تنوع زنینی صفات رشدی ریشه و اندام هواپی گیاهچه‌های گندم و ارتاب آن با تحمل شوری

شکوه فخیری، افراسیاب راهنما و موسی مسکرایی

گروه زراعت و اصلاح نباتات، دانشگاه کشاورزی، دانشکده شید جمایت اهواز

(تاریخ دریافت: 13/10/1394، تاریخ پذیرش نهایی: 1395/6/20)

چکیده:

استفاده از توان زنینی گیاهان زراعی براساس ویژگی‌های مورفولوژیکی و فیزیولوژیکی متواند منجر به بهبود عملکرد و افزایش کارایی تولید در مناطق دارای شهری آب و خاک گردد. به منظور ارزیابی تفاوت زنینی در برخی صفات رشدی و فیزیولوژیک ارقام مختلف گندم نان در مرحله رشد روندی، از آبیاتگی گلخانه‌ای با استفاده از لوله‌های پیوسته به صورت تک‌گوشی در قالب طرح پایه کاملاً تصادفی با سه نکار انگشش تأثیر حاکی از وجود توان زنینی در صفات رشدی و فیزیولوژیک ریشه و اندام هواپی به شوری بود. شوری سبب کاهش رشد سیستمی همه ارقام از جمله طول رشد‌های اصلی، تعداد ریشه اصلی و فاصله اولین اتصال اه یا تراز بی‌رنگی به ترتیب به میزان ۵۰ و ۴۰ درصد در مقایسه با شاهد شد. همچنین احتمال آب نسبی برگ، همایود روندهای ماده خشک اندام هواپی و سرعhet رشد نسبی در شرایط شوری به ترتیب به میزان ۷۰ و ۶۰ درصد در مقایسه با شاهد کاهش نان داشت و لی‌های ترکیبی کلیک به میزان ۴ درصد افزایش یافت. میزان کاهش صفات رشدی و فیزیولوژیک ریشه و اندام هواپی در ارقام تحقیق کمتر از ارقام حساس بود. تفاوت در تحلیل شهری از نظر پایش‌های رشدی و فیزیولوژیک اندام هواپی متناسب با پایش رشدی شوری بود. وجود توان زنینی بین ارقام از نظر تحلیل به شوری دلته بر وجود فرصت‌های مناسب در جهت افزایش تحمل به شوری در گندم از طریق انتخاب و به‌وزنی دارد.

کلمات کلیدی: تحلیل شهری، توان زنینی، گندم

زمینه‌ها و پیامدهای کشاورزی دارای مشکل شوری در جهان با توجه به بلوط‌های مناسب و فعالیت‌های کشاورزی در حال افزایش است. کاهش گسترش شوری و اندام تحمل شوری گیاهان زراعی برای دستیابی به عملکرد بالاتر و تولید پایدار محصول برای مسئولیت‌های اکتشافی است که می‌تواند منجر به ثبات عملکرد در خاک‌های شور شود (Munns et al., 2002; Munns et al., 2003). در طی سال‌های اخیر صورت‌گرفته‌های تحقیق به شوری در گیاهان توجه زیادی را به خود جلب کرده است. گیاهان

مقدمه:

میزان تحمل به شوری برای پیش‌بینی از گونه‌های گیاهی همچنان نامحدود است. توان زنینی از نظر تحمل شوری در گیاهان زراعی متعادلی از جمله کنار (2006; James et al., 2006; Munns et al., 2003; Lee et al., 2003) گزارش شده است. در بین گروه‌های دستیابی به عملکرد بالاتر و تولید پایدار محصول از مسئولیت مهم است که می‌تواند منجر به ثبات عملکرد در خاک‌های شور شود (Munns et al., 2002; Munns et al., 2003; Lee et al., 2003). در طی سال‌های اخیر صورت‌گرفته‌های تحقیق به شوری در گیاهان توجه زیادی را به خود جلب کرده است. اگر توان زنینی
روش‌های جریان‌گری، نیاز به درک سازوکاری‌های دیگر در سطح کلیه است که به نوعی متمایز از خیلی خاک هستند (Munns, 2002) از یکدیگر، صفات مورفولوژیک و زیست‌پذیری به عنوان معیارهای انتخاب سریع و آسان برای دستیابی به همبستگی‌های تحلیلی تنش بیشتر مهم هستند، زیرا این افکار مهمی در همبستگی‌های پیش‌نیاز با عملکرد زیست‌پذیری شده، نشان می‌دهد (Manschadi et al., 2006). یافته‌های آزمایشی بر افرازی، رشد گندم از طریق درک سازوکاری‌های مورفولوژیک رشد اوینی گیاه و استفاده از روش‌های معمول به نتایج انجام شده است و آگاهی تصویب‌تهیات زیادی در زمینی غربالگری در شرایط مزمن و هیدروبیونکسی برای فراهم‌سازی مودآزمایی بسیار برای برنامه‌های اصلاحی زیست‌پذیری محیط به شوری صورت گرفته است. وی، مطالعات محدودی در راستای رتبیه‌سازی میزان زیست‌پذیری در مراحل مختلف رشدی کاراکتر شده است (Genc et al., 2007). نتیجه‌گیری شوری El-Hendawy et al., 2005 و حساسیت به شوری در گندم‌های دوروم و نان با افزایش سن کاهش می‌یابد (Watt et al., 2003). این بدان معنی است که مراحل جوانگری و اوایل رشد رویشی در تحلیل به شوری تعیین کننده است. آگاهی تصویب‌تهیات در مرحله‌های گیاهی که به لحاظ تکنیک رقیق‌تر و آسان‌تر از مراحل پاتی آماده است، اما انتخاب رقیق‌مакوم به شوری در مرحله رویشی ممکن است به‌ویژه در آزمایشات گوناگونی که به نظر می‌رسد انتخاب در مرحله رویشی بهتر از انتخاب بر مبنای صفات مانند غلظت یون سدیم در سیار مراحل رشدی بیان (Genc et al., 2007) به‌ویژه کارایی تولید در مناطقی که شور می‌تواند از طریق نواز استفاده از نوع‌های آزمایشی نیاز به نشان دهنده عناوین این انتخاب آزمایشی باید که این امر هم‌همانندی برای بسیاری از گیاهان زراعی افزایش یابد که این امر هم‌همانندی برای بسیاری از گیاهان زراعی نیاز به شناسایی دارد (Rahnana et al., 2011). با توجه به آخرین انتخاب از ارقام تحلیل به عنوان یکی از راه‌کارهای مقابل‌های با تنش شوری لازم است که انتخاب ارقام یک
نوع زنبئی سفت رشدی ویسه و اندام هوایی گیاه‌های کندم و ارتباط آن‌ها

167

و ارتباط با استفاده از نرم‌افزار آماری SAS می‌گیریم. برای رسم نمودارها از نرم‌افزار Excel و برای محاسبه ضرایب همبستگی از نرم‌افزار SPSS

نتایج و بحث:

نتایج تجزیه واریانس برخی پارامترهای رشدی و فیزیولوژیک ریشه و آنادار هوایی نشان داد که این ارقام بجز محتوی آب نسبی برگ از نظر سایر پارامترهای مورد مطالعه تفاوت معنی‌داری وجود داشت. این سطح معنی‌داری واقعی نسبت به آن مدلی موارد کلیدی ساده و شاهد بر ارتباط ۴۵ سانتی‌متر با مدت ۱۵ دقیقه بسیار شناور قرار داده شدند. این مدل، با طور کالام از طریق منافع بیابون لوله‌های یوز برای سه‌می‌فند کند. نمونه برداری و اندازه‌گیری هدایت الکتریکی در قسمت-

شاید مخالفت لوله در آزمایشات قبلی، دستبایی به سطح شوری تقریباً با تفاوت در عملیات مختلف لوله نشان داد (Fakhri 2016). کاربرد کیفی تیزی به میزان ۰/۵۵ به محدوده‌های شوری اضافه شد. حفظ شوری تا پایان دوره آزمایش انجام گرفت. گیاه‌ها ۸ و ۱۲ روز پس از اعمال نشین شوری

برداشت شدند. در مسیر جهت از آزمایش برخی سخت‌های فیزیولوژیک مانند محتوی آب نسبی برگ (Munns, 2010) (باره‌گیری)، Prometer, Delta-T روزهای اول استفاده از دستگاه پورومتر (SP44) و نشان‌دهنده‌ای اصلی می‌باشد. می‌توانید با استفاده از دستگاه کندم‌وزن (SPAD-502) از برگ دور اندازه‌گیری شد. در نهایت وزن ماده خشک اندام هوایی، با قرار دادن نمونه‌ها در آون با دمای ۵۰ درجه سانتی‌گراد به مدت ۷۲ ساعت و تزریق با نوربرد دچار دیده می‌آمد. سرعت رشد نسبی نیز با بردادن گیاه‌ها در فواصل زمانی ۸ و ۱۶ روز پس از اعمال نشین شوری (باره‌گیری) ۲ محاسبه شدند. محتوی آب نسبی برگ (باره‌گیری) ۱:

%RWC = \frac{(F_{W-D_W})}{(T_{W-D_W})} \times 100

سرعت رشد نسبی (باره‌گیری) ۲:

RGR = \frac{(LnW_t - LnW_0)}{ (t_2 - t_1)}

در این روابط، W ترمین W Donetsk و وزن شکست و وزن خشک، W ترمین W Donetsk و وزن خشک، W ترمین W Donetsk و وزن خشک، W ترمین W Donetsk و وزن خشک. در انتخاب با خطیک می‌توانند از اندازه‌گیری ریشه و سطح در تعدادی از گیاهان زراعی از جمله جو (Sheiden et al., 2013).
جدول 1- تجزیه و ارتباط برخی صفات رشدی ریشه هشت رقم گندم در هفته پس از شوری

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>فاصله اولین انتصابات نت وریسه</th>
<th>تعداد ریشههای اصلی</th>
<th>طول ریشههای اصلی</th>
<th>میزان تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>152</td>
<td>477 **</td>
<td>159</td>
<td>937</td>
<td>رقم</td>
</tr>
<tr>
<td>19659</td>
<td>110 **</td>
<td>3799</td>
<td>6523</td>
<td>شوری</td>
</tr>
<tr>
<td>51/5</td>
<td>032 **</td>
<td>268</td>
<td>526</td>
<td>رقم‌هشت</td>
</tr>
<tr>
<td>8/7</td>
<td>020 **</td>
<td>449</td>
<td>221</td>
<td>خططا</td>
</tr>
</tbody>
</table>

۱/۱۱۸ فزآیٌذ ٍ کارکزد گیاّی، جلد ٦، شماره ۲۱، سال ۱۳۹۶

جدول ۲- تجزیه و ارتباط برخی صفات مورفوفیزیوپلوزیکی هشت رقم گندم در هفته پس از شوری

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>هدایت روزه‌ای</th>
<th>محصول آب‌نیاب گرک</th>
<th>شاخص کاراکردها</th>
<th>سرعت وابستگی</th>
<th>ماده‌های ابتدایی</th>
<th>میزان تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/5</td>
<td>04/5 **</td>
<td>44/1 **</td>
<td>00/2 **</td>
<td>00/0000 **</td>
<td>00/00000000 **</td>
<td>رقم</td>
</tr>
<tr>
<td>5/5</td>
<td>06/7 **</td>
<td>58/8 **</td>
<td>00/8 **</td>
<td>00/0000 **</td>
<td>00/00000000 **</td>
<td>شوری</td>
</tr>
<tr>
<td>4/5</td>
<td>03/3 **</td>
<td>33/3 **</td>
<td>00/3 **</td>
<td>00/0000 **</td>
<td>00/00000000 **</td>
<td>رقم‌هشت</td>
</tr>
<tr>
<td>4/5</td>
<td>03/4 **</td>
<td>34/5 **</td>
<td>00/5 **</td>
<td>00/0000 **</td>
<td>00/00000000 **</td>
<td>خططا</td>
</tr>
<tr>
<td>12/8</td>
<td>04/6 **</td>
<td>11/7 **</td>
<td>05/2 **</td>
<td>00/0000 **</td>
<td>00/00000000 **</td>
<td>ضرب تغییرات (%)</td>
</tr>
</tbody>
</table>

** و ** به ترتیب معنی‌دار در سطح احتمال ۵ و ۱ درصد: میان‌دار نیست.

۱/۱۸ فزآیٌذ ٍ کارکزد گیاّی، جلد ٦، شماره ۲۱، سال ۱۳۹۶

شکل ۱- تغییرات طول ریشه اصلی هشت رقم گندم در هفته پس از مواجهه با شوری. ستونهای دارای یک حرف مشترک اختلاف معنی‌دار یا است. به عنوان مثال، تغییرات زننکی بالایی برای مجموع طول ریشه گیاهی‌های گرمسیری رشد یافته در محیط‌های کنترل شده است. به عنوان مثال، تغییرات زننکی بالایی برای مجموع طول ریشه گیاهی‌های گرمسیری رشد یافته در محیط‌های کنترل شده (Manschadi et al., 2008; Rahnama et al., 2011) است. به عنوان مثال، تغییرات زننکی بالایی برای مجموع طول ریشه گیاهی‌های گرمسیری رشد یافته در محیط‌های کنترل شده (Singh et al., 2010) است. به عنوان مثال، تغییرات زننکی بالایی برای مجموع طول ریشه گیاهی‌های گرمسیری رشد یافته در محیط‌های کنترل شده (Manschadi et al., 2008; Rahnama et al., 2011) است. به عنوان مثال، تغییرات زننکی بالایی برای مجموع طول ریشه گیاهی‌های گرمسیری رشد یافته در محیط‌های کنترل شده (Singh et al., 2010) است.
توجه زنده صفات رشدی ریشه و انداز هموایی گیاه‌های گنده و ارتباط آن...

شکل 2- تغییرات طول در ریشه اصلی بلندتر هسته رقم گندم در فناپ از مواجهه با شوری. ستون‌های دارای یک حرف مشترک اختلاف معنی‌داری با استفاده از آزمون LSD در سطح احتمال 5 درصد ندارند.

به‌ویژه برخی‌ها گزینه‌های زنده‌پذیر، به منظور جذب آب عملی حاکی از استفاده شود (Wasson et al., 2012). همچنین علت استفاده از ویژگی‌های رشدی ریشه در راستای حفظ طول ریشه و در تیارکه حفظ یک می‌تواند به عنوان اولین هدف برخی‌های مبنا بود در شرایط شکستی و شوری در نظر گرفته شود. به‌نزدی صفات مورد نظر بدون شک نباید به تیارکه‌های با در سطح مختلف درون گونه‌ای، بین گونه‌های و با بین تنسل نیاز دارد (Wasson et al., 2012)، مشخص شده که گیاهان حمایت به شوری با شکستی از نظر توزعی سیستم ریشه‌های دارای نوع بسیار زیادی هستند (Manschadi et al., 2008; Rahnama et al., 2011: 2006) همچنین علت در مطالعات حمل به شوری، از ویژگی‌های ریشه می‌توان به عنوان می‌تواند گزینه در تشخیص زنده‌پذیری محیط و حساس استفاده کرد (Rahnama et al., 2011).

اعداد ریشه‌ای: نشان شد که رشد ریشه سبب کاهش درصدی ریشه اصلی در گونه‌های که حمایت حاکی از به‌وجود آمدن یک حرف مشترک در ملاحظه شده است. همچنین در ارتفاع زنده‌پذیر و ارتفاع میزان جذب آب یا بالا نگه داشته و از این طریق قدرت به حفظ و مزروع گزارش شده است و در این رابطه دو زن برای افزایش طول ریشه موثر در راهنمایی شده است که ممکن است برای به‌ویژه گزینه‌های گیاه ارزشمند باشد.

(Wasson et al., 2012)

طول دو ریشه اصلی بلندتر: مجموع طول دو ریشه اصلی بلندتر هم ارقام نیز در پاسخ به شوری کاهش یافت و مطلق با نتایج طول ریشه‌های اصلی میزان کاهش آن در ارقام حساس فلات و شفافیت (به ترتیب 42 و 30 درصد) بیشتر از ارقام محیط و حساس به شوری بر (بیشتر از 12 درصد) بود (شکل 2).

با توجه به این که گیاهان زراعی از ناحیه ویژگی‌های رشدی ریشه در شرایط شوری تا حد زیادی متفاوت می‌باشد (Manschadi et al., 2008; Rahnama et al., 2011; Shelden et al., 2013)، نتایج در طول ریشه ارقام گندم در شرایط شاهد و شوری می‌تواند نشان‌دهنده تفاوت زنده‌پذیری باشند. انتظار پرداخت برای این پژوهش، تفاوت زنده‌پذیر در کل طول محور اصلی ریشه در مقایسه با شاهد نیز در هشت رقم گندم دوروم در شرایط شوری گزارش شده است (Rahnama et al., 2011). بنابراین، بالعطف محیط‌های بیرونی و شیمیایی مانند تراکم و استهبان خاک، امیدواری شوری و سبب یک این امکان را فراهم می‌آورد از جمله گزارش‌های به عناوان بخشنده نبایدیر
جدول 3- میانگین پارامترهای فیزیولوژیک و رشدی ریشه و اندازه هوایی ارقام گندم دو هفته پس از شوری

<table>
<thead>
<tr>
<th>ماده خشکه اندازه هوایی</th>
<th>شاخ های کلوروفیل</th>
<th>محمتوی آب نسبی برگ</th>
<th>تعداد ریشه اصلی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/139 a</td>
<td>48/35 ab</td>
<td>87/1 abc</td>
<td>72/6 ab</td>
</tr>
<tr>
<td>0/131 ab</td>
<td>48/8/8 a</td>
<td>89/8 a</td>
<td>72/7 a</td>
</tr>
<tr>
<td>0/135 ab</td>
<td>48/2/1 ab</td>
<td>92/3 a</td>
<td>69/5 b</td>
</tr>
<tr>
<td>0/142 a</td>
<td>49/6/6 abc</td>
<td>87/9 abc</td>
<td>72/9 b</td>
</tr>
<tr>
<td>0/149 cd</td>
<td>41/8/8 d</td>
<td>89/9 bc</td>
<td>72/4 d</td>
</tr>
<tr>
<td>0/110 cd</td>
<td>44/8/5 ab</td>
<td>87/1 abc</td>
<td>72/6 ab</td>
</tr>
<tr>
<td>0/117 bc</td>
<td>47/5/1 d</td>
<td>84/1 bc</td>
<td>72/9 b</td>
</tr>
<tr>
<td>0/192 d</td>
<td>46/1/1 bc</td>
<td>82/6 f</td>
<td>72 d</td>
</tr>
</tbody>
</table>

این میانگین های دارای یک حرف مشترک برای هاکتوئر، اختلاف معنی‌داری با استفاده از آزمون LSD در سطح احتمال 0.05 درصد تدارک دارند.

جدول 4- ضرایب همبستگی پارامترهای رشدی و صفات فیزیولوژیک هشت رقم گندم دو هفته پس از مواجهه با شوری

<table>
<thead>
<tr>
<th>ردیف</th>
<th>پارامتر</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>طول ریشه اصلی</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>تعداد ریشه اصلی</td>
<td>1</td>
<td>5**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>فاصله اولین انعکاس یا تانک ریشه</td>
<td>1</td>
<td>5**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>محمتوی آب نسبی برگ</td>
<td>1</td>
<td>5**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>هدایت رونگانی</td>
<td>1</td>
<td>5**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>شاخ های کلوروفیل</td>
<td>1</td>
<td>5**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ماده خشکه اندازه هوایی</td>
<td>1</td>
<td>5**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>سرعت رشد نسبی</td>
<td>1</td>
<td>5**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>شاخ سطح برگ</td>
<td>1</td>
<td>5**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

* به ترتیب معنی‌دار در سطح احتمال 0.05 درصدی. ** معنی‌دار نیست.
نهادیات رژونهای: هدایت رژونهای همه ارقام در پاسخ به شوری کاهش یافته و منازع کاهش آن در ارقام حساس به شوری بیشتر از ارقام محور بود. به گونه‌ای که بیشترین میزان کاهش در شرایط شوری در رقم حساس شیراز (۸۳ درصد) و کمترین آن مربوط به رقم محور به شوری (۹۴ درصد) بود. اگرچه در شرایط معمول هن ارقام از نظر هدایت رژونهای تفاوت‌هایی وجود داشت و بیشترین مقدار هدایت رژونهای همه رقم محور و کمترین مقدار آن به رقم حساس شیراز اختصاص داشت (شکل ۴).

در مطالعات پیشین نیز به نحوی سنگینی به هدایت رژونهای James et al., 2008; Rahnama et al., 2010 و کاهش بیشتر مقادیر هدایت رژونهای زنوتیپهای حساس در مقایسه با زنوتیپهای محور گندم پس از اعمال شوری (۲۰۱۰). Rahnama et al., 2008; Rahnama et al., 2010 اشاره شده است. به هر رو، منازع کاهش هدایت رژونهای بیشتر ارقام مورد مطالعه در مراحل اولیه تنش شوری مشابه یکدیگر بود (شکل ۳). وجود همبستگی متی و معنی‌دار بین هدایت رژونهای و طول ریشه اصلی (r=0.86) (جدول ۴) نشان می‌دهد که گیاهان دارای ریشه‌های عمرتی دستری ویژگی‌های ریشه‌ای از جمله تعداد ریشه‌های اصلی ممکن است به‌ویژه گنده‌های با شوری سپری شود (Manschadi et al., 2006).

فاضل‌های اولین اندازه‌گیری تا نوک ریشه: مویس کاهش‌های اولین اندازه‌گیری تا نوک ریشه گردد و منازع کاهش برای همه ارقام به طور متوسط ۴۰ درصد بود. اگرچه این فاصله در شرایط شوری در ارقام محور به شوری نسبت به ارقام حساس کمتر بود، به گونه‌ای که منازع کاهش در ارقام محور مناسب تر بود. به روش و طی نهایی به ترتیب ۸۳، ۸۱ و ۸۰ درصد و در ارقام حساس فلات ارک، قدس و شیراز (به ترتیب ۶۱ و ۶۱ و ۶۱ درصد) بود (شکل ۳). بین ارقام نیز از نظر فاصله اولین اندازه‌گیری تا نوک ریشه تفاوت قابل ملاحظه‌ای مشاهده شد (شکل ۴). در شرایط شوری، فاصله بین نوک ریشه و موقعیت ناحیه تغییر بافت تغییر می‌کند (Rahnama et al., 2011) و این تغییر در سایر شرایط محصولات حاصل نمی‌شود. در این حاصل، شرایط مناسب در مقایسه با حاصل نریش، روندهای فرعی و اشکالات ریشه تغییر بود (Watt et al., 2003). به همین دلیل، تغییر و نوسور نوری ممکن است در حاشیه مراکز، تغییر ریشه‌های مویس و اشکالات به نوک ریشه تغییر می‌کند. به خالص، همه تنش‌های موجود در حاشیه نوری ممکن است به‌ویژه تغییرات فلزات بین نوک و سلول‌های ناحیه توسه و تغییر نمی‌شود، برای مثال، دمای پایین حاشیه میزان

![شکل ۳ تغییرات فاصله اولین اندازه‌گیری تا نوک ریشه هشت رقم گندم در دو فنگه‌پس از مواجهه با شوری. ستون‌های دارای یک حرف مشترک اختلاف معنی‌داری با استفاده از آزمون LSD در سطح احتمال ۵ درصد تدارند.](https://jispp.iut.ac.ir/article-1422/IRDT.png)
در این مقاله، تأثیر تغییرات دما بر روی اشکال و شکل‌رسی پود رد بیان شده است. البته علل اصلی این تغییرات شامل فاکتور‌های محیطی مانند دما، رطوبت، توده و غیره می‌باشد.

با توجه به این نتایج، مطالعه‌های بعدی برای بهتر تعریف و بررسی این تاثیرات ضروری است.

(El-Hendawy et al., 2005)

با پذیرش نتایج مطالعه، تعیین عوامل اصلی بر پایه‌گذاری در مدیریت کشاورزی و استراتژی‌های کشاورزی، می‌تواند به بهبود کیفیت محصولات کشاورزی می‌انجامد.

(Shakeri and Derakhshandeh, 2012)
شاخص متحمل تغییرات هدایت روزنهاي گندم در هر دو هنگ از واسطه به شورى. سنتونهای دارای یک حرف مشترک اختلاف معنی‌داری با استفاده از آزمون LSD در سطح احتمال 0.05 درصد ندارند.

شاخص رشد نسبی (I**208/10) نیز نشان می‌دهد که ارقام دارای هدایت روزنهاي بالاتر دارای سرعت رشد نسبی بالاتری بودند (جدول 4). آن‌گونه سرعت رشد نسبی مشاهده شده می‌تواند مناسب به پایش فوستری و یا تغییرات مورفولوژیک (شاخت سطح برگ) وابسته به زننیپ باشد (El-Hendawy et al., 2005). به نظر می‌رسد هدایت روزنهاي بالاتر ارقام تمحلی نظیر روش در شرایط شورى منجر به سرعت رشد نسبی بالاتر و در نهایت تحمیل به همین تش نش شورى گردند (شکل 4 و 5).

در ارقام تمحلی روشن و طبیعی (به ترتیب ۱۶ و ۱۷ درصد) مشاهده شد (شکل ۵). به نظر می‌رسد تفاوت بین ارقام مختلف از لحاظ میزان کاهش سرعت رشد نسبی در شرایط شوری ناشی از تفاوت در نحوه رشد زننیپیها باشد. وجود تغییرات زننیپی گندم از لحاظ سرعت رشد نسبی و کاهش مقاومت سرعت رشد نسبی زننیپیهای حساس و متحمل در شرایط شوری مشابه با نتایج سابیپ تحقيقات می‌باشد (James et al., 2008).

وجود همبستگی مثبت و معنی‌دار بین هدایت روزنهاي و
Triticum aestivum L

Marcin’ska, I., Czyczylo-Mysza, I., Skrzypek, E., Filek, M., Grzesiak, S., Grzesiak, M. T., Janowiak, F., Hura, T.,

Marcin’ska, I., Czyczylo-Mysza, I., Skrzypek, E., Filek, M., Grzesiak, S., Grzesiak, M. T., Janowiak, F., Hura, T.,

