‌ریز و خشک کردن نسبت وزن خشک رشد به اندازه هوای در مقایسه با

واقع در گلخانه کاهش نشان داد (شکل ۱، ۷).

شکل ۲ و بیشترین تعداد ساقه و تعداد برگ در گلخانه در

نورهای قرمز و

نور LED‌ها یکی مشابه شده و در سایر نورهای

تعداد ساقه و تعداد برگ با نور گلخانه تفاوت معنی‌داری نشان دادند.

میزان ارتفاع ساقه در نور قرمز بالاتری بود و کفیه

نورهای LED‌ها ارتفاع ساقه بالاتری در نور گلخانه

دشت.

نورهای LED‌ها

مورد استفاده در این تحقیق تأثیر معنی‌داری

بر سلول‌های نوری نورهای LED‌ها در

کارگزاری گاز ۰ و ۱ و ۲ همچنین کلیه نورهای قرمز و

نور LED‌ها یکی

شکل در حالی که شاخص نسبت

کارگزاری ۵/۵.

نیاز به نور قرمز بالاتری مقدار بود و در حقیه

نورهای LED‌ها این شاخص با نور گلخانه اختصاصی نشان نداد (جدول

۳).
جدول 1- تجزیه واریانس (میانگین مربعات) تأثیر نورهای مختلف بر صفات مورفولوژیک در گیاه‌های M. officinalis

<table>
<thead>
<tr>
<th>میانگین</th>
<th>نسبت وزن</th>
<th>درجه</th>
<th>منابع</th>
<th>وزن</th>
<th>وزن اندام</th>
<th>وزن خشک</th>
<th>وزن اندام ریشه</th>
<th>وزن تعداد ساقه</th>
<th>اندام ریشه</th>
<th>اندام هوایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>طیف تری</td>
<td>یک عدد</td>
<td>۳۳/۸۹/۷۳</td>
<td>۴</td>
<td>۹/۳۳/۸۶</td>
<td>۹/۶۶/۴۵</td>
<td>۱۱/۰۲/۸۳</td>
<td>۹/۴۵/۱۰</td>
<td>۸/۰۵/۱۰/۰۰</td>
<td>۵/۵۰/۱۰</td>
<td>۹/۴۵/۱۰</td>
</tr>
</tbody>
</table>

شکل 1- تأثیر نورهای مختلف بر وزن اندام هوایی (a)، وزن خشک اندام هوایی (b)، وزن اندام ریشه (c)، وزن خشک ریشه (d) و نسبت وزن خشک ریشه به اندام هوایی (e) در گیاه‌های M. officinalis میانگین ۳ تکرار است. حروف پیکان‌دار با استفاده از آزمون LSD در سطح ۰/۰۵ است.
بررسی تأثیر طیف‌های مختلف نور LED بر شاخص‌های رشد و محصول M. officinalis

شکل 2- تأثیر نورهای مختلف بر تعداد ساقه در گلخانه (a): ارتقای ساقه (b): تعداد برگ (c) در گیاه‌های میانگین 3 تکرار است. حروف یکسان بین‌گردد عدم اختلاف معنی‌دار با استفاده از آزمون LSD در سطح 0.05/0.0 است.

شکل 3- مقایسه رشد گیاه‌های گلدنژیبوه تحت تأثیر طیف‌های مختلف نور سفید، آبی، قرمز و ترکیب نور قرمز و آبی در انکوباسور با گلخانه.

سپس افزایش معنی‌دار در میزان کاربنوهید در مقایسه با بقیه نورها شد.

میزان زرمایی‌های اسید موجود در اندازه‌های به صورت معنی‌داری در نورهای قرمز به کار رفته نسبت به سایر نورها بالاتر بود (شکل 4). بيشترین میزان زرمایی‌ک اسید در نور قرمز به میزان 4/316 میکرومول بر گرم وزن خشک بود. در مقایسه با نور گلخانه نور LED قرمز سبب افزایش 44/52 درصدی میزان زرمایی‌ک اسید و در مقایسه با نور LED سفید M. officinalis
جدول ۲ - تجزیه و آماریسی (مقادیر میانگین مربعات) تأثیر نورهای مختلف بر رنگ‌های فتوسنتزی و میزان رزمارپینک اسید اندام هوای و M. officinalis

<table>
<thead>
<tr>
<th>رزمارپینک</th>
<th>کارتوئید</th>
<th>کارتوئید كل</th>
<th>a/b</th>
<th>a</th>
<th>درجه</th>
<th>منابع</th>
<th>تغییر آزادي</th>
<th>نور</th>
<th>خطا</th>
</tr>
</thead>
<tbody>
<tr>
<td>a/b 0/171</td>
<td>0/171</td>
<td>0/171</td>
<td>0/171</td>
<td>0/171</td>
<td>0/171</td>
<td>0/171</td>
<td>0/171</td>
<td>0/171</td>
<td>0/171</td>
</tr>
<tr>
<td>0/128</td>
</tr>
</tbody>
</table>

جدول ٣ - تأثیر نورهای مختلف بر میزان کلوتوفیل a کلوتوفیل b کلوتوفیل كل، نسبت کلوتوفیل b به کلوتوفیل a و کارتوئید در M. officinalis

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>کارتوئید</th>
<th>نسبت کلوتوفیل a به کلوتوفیل b</th>
<th>کلوتوفیل کل</th>
<th>a/b</th>
<th>a</th>
<th>نور</th>
</tr>
</thead>
<tbody>
<tr>
<td>١/٣٦٧٨٩٩٩</td>
<td>٠/٣٦٧٩٠١</td>
<td>٠/٣٦٧٩٠١</td>
<td>٠/٣٦٧٩٠١</td>
<td>٠/٣٦٧٩٠١</td>
<td>٠/٣٦٧٩٠١</td>
<td>٠/٣٦٧٩٠١</td>
</tr>
<tr>
<td>١/٣٦٧٩٠١</td>
<td>٠/٣٦٧٩٠١</td>
<td>٠/٣٦٧٩٠١</td>
<td>٠/٣٦٧٩٠١</td>
<td>٠/٣٦٧٩٠١</td>
<td>٠/٣٦٧٩٠١</td>
<td>٠/٣٦٧٩٠١</td>
</tr>
</tbody>
</table>

له‌بتبیین‌دار در سطح احتمال کمتر از ٠/٠٠٠٠٠ **له‌بتبیین‌دار در سطح احتمال کمتر از ٠/٠٠٠٠٠**

مقادیر: میانگین ٣ تکرار است. حروف بکس یک‌تاج علامت اختلاف معنادار با استفاده از آزمون LSD در سطح ٠/٠٠٠٠ است.

به نظر می‌رسد که طول شدن سایه‌های برهمکنش‌ها و همچنی گردن‌های نور آبی افزایش و فتوکروم‌ها بسته به قانون افزایش یافته‌ای مانند شود (Kim et al., ٢٠٠٤b).

LED و همکارانش (٢٠٠٤) نشان دادند که وزن‌تبر گیاه در ترکیب نورهای قرمز و آبی بیش از سایر ترکیبات بود. با این حال Hämäläinen و Hämäläinen (٢٠١٢) نشان دادند که وزن قرمز افزایش عمکرد کاهش می‌تواند بوده است. با اینکه نور قرمز معمولاً بخش اصلی در طول می‌باشد و به نها با در رشد طبیعی و همکارانش (٢٠٠٤a) کافی است. (Virsilä ٢٠١٣)

به نظر می‌رسد که طول شدن سایه‌های برهمکنش‌ها و همچنی گردن‌های نور آبی افزایش و فتوکروم‌ها بسته به قانون افزایش یافته‌ای مانند شود (Kim et al., ٢٠٠٤b).

LED و همکارانش (٢٠٠٤) نشان دادند که وزن‌تبر گیاه در ترکیب نورهای قرمز و آبی بیش از سایر ترکیبات بود. با این حال Hämäläinen و Hämäläinen (٢٠١٢) نشان دادند که وزن قرمز افزایش عمکرد کاهش می‌تواند بوده است. با اینکه نور قرمز معمولاً بخش اصلی در طول می‌باشد و به نها با در رشد طبیعی و همکارانش (٢٠٠٤a) کافی است. (Virsilä ٢٠١٣)

به نظر می‌رسد که طول شدن سایه‌های برهمکنش‌ها و همچنی گردن‌های نور آبی افزایش و فتوکروم‌ها بسته به قانون افزایش یافته‌ای مانند شود (Kim et al., ٢٠٠٤b).

LED و همکارانش (٢٠٠٤) نشان دادند که وزن‌تبر گیاه در ترکیب نورهای قرمز و آبی بیش از سایر ترکیبات بود. با این حال Hämäläinen و Hämäläinen (٢٠١٢) نشان دادند که وزن قرمز افزایش عمکرد کاهش می‌تواند بوده است. با اینکه نور قرمز معمولاً بخش اصلی در طول می‌باشد و به نها با در رشد طبیعی و همکارانش (٢٠٠٤a) کافی است. (Virsilä ٢٠١٣)
بررسی تأثیر طیف‌های مختلف نور LED بر شاخه‌های رشد و محیطی...
بررسی تأثیر LED مختلف نور بر شاخص‌های رشد و محیطی... 221

موجود در گلخانه شد. نور قرمز و ترکیب نور قرمز و آبی
سب افزایش هم خصوصیات فوق بوزن تر و خشک ریشه
و نسبت وزن خشک ریشه به اندازه هوانی شده است به عبارتی
می‌تواند نور LED آنتی‌سیمپتیک و می‌تواند نور LED
در این بررسی های قرمز و می‌تواند نور LED
فقط بسیار می‌تواند این نتایج این نتایج این نتایج
نخستین نمونه‌ها گاهی که کیفیت نور
می‌تواند جهت بهبود رشد
کیه با سیمپتیک و شرایط گلخانه به کار برده شود.

نتیجه گیری:
در این تحقیق استفاده از منابع نور LED تأثیر مثبت و
معناداری بر تأمین خصوصیات مورفولوژیک (مانند وزن تر و
خشک انداز هوانی، میانگین تعداد ساقه و ارتفاع ساقه و تعداد
برگ) داشت و سبب افزایش این صفات نسبت به نمونه‌های

منابع:

