بررسی تأثیر طیف‌های مختلف نور LED بر شاخ‌های رشد و محتوای

Melissa officinalis L.

طیبه احمدی، لیلا شبایی و محمد رضا مسعلیان

نویسنده مسئول، نشانی پست الکترونیک: lshabani@gmail.com

چکیده:

دیودهای پچ کننده نور (LEDs) یکی از مهم‌ترین گیاهان دارویی در دنیا است که کاربردهای زیادی در صنایع دارویی و مواد معنی‌دار دارد. ریزوهای (officinalis L.) در گلخانه‌ای که تنها داده شده و در انتاناخ حاوی لامپ‌های LED با طیف نوری قرمز (1000/ درآموزش)، آبی (100/ درآموزش) 70 درصد برای آبی و سفید (300/ درآموزش) بهترین تعداد سانگ و برگ در هر گلخانه در نورهای قرمز و ترکیب قرمز–آبی مشاهده شد و میانگین ارتفاع ساقه گیاهان در تیمار نور قرمز بالاترین میزان بود. همچنین در نورهای میزان کل‌افزایی با/ب کل‌افزایی a/b کل‌افزایی، کل‌افزایی انتنزیتی مثبت اما نسبت LED کل‌افزایی نیشا در انتاناخ دارای 1/00 قرمز بیشترین مقدار بود. میزان ترکیب رزمارینیک اسید در آبزاد هواپیما در LED های قرمز بیشترین افزایش بود. نور LED قرمز با/ب درصد نسبت به LED سفید (که برای نمونه‌های موجود در دستگاه، نمونه کنترل محصول موشود) و نورهای a/b درصد در مقایسه با نمونه‌های موجود در گلخانه شده بود، اما این ماهد در ریشه‌های گیاهان موجود در گلخانه بیشترین مقدار را داشت. از آنجاییکه پاسخ گیاهان با استفاده از یک پژوهش در شرایط نوری LED نسبت به نمونه‌های گلخانه دارای میزان بیشترین قارچ‌ها و نور ضریب بسیار نیترین بود، نور LED نیشای حاصل در این میزان استفاده از LED می‌تواند مواد متوسط می‌شود.

کلمات کلیدی: بادترنژیو + بهورش + دروشدهای پیچ کننده نور + منابع بهورشی ها

مقدمه:

در این مقاله به دو پژوهشی که با توجه به تکمیلی این راسته در رشته‌های مختلف، اکتشافات جدیدی در این زمینه حاصل شده و این راسته در رشته‌های مختلف، اکتشافات جدیدی در این زمینه حاصل شده و

کلیات کلیدی: بادترنژیو + بهورش + دروشدهای پیچ کننده نور + منابع بهورشی ها

مقدمه:

در این مقاله به دو پژوهشی که با توجه به تکمیلی این راشته در رشته‌های مختلف، اکتشافات جدیدی در این زمینه حاصل شده و این راشته در رشته‌های مختلف، اکتشافات جدیدی در این زمینه حاصل شده و‌
برایی تولید اساس در نمای (Sahzalian et al., 2014) بیش از چهار برابر درصد اساس نسبت به شرایط مصرف شده بود (حدود زاده و همکاران 1336). افزایش متابولیت‌های ثانوی در یکسپا به نور LED می‌تواند به شایعه نسبت به (Lee et al., 2007) است. استخراج گردید (2012) رزمارینکی اسید در شرایط درون چسب شده دارای فعالیت‌های ضدیت‌پیوسته ضد‌یورس-1، ضد‌پتریکیا و HIV-1. آنتی‌کاسپتان و ضد‌سرطانی (2006) است. در شرایط درون یکسپا خوایی چون ضارب‌الزنجی و انعکاس برای (Zou et al., 1993) آن به این راه‌های است. مطالعه مختلف نشان داده که فعالیت آنتی‌کاسپتان این ترکیب از ویژگی‌های E و T و یوکرفون نیز بالاتر است. امروز محسوس می‌شود، (Ramakrishna et al., 2011) رزمارینکی اسید این گیاه از شرایط گلخانه مقایسه‌ها و درصد سال 1396

214 فزآیٌذ ٍ کارکزد گیاّی،جلذ 6، ضوارُ21، سال 1396

Shekarchi et al., 2012.)

میزان فلورزنس‌های گلوکوژنیزه شدن (Sung Jung et al., 2013). در این تحقیق تأثیر تغییرات مختلف نورهای مختلف، قرمز، آبی و آبی-قرمز (آبی-آبی) LED بر رشد و تولید ماده مثبت گیاه با دادن‌جویی برسی می‌گردد و با شاخص‌های رشد و میزان رزمارینکی اسید این گیاه در شرایط گلخانه مقایسه‌ها و درصد سال 1396

ماناب جدید سیبی با اهمیت است (2012) رزمارینکی اسید در همه اندام‌های گیاه با دادن‌جویی پاف‌می‌شود. مقدار این ترکیب در برگ‌های گیاه درون یکسپا و درصد خشک است. (Weitzel & Petersen, 2011)

در سال‌های اخیر میانگین نور در دوبه‌های پنک گل ذیل که بود که از مصرف M. officinalis یک گیاه در شهرستان ایران است که در نمای منبع مصنوعی نور برای استفاده در رشته کنترل شده می‌باشد. کیه شامل رانی‌بان با لایه تبلیغ ارزی، اکسپلود کم، طول عمر بیشتر، طول ویژه و کیفیت بالا نمایند. (Shekarchi et al., 2012)

نور (LED) جایگزین شده‌اند. میزان استفاده از به نمونه LED نور منبع مصنوعی نور برای استفاده در رشته کنترل شده محیطی کیه‌های شامل ران‌بان با لایه بی‌بستگی زیر، حجم کم، طول عمر بیشتر، طول ویژه و کیفیت بالا نمایند. (Shekarchi et al., 2012). استفاده از مصرف نور LED نور در کشت گیاه در اواخر دهه 1980 شرود و LED نور در کشت گیاه. تغییرات مورفلوژیک و فیزیولوژیکی که تحت تأثیر نور LED ممکن است توزیع متفاوت می‌باشد. (Achamlale et al., 2009) گیاه درون یکسپا و درصد خشک است. (Weitzel & Petersen, 2011)

میزان فلورزنس‌های گلوکوژنیزه شدن (Sung Jung et al., 2013). در این تحقیق تأثیر تغییرات مختلف نورهای مختلف، قرمز، آبی و آبی-قرمز (آبی-آبی) LED بر رشد و تولید ماده مثبت گیاه با دادن‌جویی برسی می‌گردد و با شاخص‌های رشد و میزان رزمارینکی اسید این گیاه در شرایط گلخانه مقایسه‌ها و درصد سال 1396

ماناب جدید سیبی با اهمیت است (2012) رزمارینکی اسید در همه اندام‌های گیاه با دادن‌جویی پاف‌می‌شود. مقدار این ترکیب در برگ‌های گیاه درون یکسپا و درصد خشک است. (Weitzel & Petersen, 2011)

در سال‌های اخیر میانگین نور در دوبه‌های پنک گل ذیل که بود که از مصرف M. officinalis یک گیاه در شهرستان ایران است که در نمای منبع مصنوعی نور برای استفاده در رشته کنترل شده محیطی کیه شامل ران‌بان با لایه بی‌بستگی زیر، حجم کم، طول عمر بیشتر، طول ویژه و کیفیت بالا نمایند. (Shekarchi et al., 2012)

نور (LED) جایگزین شده‌اند. میزان استفاده از به نمونه LED نور منبع مصنوعی نور برای استفاده در رشته کنترل شده محیطی کیه‌های شامل ران‌بان با لایه بی‌بستگی زیر، حجم کم، طول عمر بیشتر، طول ویژه و کیفیت بالا نمایند. (Shekarchi et al., 2012). استفاده از مصرف نور LED نور در کشت گیاه در اواخر دهه 1980 شرود و LED نور در کشت گیاه. تغییرات مورفلوژیک و فیزیولوژیکی که تحت تأثیر نور LED ممکن است توزیع متفاوت می‌باشد. (Achamlale et al., 2009) گیاه درون یکسپا و درصد خشک است. (Weitzel & Petersen, 2011)
نتایج:
نتایج حاصل از تجزیه و اراینس که تاثیر نور مورد استفاده بر M. officinalis صفات مورفولوژیکی جدول تجزیه و اراینس داده شان داد به صفات مورفولوژیک به غیر از شاخص طول ترین ریشه در گلدنگ با اثبات آماری معناداری در سطح احتمال 0.05 و 0.01 نشان داد.

طبق نتایج به دست آمده در یک پژوهش پیشین میزان وزن تر و خشکی انداز هوا به ترتیب در نور قرمز و ترکیب نور قرمز+ای کاهش شد (شکل 1، a و b). برعکس تحت تأثیر نورهای مختلف، میزان وزن تر و خشکی ریشه و نسبت وزن خشک ریشه به اندازه هوا در مقایسه با گیاهچه‌های واقع در کلنگ‌های کاهش نشان داد (شکل 1، a و b). طبق شکل 2 فرضیه‌های تعلق سیاساط و تعلق برق در کلنگ‌های در نورهای قرمز و ترکیب نور قرمز+ای مشاهده شد و در سایر نورهای تعلق سیاساط و تعلق برق در کلنگ‌های تفاوت معناداری نشان ندادند. میزان ارتفاع ساقه در نور قرمز برای میزان نیاز بود و قبیه نورهای کاهش ساقه بالاتری در نور گلدنگ افغانستان.

نورهای مورد استفاده در این تحقیق شامل مدل LED LED و آن ابزار ابزار، بود. برابر با روشی که گیاه‌های بارداری نشان دادند. مدل را نشان داد که گیاه‌های بارداری نشان دادند.
جدول 1- تجزیه و ارتباط (مقادیر میانگین مربعات) تأثیر نورهای مختلف بر صفات مورفولوژیک در گیاهچه‌های M. officinalis

<table>
<thead>
<tr>
<th>میانگین</th>
<th>نسبت وزن</th>
<th>درجه</th>
<th>میانگین</th>
<th>نسبت وزن</th>
<th>درجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن</td>
<td>زن و نر</td>
<td>زن و نر</td>
<td>وزن</td>
<td>زن و نر</td>
<td>وزن</td>
</tr>
<tr>
<td>ارتفاع ساقه</td>
<td>18/0/100</td>
<td>4/0/98</td>
<td>16/0/81</td>
<td>3/0/94</td>
<td>10/0/68</td>
</tr>
<tr>
<td>ریشه</td>
<td>18/0/100</td>
<td>4/0/98</td>
<td>16/0/81</td>
<td>3/0/94</td>
<td>10/0/68</td>
</tr>
<tr>
<td>تغییر هوا</td>
<td>18/0/100</td>
<td>4/0/98</td>
<td>16/0/81</td>
<td>3/0/94</td>
<td>10/0/68</td>
</tr>
</tbody>
</table>

(a) نور 4، **(b)** خطک، **(c)** تری، **(d)** خطک تری، **(e)** مختل

شکل 1- تأثیر نورهای مختلف بر وزن و ارتفاع ساقه (a)، (b) و (c)؛ وزن ریشه (d)؛ نسبت وزن ریشه به ارتفاع ساقه (e) در گیاهچه‌های M. officinalis. میانگین 3 تکرار است. حروف پیکان‌یابیگر عدم اختلاف معنادار با استفاده از آزمون LSD در سطح 0/05 است.
پرسی تأثیر طیف‌های مختلف نور LED بر شاخص‌های رشد و محیطی...

شنک 2 - تأثیر نورهای مختلف بر تعداد ساقه در گلخانه (a): ارتفاع ساقه (b): تعداد برگ (c) در گیاهچه‌های میانگین 3 تکرار است. حروف یکسان بین اعداد اختلاف معنادار با استفاده از آزمون LSD در سطح 05/100 است.

شنک 3 - مقایسه رشد گیاهچه‌های بادرنگی به ترتیب طیف‌های مختلف نور سفید، آبی، قرمز و ترکیب نور قرمز و آبی در انکوباتور با گلخانه.

سایر افرازیون معنی‌دار در میزان کارتن‌پرده در مقایسه با بی‌نظیر نور از نظر مشابه نیست. در نظر داری تأثیر نورهای قرمز بر کاهش وزن و گسترش برگ‌ها در مقایسه با نورهای سایر نورهای مورد مطالعه بود.

شکل 4. بیشترین میزان رزمارینیک اسید در نور قرمز به میزان 4/716 میکرومول بر گرم وزن خشک بود. در مقایسه با نور گلخانه نور LED قرمز سایر افرازیون 4/452 درصدی میزان رزمارینیک اسید و در مقایسه با نور LED سفید میزان رزمارینیک اسید موجود در اندام هواپی به صورت معنی‌داری در نورهای قرمز به کار رفته نسبت به سایر نورها.
جدول 2- تجزیه واریانس (مقایسه میانگین مربعات) تأثیر نورهای مختلف بر رنگهایه فوستنی و میزان زمرنپیک اسید اندام هوایی و

| ریشه در گیاهچه‌های M. officinalis | زمرنپیک | اسید برگ | کاروتئونید | کاروتئونید a/b | کاروتئونید كل | کاروتئونید كل a | کاروتئونید كل b | نور | طبقه نسبی | درجه غلظت
|
|-----------------------------------|---------|---------|------------|----------------|----------------|----------------|----------------|-----|-----------|--------|
| مارک (میانگین) | 0.177 | 0.178 | 0.150 | 0/1 | 0/0.1 | 0/0.1 | 0/0.1 | 4 | 100 | 10 |

جدول 3- تأثیر نورهای مختلف بر میزان کاروتئونید a و کاروتئونید b، نسبت کاروتئونید a به کاروتئونید b و کاروتئونید در گیاهچه‌های M. officinalis

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>کاروتئونید</th>
<th>نسبت کاروتئونید a به کاروتئونید b</th>
<th>کاروتئونید كل</th>
<th>نور</th>
</tr>
</thead>
<tbody>
<tr>
<td>مارک (میانگین)</td>
<td>0.178</td>
<td>0.150</td>
<td>0/0.1</td>
<td>0/0.1</td>
</tr>
</tbody>
</table>

مقدار: میانگین 3 تکرار است. حروف بکسنا پایانگ حاصل از اختلاف معنادار با استفاده از آزمون LSD در سطح 0.05 است.

به نظر می‌رسد که طول شدن سه می‌تواند با بهبود کردن نورهای مختلف و هم‌زمان گیاه‌های آبی افزایش و فیتوکروم‌ها بسیار به مقدار فروختن یافته به مانند شده (Kim et al., 2004b). همچنین با مطالعه رشد گیاه کاهش نیاز به نور افزایش و همکارانش (a) (2004) نشان دادند که وزنتر گیاه در کرکزم a و کارکرم گیاه مازن (2004) نشان دادند که نور قرمز و آبی در افزایش عملکرد کاهش موثرتر بوده است. با اینکه نور قرمز معمولاً بخش اصلی در طول می‌پاشد و به تهلال برای رشد بخش و فتوورکس کیا کافی است، ولی طول موگی Olle and group (2004) مختلف نور قرمز اثرات ناباربر بر گیاه گردد (Virsilė, 2013). در این تحقیق نیز نور قرمز سبب افزایش وزنتر و دخش اندام هواپیما نبود و در نسبت به آبی LED ارتقا سایه در گیاه‌های بافت کلی. نیز نشان دادند که وزنتر نسبت در محیط نور LED قرمز نسبت به نور آبی بیشتر افزایش 30 درصدی مشاهده گردید. در این تحقیق میزان رزمارنپیک استهی وجود ریشه‌ها نیز نامه‌گری شد و به طور بالا توجهی در مقایسه با میزان این ماده این اندام هواپیما نتایج خاص حاصل شد. به گونه‌ای که بالاترین میزان رزمارنپیک اسید در ریشه‌ها در گیاه‌های موجود در گیاه‌نامه حاصل شد.

بحث:

از نظر توری و از نظر فیزیولوژی، محققین معتقدند که عملکرد فتوانت نور قرمز و آبی به تهالی برای رشد گیاهان کافی است (Kim et al., 2004a). این امر باید دلیلی است که در صورت استفاده از نور قرمز در کمی نور آبی نیاز (Yorio et al., 2001 Massa et al., 2008 است. (2008) مطالعه‌های که توسط Poudel و همکاران (2008) انجام شده بود طول سایه و میانگین تعداد برگ گیاه‌های انگور رشد باعث در نور LED قرمز در مقایسه با LED می‌باشد.
بادرنگیهای ارتباطی میان ارتفاع گیاه و وزن‌برداری و خشک شدن ماهیت مشاهده نشده زیرا و از لحاظ نمایشگری مورد استفاده در منوی‌هایی موجود در گل‌خانه‌بین‌رها می‌باشد در حالت که منوی‌های LED موجود در گل‌خانه‌بین‌رها از ارتفاع سه‌بعدی را داشته‌اند.

در تحقیقاتی که Frąszczak و همکارانش (2014) انجام داده‌اند، LED بودند و از منابع نوری فلورسنت و LED (با تریب‌های 160 و 179 میکروولت بر ترمیم بر نانوپاتی به رشد گیاه ریحان و بادرنگی استفاده کرده بودند. مشاهده کرده‌اند که استفاده میان‌رها فلورسنت نسبت به LED ها برای گیاهان ریحان می‌تواند بود. در مورد بادرنگیهای تفاوت‌ها در رشد گیاه گیاهانه بیش از ناحیه مورد استفاده خیلی می‌باشد. ارتفاع گیاه و سطح ب رونده گیاهان LED به‌طور کلی نسبت به نور LED می‌باشد.

یکینی و همکارانش (1990) نشان دادند که قرارداده‌ها با روش دو بی‌ارضی در نظر گرفته شدند. این مطالعه حساسیت به طول موج نور را در تحقیقات مورد نظر است. نور می‌تواند استعداد بیشتری در مورد نور LED می‌باشد. برای بررسی برای طول موج نور LED می‌باشد و می‌تواند استعداد مورد نظر LED می‌باشد.

در حالت که منوی‌های LED به‌طور کلی نسبت به LED می‌باشد. برای بررسی برای طول موج نور LED می‌باشد و می‌تواند استعداد مورد نظر LED می‌باشد.

در حالت که منوی‌های LED به‌طور کلی نسبت به LED می‌باشد. برای بررسی برای طول موج نور LED می‌باشد و می‌تواند استعداد مورد نظر LED می‌باشد.

در حالت که منوی‌های LED به‌طور کلی نسبت به LED می‌باشد. برای بررسی برای طول موج نور LED می‌باشد و می‌تواند استعداد مورد نظر LED می‌باشد.

در حالت که منوی‌های LED به‌طور کلی نسبت به LED می‌باشد. برای بررسی برای طول موج Nور LED می‌باشد و می‌تواند استعداد مورد نظر LED می‌باشد.

در حالت که منوی‌های LED به‌طور کلی Nسبت به LED می‌باشد. برای بررسی برای طول موج Nور LED می‌باشد و می‌تواند استعداد مورد Nظر LED می‌باشد.
مشابه با این تعدادی که در اصل کارفرین Amoozgar و همکاران (1392) نیز گزارش کرده‌اند که البته این تعدادی در کارفرم‌ها به LED تغییراتی در کاهش هرزه می‌نلبندند است. این تغییرات در کاهش هرزه می‌تواند به کمک‌کردن کریپتوکروم‌ها و لپترین‌ها برای گیاهان کاهش هرزه را به تکیه گذارد و در کاهش بوی هرزه کمک کند.

در این بخش، به منظور بررسی تأثیر مختلف کمک‌کننده‌های دیگر از گیاهان، در این تحقیق، سایر کمک‌کننده‌های دیگر از گیاهان به عنوان گیاهان دیگری مانند فیلیپیای (Philippia) از جنگل‌های مرطوب، نیز به عنوان گیاهانی که قبلاً در بررسی‌های تحقیقی استفاده شده‌اند، به کار برده شدند. در این بخش نیز به منظور بررسی تأثیر مختلف کمک‌کننده‌های دیگر از گیاهان، در این تحقیق، سایر کمک‌کننده‌های دیگر از گیاهان به عنوان گیاهان دیگری مانند فیلیپیای (Philippia) از جنگل‌های مرطوب، نیز به عنوان گیاهانی که قبلاً در بررسی‌های تحقیقی استفاده شده‌اند، به کار برده شدند. در این بخش نیز به منظور بررسی تأثیر مختلف کمک‌کننده‌های دیگر از گیاهان، در این تحقیق، سایر کمک‌کننده‌های دیگر از گیاهان به عنوان گیاهان دیگری مانند فیلیپیای (Philippia) از جنگل‌های مرطوب، نیز به عنوان گیاهانی که قبلاً در بررسی‌های تحقیقی استفاده شده‌اند، به کار برده شدند.

در این بخش، به منظور بررسی تأثیر مختلف کمک‌کننده‌های دیگر از گیاهان، در این تحقیق، سایر کمک‌کننده‌های دیگر از گیاهان به عنوان گیاهان دیگری مانند فیلیپیای (Philippia) از جنگل‌های مرطوب، نیز به عنوان گیاهانی که قبلاً در بررسی‌های تحقیقی استفاده شده‌اند، به کار برده شدند. در این بخش نیز به منظور بررسی تأثیر مختلف کمک‌کننده‌های دیگر از گیاهان، در این تحقیق، سایر کمک‌کننده‌های دیگر از گیاهان به عنوان گیاهان دیگری مانند فیلیپیای (Philippia) از جنگل‌های مرطوب، نیز به عنوان گیاهانی که قبلاً در بررسی‌های تحقیقی استفاده شده‌اند، به کار برده شدند.

در این بخش، به منظور بررسی تأثیر مختلف کمک‌کننده‌های دیگر از گیاهان، در این تحقیق، سایر کمک‌کننده‌های دیگر از گیاهان به عنوان گیاهان دیگری مانند فیلیپیای (Philippia) از جنگل‌های مرطوب، نیز به عنوان گیاهانی که قبلاً در بررسی‌های تحقیقی استفاده شده‌اند، به کار برده شدند.

در این بخش، به منظور بررسی تأثیر مختلف کمک‌کننده‌های دیگر از گیاهان، در این تحقیق، سایر کمک‌کننده‌های دیگر از گیاهان به عنوان گیاهان دیگری مانند فیلیپیای (Philippia) از جنگل‌های مرطوب، نیز به عنوان گیاهانی که قبلاً در بررسی‌های تحقیقی استفاده شده‌اند، به کار برده شدند.

در این بخش، به منظور بررسی تأثیر مختلف کمک‌کننده‌های دیگر از گیاهان، در این تحقیق، سایر کمک‌کننده‌های دیگر از گیاهان به عنوان گیاهان دیگری مانند فیلیپیای (Philippia) از جنگل‌های مرطوب، نیز به عنوان گیاهانی که قبلاً در بررسی‌های تحقیقی استفاده شده‌اند، به کار برده شدند.
بررسی تأثیر طیف‌های مختلف نور LED بر شاخص‌های رشد و محیطی…

موجود در گلخانه‌ش. نور قرمز و ترکیب نور قرمز و آبی سبب افزایش هم‌خودسازی نور و ترکیب شکر ریشه و نیمی و رشد عضلانی ریشه به اندازه‌ای شده است به عبارتی موتورم تری نور‌های LED در این بررسی های قرمز و LED نور‌های LED مانند آبی ی به یوند. این نور‌های همجنس سبب مقدار بالار رنگ‌بندی‌ها هم شده بود؛ اما ویژگی نسبت کریولیت/آ/ب آن‌ها در نور قرمز پیشینه مقدار را داشت. در این تحقیق میزان ماده مؤثر در اثر شرایط آزمایش شده هم در اندازه‌های قرمز در گلخانه‌های رشد بالا تحت نیمی و بیشترین مقدار بسته آماده اما در رنگ رنگ‌بندی نیم‌های موجود در گلخانه پیشینه میزان بود. در کل نتایج این تحقیق نشان می‌دهد که کیفیت نور LED می‌تواند جهت بهبود رشد گیاه پیشینه‌گر در شرایط گلخانه به کار برده شود.

نتایج گیری:

در این تحقیق استفاده از منابع نور LED ثابت شد و منعی نیست بر تباغی خودسازی مورفولوژیک (مانند وزن و رشد خشک اندام هوایی، میانگین تعداد ساقه و ارتفاع ساقه و تعداد برگ) داشت و سبب افزایش این صفات نسبت به نمونه‌های کنار کرکد کاهش چند شماره ۸.

