تنوع زنده‌ی صفات رشدی ریشه و اندام هواپی گیاه‌های گندم و ارتباط آن با تحمل شوری

شاکه فخري، افراسیاب راهنمای و موسی مسکرایی

گروه زراعت و اصلاح هوانهای، دانشگاه کشاورزی، دانشگاه شهید چمران اهواز

(تاریخ دریافت: 1394/10/13، تاریخ پذیرش نهایی: 1395/07/20)

چکیده:

استفاده از توان زنده‌ی گیاهان زراعی براساس ویژگی‌های مورفولوژیکی و فیزیولوژیکی و توان‌های منتشر به بهبود عملکرد و افزایش کارایی تولید در مناطق دارای شوری آب و خاک گردد. به منظور ارزیابی تفاوت‌های زنده‌ی در صفات رشدی و فیزیولوژیکی ارقام مختلف گندم نان در مرحله رشد رویشی، آزمایش گلخانه‌ای با استفاده از بسیاری از پیوسته‌های صورت فاکتوریل در قالب طرح یا حاکی کاملاً تصادفی با سه تکرار انجام شد. نتایج حاکی از وجود تنوع زنده‌ی در صفات رشدی و فیزیولوژیکی ریشه و اندام هواپی به بخشی بیشتری از شوری بود. شوری سبب کاهش مساحت رشد‌های آن از جمله طول ریشه‌های اصلی، اعداد ریشه‌ای و فاصله اولین اشعاب آن رشد به میزان ۳۰ و ۴۰ درصد در مقایسه با شاهد شد. همچنین محتوی آب نسبی برگ، هدایت روزنه‌های، ماده خشک اندام هواپی و سرعت رشد نسبی در شرایط شوری به ترتیب به میزان ۷۰ و ۸۰ و ۴۰ درصد در مقایسه با شاهد کاهش نشان داد. واقع شاخص کلولی به میزان ۵ درصد افزایش پافت. میزان کاهش صفات رشدی و فیزیولوژیک ریشه و اندام هواپی در ارقام محصول کمتر از ارقام حساس بود. تفاوت‌های در تحمل شوری از نظر پاسخ‌های رشدی و فیزیولوژیک اندام هواپی متغیر با پاسخ رشدی ریشه بود. وجود تنوع زنده‌ی بین ارقام از نظر تحمل به شوری دلتهای بر وجود فرصت‌های مناسب در جهت افزایش تحمل به شوری در گندم از طریق انتخاب و پژوهش دارد.

کلمات کلیدی: تحمل شوری، توان زنده‌ی، گندم

مشخصات نمونه و استاتیک

ویژگی‌های زراعی و افزایش شوری در گیاهان گیاهان دارای ویژگی‌های زراعی و افزایش تحمل شوری گیاهان زراعی برای دستیابی به عملکرد بالای و افزایش محصول از مسائل مهم است که می‌تواند منجر به افزایش عملکرد در...

منبع:

Munns et al., 2002; Munns et al., 2006; Lee et al., 2003; Munns et al., 2006; Munns et al., 2003; Munns et al., 2002; Munns et al., 2002; Munns et al., 2006; James et al., 2006; Munns et al., 2006; Lee et al., 2002; Munns et al., 2003.
روش‌های غربال‌گری، نیاز به درک سازوکار‌نگاری دخیل در سطح کلیه است که به نوعی متشابه از خشکسازی خاک هستند (Munns, 2002) از ارتباطی می‌باشد که به عنوان میانگین انتخاب سریع و آسان برای دستیابی به زنگ‌باده‌های متحمل تنش بسیار مهم هستند. برای این انتخاب همیشه یک‌پاره‌ی غربال‌گریها نشان می‌دهد (Manschadi et al., 2006). پیشرفت کلیه برای افزایش رشد گندم در طرح درک سازوکاری یک سازوکاری دخیل در اولویت گیاه و استفاده از مکاتبه‌های معمولی به منظور انتخاب است و آگاهی ایجاد خاستگاهی در شرایط غربال‌گری برای فراهم‌سازی موداد نهایی لازم برای برنامه‌های اصلاحی باید هم‌چنین متحمل به دستوری گرفته است. ویلی احاطه‌هایی محدودی در راستای ریشه‌کتیزی میزان همولالی متحمل به دستوری زنگ‌باده‌ها در مراحل مختلف رشد گندم (Genc et al., 2007). در حال حاضر، تحقیق در مراحل مختلف رشدی متفاوت است (El-Hendawy et al., 2005) و حساسیت به دستوری در دسته‌های دوروم و نان با افزایش سن گیاه کاهش می‌یابد (Watt et al., 2003). این بدان معنی است که مراحل جوانگری و اوایل رشد روشنی در حساسیت به دستوری تغییر کند است. برای تحقیقات در مراحل کیفی‌گذاری گیاه‌های به لحاظ آب‌کننده سریع‌تر و آسانتر از روش‌های پایانی رشد است اما انتخاب رقیم مفاصل به شوری در مراحل روشنی ممکن است هشیمه تنها بر از در حال حاضر، تحقیق در مراحلی ریسگودی با یک‌پاره‌ی غربال‌گری بهتر از انتخاب بر بی‌میان صفاتی مانند غفتگوی یون سیدم در سایر مراحل رشدی باشند (Genc et al., 2007). (به هر روزی کارایی تولید در مناطق انسدادی می‌تواند از طریق انتخابهای بتای که این امر با درمان بیمارستانی دارد (Rahnema et al., 2011) با توجه به لرل استفاده از ارقام متحمل به دستوری یک‌پاره‌ی از یک‌پاره‌ی انتخابهای بتای که این امر با درمان بیمارستانی دارد (Rahnema et al., 2011) با توجه به لرل استفاده از ارقام متحمل به دستوری یک‌پاره‌ی از یک‌پاره‌ی انتخابهای بتای که این امر با درمان بیمارستانی دارد (Rahnema et al., 2011) با توجه به لرل استفاده از ارقام متحمل به دستوری یک‌پاره‌ی انتخابهای بتای که این امر با درمان بیمارستانی دارد (Rahnema et al., 2011) با توجه به لرل استفاده از ارقام متحمل به دستوری یک‌پاره‌ی انتخابهای بتای که این امر با درمان بیمارستانی دارد (Rahnema et al., 2011) با توجه به لرل استفاده از ارقام متحمل به دستوری یک‌پاره‌ی انتخابهای بتای که این امر با درمان بیمارستانی دارد (Rahnema et al., 2011) با توجه به لرل استفاده از ارقام متحمل به دستوری یک‌پاره‌ی انتخابهای بتای که این امر با درمان بیمارستانی دارد (Rahnema et al., 2011) با توجه به لرل استفاده از ارقام متحمل به دستوری یک‌پاره‌ی انتخابهای بتای که این امر با درمان بیمارستانی دارد (Rahnema et al., 2011) با توجه به لرل استفاده از ارقام متحمل به دستوری یک‌پاره‌ی انتخابهای بتای که این امر با درمان بیمارستانی دارد (Rahnema et al., 2011) با توجه به لرل استفاده از ارقام متحمل به دستوری یک‌پاره‌ی انتخابهای بتای که این امر با درمان بیمارستانی دارد (Rahnema et al., 2011) با توجه به لرل استفاده از ارقام متحمل به دستوری یک‌پاره‌ی انتخابهای بتای که این امر با درمان بیمارستانی دارد (Rahnema et al., 2011) با توجه به لرل استفاده از ارقام متحمل به دستوری یک‌پاره‌ی انتخابهای بتای که این ام
برگ دوم (۵ روز پس از ظهور کولونتوپیل) برای ایجاد یک غلظت یکپاره شوری در طول مدت خاک، لوله‌های پرپس درون ظروف محلول شوری با غلظت (۱۰۰ میلی‌مولار کلرید سدیم) و شاهد به ارتقاف تغییری ۴۵ سانتی‌متر به مدت ۱۵ دقیقه به صورت شنوار قرار داده شدند.تا محلول به طور کامل به طرف منافذ به درون لوله‌های پرپس فروردین کند. نمونه برداری و اندازه‌گیری هدایت الکتریکی در قسمت‌های مختلف لوله در آزمایشات قبلی، دستیابی به سطح شوری تقریباً یکساندا می‌باشد. لوله‌های شوری اضافه شدند. حضور شوری تا پایان دوره آزمایش انجام گرفت. گیاهچگی‌ها و ۱۲ روز پس از اعمال نشان شوری برداشت شدند.

در هر مرحله از آزمایش برخی صفات فیزیولوژیک مانند محیط آب نسبی برگ (Munns, 2010) (رایبته ۱)، هدایت Promoter, Delta-T (AP4 Devices, UK Ltd, Burwell) روزنه‌ای با استفاده از دستگاه پورومتر (SPAD-502) از برگ دوم اندازه‌گیری شد. در نهایت وزن ماده خشک اندام هویایی با قرار دادن نمونه‌ها در آن با دمای ۲۵ درجه سانتی‌گراد به مدت ۷۲ ساعت و توزیع با ترازوی دقیق به دست آمد؛ سرعت رشد نسبی نیز با برشتند گیاهچگی‌ها در فواصل زمانی ۶ و ۱۲ روز پس از اعمال نشان شوری (رایبته ۲) محاسبه شدند.

محیط آب نسبی برگ (رایبته ۱):

\[\text{RWC} = \left(\frac{F_{w} - D_{w}}{T_{w} - D_{w}} \right) \times 100 \]

سرعت رشد نسبی (رایبته ۲):

\[\text{RGR} = \left(\frac{\text{Ln}W_{2} - \text{Ln}W_{1}}{t_{2} - t_{1}} \right) \]

در این روابط، \(F_{w} \) و \(D_{w} \) وزن خشک، وزن \(T_{w} \) و وزن \(W_{1} \) وزن خشک، وزن \(W_{2} \) وزن خشک، وزن \(t_{2} \) و زمان بین روزه‌های شروع و انتها نشان می‌دهد که از ارتفاع درصد مطلوب رشد در شرایط نشان می‌دهد که از ارتفاع درصد مطلوب رشد در شرایط

\[\text{Tککتیکی صفات رشدی ریشه و اندام هویا گیاهچگی‌های گندم و ارتیاب آن...} \]
جدول 1- تجزیه و ارائه برخی صفات رشدی ریشه هشت رقم گندم دو هفته پس از شوری

<table>
<thead>
<tr>
<th>میانگین منبع</th>
<th>مقادیر</th>
<th>بیانیات</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>فاصله اولین انعقاد ریشه</td>
<td>152 **</td>
<td>4/77 **</td>
<td>159 **</td>
</tr>
<tr>
<td>عدد ریشه‌های اصلی</td>
<td>10 **</td>
<td>3/99 **</td>
<td>0/378 **</td>
</tr>
<tr>
<td>طول ریشه‌های اصلی</td>
<td>7/3</td>
<td>3/02 **</td>
<td>0/54 **</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>NUM</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

جدول 2- تجزیه و ارائه برخی صفات مورفوفیزیولوژیک هشت رقم گندم دو هفته پس از شوری

<table>
<thead>
<tr>
<th>میانگین منبع</th>
<th>سرعت رشد نسبی</th>
<th>بیانیات</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>هدایت روزنهای</td>
<td>44/1 **</td>
<td>0/02 **</td>
<td>0/0005 **</td>
</tr>
<tr>
<td>محصول آب نسبی برگ</td>
<td>58/8 **</td>
<td>0/08 **</td>
<td>0/0002 **</td>
</tr>
<tr>
<td>شاخه کارولی</td>
<td>3/3 **</td>
<td>0/02 **</td>
<td>0/0001 **</td>
</tr>
<tr>
<td>ماده خشک اندام هوایی</td>
<td>4/06 **</td>
<td>0/0001 **</td>
<td>0/00005</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

پیش‌بینی دار (۱۵۰ mM Nacl)

شکل 1- تغییرات طول ریشه اصلی هشت رقم گندم دو هفته پس از مواجهه با شوری. سطون‌های دارای یک حرف مشترک اختلاف معنی‌داری با استفاده از آزمون LSD در سطح احتمال 0.05 از هم ندارند.

نتایج: نمونه‌های گونه‌ی طبیعی با درجه‌بندی بالا، در اثر افزایش مقدار نیترات در رنگ‌های مختلف، به علت افزایش شدت ترکیب‌های گلوکز، انرژی انرژکی و حاصله، می‌توانند قابلیت جذبیت و حاصله بهتری را نسبت به نمونه‌های گونه‌ی طبیعی با درجه‌بندی پایین داشته باشند. این نتایج نشان می‌دهند که استفاده از نیترات کاهش خون‌ی کاهش و درجه‌بندی بالا در نمونه‌های گونه‌ی طبیعی با درجه‌بندی بالا باعث افزایش بهره‌برداری شده در تولید محصولات محصولات گیاهی و حاصله می‌شود.

tex code
جدول ۳- میانگین پارامترهای فیزیولوژیک و رشدی ریشه و اندازه هواپی ارقام گندم دو هفته پس از شوری

<table>
<thead>
<tr>
<th>ماده خشکت اندام هواپی (گرم)</th>
<th>شاخک کلوروفیل (تعداد)</th>
<th>محیوت آب نسبی برگ (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۴۵ a</td>
<td>۴/۷۶۰ ab</td>
<td>۷/۰ ab</td>
</tr>
<tr>
<td>۰/۱۴۹ ab</td>
<td>۴/۸۵ ab</td>
<td>۶/۹ ab</td>
</tr>
<tr>
<td>۰/۱۳۸ b</td>
<td>۴/۸۵ ab</td>
<td>۶/۵ c</td>
</tr>
<tr>
<td>۰/۱۴۵ b</td>
<td>۴/۸۵ ab</td>
<td>۶/۵ c</td>
</tr>
<tr>
<td>۰/۱۴۳ b</td>
<td>۴/۸۵ ab</td>
<td>۶/۵ c</td>
</tr>
<tr>
<td>۰/۱۱۷ bc</td>
<td>۴/۸۵ ab</td>
<td>۶/۵ c</td>
</tr>
<tr>
<td>۰/۱۱۲ cd</td>
<td>۴/۸۵ ab</td>
<td>۶/۵ c</td>
</tr>
</tbody>
</table>

تعداد گندم

<table>
<thead>
<tr>
<th>شماره</th>
<th>شاخک کلوروفیل (تعداد)</th>
<th>محیوت آب نسبی برگ (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۵۳ a</td>
<td>۴/۷۶۰ ab</td>
<td>۷/۰ ab</td>
</tr>
<tr>
<td>۰/۱۱۷ b</td>
<td>۴/۸۵ ab</td>
<td>۶/۵ c</td>
</tr>
</tbody>
</table>

تیمار شوری

<table>
<thead>
<tr>
<th>شاخص</th>
<th>محیوت آب نسبی برگ (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۰۸ b</td>
<td>۷/۰ ab</td>
</tr>
</tbody>
</table>

۲۰ میلی‌مولار کارکرد سدیم در سطح احتمال ۵ درصد ندارند.

* میانگین‌های دارای یک حرف مشترک در فاکتور، اختلاف معنی‌داری با استفاده از آزمون LSD در سطح احتمال ۵ درصد ندارند.

جدول ۴- ضرایب همبستگی پارامترهای رشدی و صفات فیزیولوژیک هشت رقم گندم دو هفته پس از مواجهه با شوری

<table>
<thead>
<tr>
<th>رنگ</th>
<th>پارامتر</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>طول ریشه اصلی</td>
<td>۱</td>
<td>۱</td>
<td>۰/۸</td>
<td>۰/۷</td>
<td>۰/۶</td>
<td>۰/۵</td>
<td>۰/۴</td>
<td>۰/۳</td>
<td>۰/۲</td>
</tr>
<tr>
<td></td>
<td>تعداد ریشه اصلی</td>
<td>۲</td>
<td>۲</td>
<td>۱/۸</td>
<td>۱/۷</td>
<td>۱/۶</td>
<td>۱/۵</td>
<td>۱/۴</td>
<td>۱/۳</td>
<td>۱/۲</td>
</tr>
<tr>
<td></td>
<td>فاصله اولین اشتعال تا نوک ریشه</td>
<td>۳</td>
<td>۳</td>
<td>۲/۸</td>
<td>۲/۷</td>
<td>۲/۶</td>
<td>۲/۵</td>
<td>۲/۴</td>
<td>۲/۳</td>
<td>۲/۲</td>
</tr>
<tr>
<td></td>
<td>محیوت آب نسبی برگ</td>
<td>۴</td>
<td>۴</td>
<td>۳/۸</td>
<td>۳/۷</td>
<td>۳/۶</td>
<td>۳/۵</td>
<td>۳/۴</td>
<td>۳/۳</td>
<td>۳/۲</td>
</tr>
<tr>
<td></td>
<td>هیداتو رونه‌ای</td>
<td>۵</td>
<td>۵</td>
<td>۴/۸</td>
<td>۴/۷</td>
<td>۴/۶</td>
<td>۴/۵</td>
<td>۴/۴</td>
<td>۴/۳</td>
<td>۴/۲</td>
</tr>
<tr>
<td></td>
<td>شاخک کلوروفیل</td>
<td>۶</td>
<td>۶</td>
<td>۳/۸</td>
<td>۳/۷</td>
<td>۳/۶</td>
<td>۳/۵</td>
<td>۳/۴</td>
<td>۳/۳</td>
<td>۳/۲</td>
</tr>
<tr>
<td></td>
<td>ماده خشکت اندام هواپی</td>
<td>۷</td>
<td>۷</td>
<td>۲/۸</td>
<td>۲/۷</td>
<td>۲/۶</td>
<td>۲/۵</td>
<td>۲/۴</td>
<td>۲/۳</td>
<td>۲/۲</td>
</tr>
<tr>
<td></td>
<td>سرعت رشد نسبی</td>
<td>۸</td>
<td>۸</td>
<td>۱/۸</td>
<td>۱/۷</td>
<td>۱/۶</td>
<td>۱/۵</td>
<td>۱/۴</td>
<td>۱/۳</td>
<td>۱/۲</td>
</tr>
<tr>
<td></td>
<td>شاخک سطح برگ</td>
<td>۹</td>
<td>۹</td>
<td>۱/۸</td>
<td>۱/۷</td>
<td>۱/۶</td>
<td>۱/۵</td>
<td>۱/۴</td>
<td>۱/۳</td>
<td>۱/۲</td>
</tr>
</tbody>
</table>

* و ** به ترتیب معنی‌دار در سطح احتمال ۵ و ۱ درصد می‌باشد. معنی‌دار نیست.
تغییرات فاصله اولین اعصاب تا نوک ریشه از مواجهه با نیتروژن تأثیر گذار می‌باشد.

نوع زننکی صفات رشدی ریشه و اندازه‌های گیاه‌های گندم و ارتباط آن...
لیست سایر تأثیرگذاران بر امکانات درمانی علین رحمتی، کاربرد گیاهی، جلد 6، شماره 21، سال 1396

محتوی آب نسبی برگ: نشل شوری سپب کاهش معنی‌دار محتوی آب نسبی برگ گردد. بین ارقام نیز از نظر محتوی آب نسبی برگ ت نوع زنیتی مشاهده شد (جدول 2)، کمترین میزان محتوی آب نسبی مربوط به ارقام حساس شیراز و فلات و بیشترین مقدار آن مربوط به ارقام معنی‌داری متفاوت است و محتوی آب نسبی از میزان متعلقات به مراتب رتبه‌بندی دارد (James et al., 2008). برای مثال، رقم روش در شرایط نشل، طول ریشه بیشتر و در تیپه محتوی آب نسبی بالایی در مقایسه با سایر ارقام در یافته‌برگ خففی کرده در واقع زنیتی‌های متعلق به شوری با حفظ پانشی درصدی، میزان محتوی آب نسبی برگ را در شرایط نشل ناما از دست می‌دهند که این امر در نتایج منجر به بهبود تحمل شوری می‌شود، اگرچه تفاوت زنیتی ارقام توانایی آنها برای جذب بیشتر آب خاک و حفظ پانشی درصدی در شرایط نشل بر میزان محتوی آب نسبی برگ را در موارد مختلف رشد انرژی است (Sairam and Srivastava, 2001)

شکل‌کارکرد: مقایسه شاخص کلروفیل همه ارقام در شرایط نشل کاشت همچنین بین ارقام از لحاظ این شاخص ت نوع زنیتی مشاهده شد (جدول 3) با سایر محتوی کلروفیل زنیتی‌های گندم به نشل شوری با اختلاف در تحمل شوری وایسته است (El-Hendawy et al., 2005).
نوع زنیکی صفات رشدی ریشه و اندام هواپی لمغمه‌های گندم و ارتباط آن...

شکل ۴- تغییرات هداپن‌های هشت رقم گندم دو هفته پس از مواجهه با شوری. ستون‌های هشت رقم یک حرف مشترک اختلاف معنی‌داری با استفاده از آزمون LSD در سطح احتمال ۰.۰۵ دادند.

شکل ۵- تغییرات سرعت رشد نسبی هشت رقم گندم دو هفته پس از مواجهه با شوری. ستون‌های هشت رقم یک حرف مشترک اختلاف معنی‌داری با استفاده از آزمون LSD در سطح احتمال ۰.۰۵ دادند.

سرعت رشد نسبی (a-n=۱۰۰۰/۰) نیز نشان می‌دهد که ارقام دارای هداپن‌های بالاتر دارای سرعت رشد نسبی بالاتری بودند (جدول ۴). اما کاهش سرعت رشد نسبی مشاهده‌شده می‌تواند مناسب به پاکس فتوستاتیک و یا تغییرات مورفولوژیک (شاخه صطل برگ) وابسته به زنیکی باشد (El-Hendawy et al., ۲۰۰۵). به نظر می‌رسد هداپن‌های بالاتر ارقام متحمل روش و طبیعی (به ترتیب ۱۶ و ۱۷ درصد) متفاوت نشده اما کاهش در هداپن‌های منجر به سرعت رشد نسبی بالاتر و در نهایت تحمل به‌طور شوری و کاهش متفاوت سرعت رشد نسبی زنیکی های حساس و سرعت متحمل در شرایط شوری مشابه با نتایج سابقه تحقیقات می‌باشد (James et al., ۲۰۰۸).

فلاش و شیراز (به ترتیب ۴۰ و ۳۰ درصد) و کمترین کاهش در ارقام متحمل روش و طبیعی (به ترتیب ۱۶ و ۱۷ درصد) مشاهده شد (شکل ۴). به نظر می‌رسد تفاوت بین ارقام مختلف لحاظ میزان کاهش سرعت رشد نسبی در شرایط شوری ناشی از تفاوت در نحوه رشد زنیکی‌ها باشد. وجود ت نوع زنیکی بین زنیکی‌های گندم از لحاظ سرعت رشد نسبی و کاهش هداپن‌های سرعت رشد نسبی زنیکی‌های حساس و متحمل در شرایط شوری مشابه با نتایج سابقه تحقیقات می‌باشد.

Marcinśka, I., Czyczły-Mysza, I., Skrzypek, M., Filek, M., Grzesiak, S., Grzesiak, M. T., Janowiak, F., Hura, T.

