تأثیر اندومیکوریزا باکتری‌های محک، رشد و تغذیه برگی با نانواکسید روی بر صفات موثر بر پر شدن دانه تریتیاله (Triticale) در شرایط شوری خاک

بنظر بررسی تأثیر میکوریزا باکتری‌های محک، رشد و صفات پایه با نانواکسید روی بر صفات موثر بر پر شدن دانه تریتیاله در شرایط شوری خاک، آزمایش در کلیه شرایط محیطی با نانواکسید محک و باکتری‌های محک در سال 1393 اجرا گردید. این آزمایش شامل سه گروه محیطی خاک در شرایط سطح (بکر کرومین کود زیستی، کود میکوریزا، کود توم) باکتری‌های محک رشد سودوموناس پوییتا استرین 1 و ازتوکوک کرومیک استرین 1. کرک کود توم میکوریزا و باکتری‌های محک رشد و محصول پاشی با نانواکسید روی در شرایط سطح (عمر صرف ، مصرف 0/25 و 0/50 گرم در لیتر) بودند. نتایج نشان داد با افزایش شوری، عملکرد نک تک بوته افزایش و عملکرد تک بوته (0/25 گرم در لیتر) سه برابر عملکرد نک تک بوته (0/50 گرم در لیتر) بود. طول دوره پر شدن و دوره مؤثر بر پر شدن کاهش یافت. در حالی که بیشین و توانولیم و فرد محلول افزایش یافت. مقایسه میانگین نشتی در بالاترین عملکرد نک بوته (0/25 گرم در لیتر) سه برابر عملکرد نک تک بوته (0/50 گرم در لیتر) بود. طول دوره پر شدن (0/125 گرم در لیتر) سه برابر دوره پر شدن (0/25 گرم در لیتر) بود.

مراجع

1. Maluszynski et al., 2001
2. Horlein and Valentine, 1995
3. Rakha et al., 2011

بازه و دیگری و جدیدی چه چیست و در صورتی که نانواکسید و کمیت مطلوب دانه می باشد، پیشین نتایج یافت

PGPR

واژگان کلیدی: پرولین، تنش، عملکرد، کودهای پیلوژیک، PGPR

مقدمه

تریتیاله گیاه جدیدی از تلاش کنده و چاودار است (Maluszynski et al., 2001). این گیاه از یک سو دارای خصوصیات مطلوب چاودار از جمله رشد سریع، مقاومت در مقابل بیماری‌های گیاهی و قابلیت تولید در اراضی فقیر و کم

نويسنده مسئول: رازی اکرمی

نويسنده مسئول: رازی اکرمی

نويسنده مسئول: رازی اکرمی
گیاهی، راه کارهای مناسبی را برای مبارزه بیولوژیکی فراهم می‌نماید (عیزی‌رضا و ملکنی، 1387). بررسی‌های Bacilio و همکاران (2004) نشان دادند که نقش تغییرات نسبی در دمای هوا و بارش در کنترل بیماری‌ها ضروری می‌باشد. در این مطالعه، نقش تغییرات نسبی در دمای هوا و بارش در کنترل بیماری‌ها در سال‌های مختلف مورد بررسی قرار گرفته است. نتایج نشان دادند که با افزایش دمای هوا و کاهش بارش، میزان بیماری کاهش یافته است.

ورزش فراری باعث افزایش در تنش و استرس می‌گردد. افزایش تنش و استرس باعث افزایش فشار خون و کاهش توانایی ایمنی دستگاه‌های داخلی می‌گردد. این شرایط می‌تواند بستری عاملی را برای این بیماران باشد. به دلیل این تاثیرات، بهتر است که بیماران بیماری‌ای که در فشار خون بالا دارند و استرس بالا می‌کنند، بیماری‌های درونی و خارجی را بهتری بهداشتی داشته باشند. واکنش‌های آن در پاسخ به بیماری‌های درونی و خارجی می‌تواند در بیماری‌های درونی و خارجی بسیار مضر باشد.

 المسؤولان، این بیماری‌ها را به دلیل شرایط محیطی (مثلاً عواملی مانند تغییرات طبیعی مانند رطوبت و دمای هوا) و عواملی مانند فشار خون و استرس می‌کنند. به‌طور کلی، در مورد بیماری‌هایی که در فشار خون بالا دارند و استرس بالا می‌کنند، بیماری‌های درونی و خارجی را بهتری بهداشتی داشته باشند. واکنش‌های آن در پاسخ به بیماری‌های درونی و خارجی می‌تواند در بیماری‌های درونی و خارجی بسیار مضر باشد.

بعد از اینکه از تشخیصات فوق برای این بیماری‌ها بهره‌برداری گردد، باید بهتر از جوانان و افراد سالم بهتر باشند. این بیماری‌ها می‌توانند در بیماری‌های درونی و خارجی بسیار مضر باشند.
تأثیر ان-domicrobیا باکتری‌های محیط در کاهش وزن، شکم و زیرهای قرار گرفتن.

لなければ با قرار گرفتن باکتری‌های محیط در کاهش وزن و زیرهای قرار گرفتن.

شده و همکاران (2001) انجمن شد. خصوصیات

فیزیکو–شیمیایی خاک مورد استفاده در جدول 2 آورده شده است. خاک هر گلدان حاوی یک قسمت ماهه بادی، و این قسمت خاک معمولی و یک قسمت کود دامی بود. پس از تهیه خاک یکدست، 25 کیلوگرم خاک به هر گلدان (با قطر 45 سانتی‌متر و عمق 50 سانتی‌متر) تا ارتفاع 40 سانتی‌متر اضافه شده و این ترتیب حجم یکسانی از خاک درون گلدان ها ریخته شد. 40 عدد بذر در هر گلدان برای تولید گرده 400 بذر در متر مربع که در امکان مط浯 و توزیع شده شده و برای این رقم است کشته می‌باشد. میانگین وزن هزار دانه در هر عدد بذر می‌باشد. در این دانه 20 هزار مایه بود، اولین آبیاری بعد از کاشت و آب‌یاری بی‍ی‌بلیسه با شرایط محیطی و تیزی گیاه زراعی انجام شد. در طول دوره رشد کنترل علب‌های هرز به صورت دستی انجام گلدان‌ها در شرایط گلدان‌های در دمای 27 و 20 درجه سانتی‌گراد با طول دوره روشنایی 15 و 10 ساعت در طول دوره را بیان کرده (با استفاده از ترکیب از لامپ‌های معمولی و نهایی) و رطوبت نسبی 70 درصد نگهداری شدند. به منظور بررسی تأثیر تیمارهای مورد بررسی بر سرعت پر شدن دانه، نمونه‌برداری از 21 روز بعد از خوش‌هده‌هی 200 دی ماه (در دوازده زمان هر چهار روز یک بیک پر شده شده. هر بار خوشه از هر گلدان که از انتقال به آزمایشگاه اندازه‌گیری داده‌ها از خوش‌هده‌هی جدید به مدت دو ساعت در آینه الکتریکی نگهداری داده‌ها اندازه‌گیری داده‌ها اندازه‌گیری داده‌ها اندازه‌گیری داده‌ها اندازه‌گیری داده‌ها اندازه‌گیری DUD و فاصله‌ها در کمک روبه روی برنامه گردشی یک دستگاه دی‌آپ نرم‌افزار SAS Proc NLIN رابطه (1) که در آن $G\text{W} = \begin{cases} a + b/t_0 & t < T_0 \\ a + b/t & t > T_0 \end{cases}$

مواد و روش‌ها

آزمایش در سال زراعی 1393 در گلخانه تحقیقات دانشکده علوم کشاورزی دانشگاه محقق اردبیلی به شورای فناوری در قلب طراحی یا به‌طور کامل تصادفی در سه تکرار اکتا‌گراید.
دانه‌ها حاوی از آن‌ها به عنوان ارزش آن صفت در جدول تجزیه واریانس منظور گردید. برای تجزیه داده‌ها و رسم نمودارها از نرم‌افزار SAS و استفاده شد و میانگین‌ها با آزمون مقایسه‌شان داده شدند.

توجه و بحث

نتایج تجزیه واریانس نشان داد تأثیر شوری، کودهای بیولوژیک، محلول باشی از نانوکسید روت و اثر ترکیب تیماری این سه عامل بر عملکرد تک بوته، تعادل داده و در سبیله. این محلول و وزن صد دست، سرعت بیشتر شدن دانه، طول دوره و دوره موتر بر شدن دانه معنی‌دار گردید و لی در مورد ارتفاع بوته، طول سبیله اصلی و بیولوژیک اثر اصلی شوری. کودهای بیولوژیک و محلول باشی از نانوکسید روت معنی‌دار بود. همچنین اثر ترکیب تیماری شوری در کود زیستی برای صفت پرولین معنی‌دار بود (جدول 3).

ارتفاع بوته: مقایسه میانگین‌ها نشان داد بیشترین ارتفاع بوته در عدم اعمال شوری (3/83 سانتی‌متر)، کاربرد توان باکری ماشین محور رشد با مکرورا (135/41 سانتی‌متر) و محلول باشی (0/87 گرم در لیتر نانوکسید روی (95/10 سانتی‌متر) کمتر ارتفاع بوته به ترتیب در شوری 20 میلی‌مولار (126/82 سانتی‌متر) و کمتر ارتفاع بوته به ترتیب در شوری 60 میلی‌مولار (127/12 سانتی‌متر). علم کاربرد ارزیابی بیولوژیک (126/82 سانتی‌متر) و علم محلول باشی (94/79 سانتی‌متر) به دست آمد (جدول 4). اظهار داشتند باکری ماشین محور رشد با دهلی اهمیت که در تثبیت نیتروژن و تولید هیدرومون‌ها ایندیل استبیل اسید و سیتوکین‌های دارند نشان داد. T

جدول 1- مشخصات نانوکسید روی مورد استفاده

| رنگ | میکانیک اندازه ذرات | خلChoose any 10 words from the text and explain their meaning in English. The words can be from any part of the text. The selected words should help a non-native speaker understand the text better.

- **Table 1**: Features of nanoparticles used for the investigation
- **Table 2**: Characteristics of nanoparticles used for the experiment
- **Ellis and Pieta-Filho, 1992**: A reference used in the study
- **Excel and SAS**: Software tools mentioned in the study
- **Stress and tension**: Key factors mentioned in the study
- **Moisture and water**: Parameters related to the experiment
- **GFR and EFP**: Indicators mentioned in the study
- **Pieta-Filho, 1992**: Another reference used in the study
- **Bates and Filho, 1992**: A reference used in the study
- **Dubois et al., 1956**: Another reference used in the study
- **SGW and EFFP**: Indicators related to the study
- **Wang and Song, 2010**: A reference used in the study

These words can help a non-native speaker understand the context and content of the text better. They include key terms, methodologies, and references used in the study.
جدول 3- تجزیه واریانس تأثیر نانوکسید روی کودهای بیولوژیک و شوری بر عملکرد و برخی صفات مربوط با آن در تریکاله

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>درجه آزادی</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروپین</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>عملکرد تک بونه استادی</td>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>طول سلسله استادی</td>
<td>7</td>
<td>S</td>
</tr>
<tr>
<td>ارتفاع بونه استادی</td>
<td>7</td>
<td>Zn</td>
</tr>
</tbody>
</table>

جدول 4- تجزیه واریانس تأثیر نانوکسید روی کودهای بیولوژیک و شوری بر عملکرد و برخی صفات مربوط با آن در تریکاله

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>درجه آزادی</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرعت بر شدن دانه</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>وزن شدید بر شدن دانه</td>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>قطر محلول دانه</td>
<td>2</td>
<td>Zn</td>
</tr>
<tr>
<td>دوره مولت بر شدن دانه</td>
<td>2</td>
<td>Zn × S</td>
</tr>
</tbody>
</table>

بسیاری از محققین نظر ارتفاع بونه گندم رشد به میکوریا، موجب میشود که تحقیقات ریشه گیاهان افزایش یافته و باعث تحریک و یافتن هیدرولیک قارچ و نفوذ به آنها در ریشه گیاهان میشود (Jeffries et al., 2003) از طرف دیگر میکوریا با افزایش فعالیت باکتری های محکر رشد بررسی شده و موجب میشود که رشد گیاهان به گونه‌ای که ناشی از رشد بونه گندم و همکاران (Linderman, 1992) کمددن زالی از رشد به دلیل اخلال در متابولیسم بافت سلولی و خسارتهای بروتوتیون غلظتی کلوركتب، آتروی و ایندیا استیکه (Cakmak, 2000) موجب میشود.

اساس در بهبود صفات مورفولوژیک نظر ارتفاع بونه گندم و همکاران (Cho, 2006) بیان کرده که استفاده از میکوریا موجب افزایش رشد سرورگم در شرایط شوری میشود. نتایج نشان داد که استفاده از باکتری‌های محکر رشد موجب بهبود رشد غلات و لگه‌ها در شرایط گندم و همکاران (Behl, Nadeem et al., 2010) معتقدند که افزایش ارتفاع بونه در شرایط استفاده از کودهای زئستی را می‌توان به رابطه مثبتی که بین باکتری‌های محکر رشد و میکوریا وجود دارد نسبت داد.
جدول 4- مقایسه میانگین اثر اصلی شوری، کودههای بیولوژیک و مقدار ثانویه روی ارتفاع بونه پرولین و طول سبیله تریپکاله

<table>
<thead>
<tr>
<th>جدول سبیله اصلی</th>
<th>ارتفاع بونه (سانتی‌متر)</th>
<th>پرولین (میلی‌گرم در گرم وزن تر)</th>
<th>محلول پاشی (گرم در لیتر)</th>
<th>LSD%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>طول سبیله کاهش و در حالت تلقیح با باکتری افراشیت</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| پیدا کرد. آنان علت وی که کاهش گسترش ریش و عدم توانایی ریشه در دسترسی به منابع غذایی و یاری و در شرایط شوری نسبت دادند. ارگانیسم و همکاران (1380) افزایش طول سبیله گندم را در مقایسه با شاهد در اثر تلقیح با آزوبریلوی مولار کاربرد توم‌آزمایش‌های محورک رشد و میکروبیا (1372 سانتی متر) و محلول پاشی 0/0 گرم در لیتر ناوناکسید روز (1/2 سانتی متر) به دست آمد. (جدول 4). کمترین طول سبیله اصلی بیشترین نسبت دادند. بیشترین نسبت دادند.

پرولین: نتایج نشان داد بیشترین میزان پرولین در شوری 6 میلی‌مولار (9/8 گرم در گرم وزن تر)، کاربرد توم‌آزمایش‌های محورک رشد و میکروبیا (7/6 گرم در گرم وزن تر) و محلول پاشی 8/6 گرم در لیتر ناوناکسید روز (7/8 گرم در گرم وزن تر) بیشترین نسبت دادند. بیشترین نسبت دادند.

روی می‌تواند آن را با محدود کردن جذب سدیم و کلسیم و بیان آن با هیچ تحقیق دیگر طول سبیله اصلی در آزمون‌های شوری (1/2 سانتی‌متر)، کاربرد توم‌آزمایش‌های محورک رشد و میکروبیا (1372 سانتی متر) و محلول پاشی 0/8 گرم در لیتر ناوناکسید روز (1/2 سانتی متر) بیشترین نسبت دادند. (جدول 4). کمترین طول سبیله اصلی بیشترین نسبت دادند.

روی می‌تواند آن را با محدود کردن جذب سدیم و کلسیم و بیان آن با هیچ تحقیق دیگر می‌تواند آن را با محدود کردن جذب سدیم و کلسیم و بیان آن با هیچ تحقیق دیگر می‌تواند آن را با محدود کردن جذب سدیم و کلسیم و بیان آن با هیچ تحقیق دیگر می‌تواند آن را با محدود کردن جذب سدیم و کلسیم و بیان آن با هیچ تحقیق دیگر می‌تواند آن را با محدود کردن جذب سدیم و کلسیم و بیان آن با هیچ تحقیق دیگر.
تأثیر اندومیکوربیکا باکتری‌های محرک رشد و تغذیه برگی و تئوکلاکسید...
جدول 5- مقایسه میانگین اثر شوری در کودهای بیولوژیک بر میزان پرولین بر گ پرچم تریپکاله

<table>
<thead>
<tr>
<th>کود</th>
<th>رشد و میکوریز</th>
<th>سودوموناس</th>
<th>کاربرد نوام باکتری‌های محیطی</th>
<th>کاربرد نوام اکتیکر</th>
<th>شوری</th>
<th>عدم کاربرد کودهای بیولوژیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0</td>
<td>48/11 a</td>
<td>40/2 f</td>
<td>0/14 5</td>
<td>10/6 6</td>
<td>5/6 b</td>
<td>3/6 b</td>
</tr>
<tr>
<td>F1</td>
<td>48/11 c</td>
<td>40/2 f</td>
<td>0/14 5</td>
<td>10/6 6</td>
<td>5/6 b</td>
<td>3/6 b</td>
</tr>
<tr>
<td>F2</td>
<td>48/11 d</td>
<td>40/2 f</td>
<td>0/14 5</td>
<td>10/6 6</td>
<td>5/6 b</td>
<td>3/6 b</td>
</tr>
<tr>
<td>F3</td>
<td>48/11 e</td>
<td>40/2 f</td>
<td>0/14 5</td>
<td>10/6 6</td>
<td>5/6 b</td>
<td>3/6 b</td>
</tr>
</tbody>
</table>

l$\text{LSD}_{0.05} = 0/01$

میانگین‌های یا حریف مشابه در هر ستون اختلاف آماری معنی‌داری با هم ندارند.

جدول 6- مقایسه میانگین اثر ترکیب تیمار محلول پاشی نانواکسید روی کودهای بیولوژیک و شوری بر عملکرد. تعداد دانه در سیله و قند محلول تریپکاله

<table>
<thead>
<tr>
<th>کود</th>
<th>عملکرد (گرم در بونه)</th>
<th>تعداد دانه در سیله</th>
<th>قند محلول (گرم در ترن)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>Zn0</td>
<td>Zn1</td>
<td>Zn2</td>
</tr>
<tr>
<td>F0</td>
<td>2/45 0</td>
<td>2/45 1</td>
<td>2/45 2</td>
</tr>
<tr>
<td>F1</td>
<td>2/45 0</td>
<td>2/45 1</td>
<td>2/45 2</td>
</tr>
<tr>
<td>F2</td>
<td>2/45 0</td>
<td>2/45 1</td>
<td>2/45 2</td>
</tr>
<tr>
<td>F3</td>
<td>2/45 0</td>
<td>2/45 1</td>
<td>2/45 2</td>
</tr>
</tbody>
</table>

\text{l$\text{LSD}_{0.05} = 0/01$}

میانگین‌های یا حریف مشابه در هر ستون اختلاف آماری معنی‌داری با هم ندارند.
جدول 7- مقایسه میانگین اثر ترکیب تیماری محلول پاشی نانوکسید روی کودهای بیولوزیک وشوری بر وزن دانه و سرعت پر شدن دانه تریکالی

<table>
<thead>
<tr>
<th>کود زیستی</th>
<th>سطح شوری</th>
<th>وزن دانه (گرم)</th>
<th>سرعت پر شدن دانه (گرم در روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zn₀</td>
<td>Zn₁</td>
<td>Zn₂</td>
</tr>
<tr>
<td>S₀</td>
<td>F₀</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>F₁</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>F₂</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>F₃</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>S₁</td>
<td>F₀</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>F₁</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>F₂</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>F₃</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>S₂</td>
<td>F₀</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>F₁</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>F₂</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>F₃</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>S₃</td>
<td>F₀</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>F₁</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>F₂</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>F₃</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

LSD₀.05: 0.04

نتیجه‌گیری: اثر ترکیب تیماری محلول پاشی نانوکسید روی کودهای بیولوزیک وشوری بر وزن دانه و سرعت پر شدن دانه تأثیر گذار بود. میانگین‌های هورمون‌های به ویژه سبک‌ترین می‌تواند با انتقال یون‌های موثر در باز شدن روزنها و تنظیم سطح کلروفیل موجب افزایش سرعت فتوسنتز و در نهایت افزایش محتواهای کربوهیدرات‌ها در گیاهان شود. نتایج تحقیقات Dell و Marschner (1994) نشان داد که فلزهای میکرو‌یکی (به عنوان مثال Zn) افزایش میزان محلول باعث افزایش مقدار فتوسنتز گیاهان می‌شود. Abo-Ghalia و Khalafallah (2008) در پژوهشی نشان دادند که افزایش مقدار فلزهای میکرو‌یکی به‌ویژه فلزات کالسیوم و الکلیهما به‌وسیله توجه به تاثیرات افزایشی آنتی‌اکسیدان، کشف نقش فعالیت انرژی‌های آنتی‌اکسیدانی، تحقیق و تحقیقات اکسیدانی‌های دفاعی و تحقیق تحقیقات اکسیدانی ایجاد شده بود. وسیله‌شان نسبت دادند. وزن دانه و سرعت پر شدن دانه: تفاوت نشان داد که بیشترین وزن دانه (15/6 گرم) و سرعت پر شدن دانه تنش با توقف رشد یا ٣٧٤ تأثیر این ترکیبات از مسیرهای فتوسنتزی و تجربیات محلول‌انگیم یکی گزینه‌های و نیایان، نشان می‌دهد که ترکیبی بردار به پژوهش‌های محیطی برای افزایش مقدار محلول باعث بهبود رشد گیاهان در شرایط محیطی پایدار بود. Bano و Naseem (2014) نشان دادند که تلقیح بی‌بله گیاهان با پژوهش‌های محیطی زنده، موجب افزایش گسترش بی‌بله گیاهان می‌شود. Kapoor و همکاران (2013) گزارش کردند که گیاهان میکروبرای به‌وسیله هیدرولیز نشان دادند افزایش مقدار محلول گیاهان میزان بی‌بله. دلیل دیگر برای افزایش در افزایش محیطی و بهبود فتوسنتز محلول، افزایش مقدار هورمون‌های سبک‌ترین و جنبه‌های از گیاهان میکروبرای است. افزایش در میزان این
جدول 8- مقایسه میانگین اثر ترکیب تیماری محلول پاشی نانوکسید روی کودهای بیولوژیک و شوری بر طول دوره و دوره موثر پر شدن

<table>
<thead>
<tr>
<th>کود زیری</th>
<th>محلول روی</th>
<th>زن1</th>
<th>زن2</th>
<th>Zn1</th>
<th>Zn2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>F0</td>
<td>0.55^a</td>
<td>0.51^b</td>
<td>0.52^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td></td>
<td>F1</td>
<td>0.55^a</td>
<td>0.51^b</td>
<td>0.52^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>0.51^b</td>
<td>0.49^a</td>
<td>0.52^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>0.51^b</td>
<td>0.49^a</td>
<td>0.52^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td>S1</td>
<td>F0</td>
<td>0.49^b</td>
<td>0.57^a</td>
<td>0.51^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td></td>
<td>F1</td>
<td>0.49^b</td>
<td>0.57^a</td>
<td>0.51^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>0.49^b</td>
<td>0.57^a</td>
<td>0.51^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>0.49^b</td>
<td>0.57^a</td>
<td>0.51^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td>S2</td>
<td>F0</td>
<td>0.50^b</td>
<td>0.73^a</td>
<td>0.51^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td></td>
<td>F1</td>
<td>0.50^b</td>
<td>0.73^a</td>
<td>0.51^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>0.50^b</td>
<td>0.73^a</td>
<td>0.51^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>0.50^b</td>
<td>0.73^a</td>
<td>0.51^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td>S3</td>
<td>F0</td>
<td>0.50^b</td>
<td>0.73^a</td>
<td>0.51^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td></td>
<td>F1</td>
<td>0.50^b</td>
<td>0.73^a</td>
<td>0.51^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>0.50^b</td>
<td>0.73^a</td>
<td>0.51^b</td>
<td>0.49^a</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>0.50^b</td>
<td>0.73^a</td>
<td>0.51^b</td>
<td>0.49^a</td>
</tr>
</tbody>
</table>

یادداشت: S1، S2 و S3 به ترتیب عدد شری، شری2 و شری3. (پی دوپ) به ترتیب عدد کاربرد F1، F2 و F3

میانگین‌های با حروف مشابه در هر ستون اختلاف آماری معنی‌داری با هم ندارند.

مراجع:
2. سیدگی و زنی (2012).
3. مهدوی، افتخاری و جهانی (2013).

مرحله دوم که بعد از رسیدگی وزنی است، وزن دانه تغییر نمی‌کند (Sedghi et al., 2008). وزن دانه به مقدار انقلا مواد فتوسنتزی وابسته است که کم میزان به سرعت و طول دوره انقلا مواد پرورده بستگی دارد و به عوامل سرعت و دوره پر

شوری، کاربرد توم میکروپزا با باکتری‌های محور شد و محلول پاشی 0/8/10 در لیتر نانوکسید روی و کمترین این صفات (به ترتیب 37 و 38 درصد) در شوری 20 میلی‌مولار، عدم کاربرد کودهای بیولوژیک و عدم محلول پاشی به دست آمده (جدول 7)، مدل تغییرات وزن دانه را می‌توان به مسیره تغییرات کرد. در مرحله اول، وزن دانه تا رسیدن به رسیدگی وزنی به طور خطی افزایش می‌یابد و در

LSD0.05 = 0.05

راست از نیمی به طور خطی افزایش می‌یابد و در
جدول 9- معادلات برای سرعت و طول دوره پر شدن دانه تریکال‌های (Zn) سطح روی

<table>
<thead>
<tr>
<th>کد</th>
<th>شرایط شیمیایی</th>
<th>ضعف روابط</th>
<th>ضعف روابط</th>
<th>ضعف روابط</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>F_0</td>
<td>$Y = -0.0306 + 0.00158X$</td>
<td>$Y = -0.0342 + 0.00172X$</td>
<td>$Y = -0.0374 + 0.00179X$</td>
</tr>
<tr>
<td>F_1</td>
<td>$Y = -0.0314 + 0.00173X$</td>
<td>$Y = -0.033 + 0.00175X$</td>
<td>$Y = -0.0426 + 0.00186X$</td>
<td></td>
</tr>
<tr>
<td>F_2</td>
<td>$Y = -0.0376 + 0.00191X$</td>
<td>$Y = -0.0397 + 0.00187X$</td>
<td>$Y = -0.0362 + 0.00188X$</td>
<td></td>
</tr>
<tr>
<td>F_3</td>
<td>$Y = -0.0391 + 0.00184X$</td>
<td>$Y = -0.0406 + 0.00195X$</td>
<td>$Y = -0.038 + 0.00198X$</td>
<td></td>
</tr>
<tr>
<td>S_1</td>
<td>F_0</td>
<td>$Y = -0.0229 + 0.00141X$</td>
<td>$Y = -0.0228 + 0.00145X$</td>
<td>$Y = -0.0288 + 0.00158X$</td>
</tr>
<tr>
<td>F_1</td>
<td>$Y = -0.0308 + 0.00167X$</td>
<td>$Y = -0.0257 + 0.00162X$</td>
<td>$Y = -0.0362 + 0.00186X$</td>
<td></td>
</tr>
<tr>
<td>F_2</td>
<td>$Y = -0.0359 + 0.0018X$</td>
<td>$Y = -0.0235 + 0.00157X$</td>
<td>$Y = -0.0318 + 0.00178X$</td>
<td></td>
</tr>
<tr>
<td>F_3</td>
<td>$Y = -0.0329 + 0.00184X$</td>
<td>$Y = -0.0042 + 0.00189X$</td>
<td>$Y = -0.0363 + 0.00187X$</td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td>F_0</td>
<td>$Y = -0.0288 + 0.00157X$</td>
<td>$Y = -0.0259 + 0.00149X$</td>
<td>$Y = -0.028 + 0.00154X$</td>
</tr>
<tr>
<td>F_1</td>
<td>$Y = -0.0295 + 0.0016X$</td>
<td>$Y = -0.0208 + 0.00143X$</td>
<td>$Y = -0.0214 + 0.00149X$</td>
<td></td>
</tr>
<tr>
<td>F_2</td>
<td>$Y = -0.0295 + 0.00164X$</td>
<td>$Y = -0.0294 + 0.00165X$</td>
<td>$Y = -0.0326 + 0.00178X$</td>
<td></td>
</tr>
<tr>
<td>F_3</td>
<td>$Y = -0.0376 + 0.00188X$</td>
<td>$Y = -0.0342 + 0.00182X$</td>
<td>$Y = -0.0285 + 0.00179X$</td>
<td></td>
</tr>
<tr>
<td>S_3</td>
<td>F_0</td>
<td>$Y = -0.0216 + 0.00129X$</td>
<td>$Y = -0.0189 + 0.00136X$</td>
<td>$Y = -0.0185 + 0.00139X$</td>
</tr>
<tr>
<td>F_1</td>
<td>$Y = -0.0262 + 0.00151X$</td>
<td>$Y = -0.0308 + 0.00171X$</td>
<td>$Y = -0.0279 + 0.00162X$</td>
<td></td>
</tr>
<tr>
<td>F_2</td>
<td>$Y = -0.0264 + 0.00153X$</td>
<td>$Y = -0.0259 + 0.00155X$</td>
<td>$Y = -0.0353 + 0.00183X$</td>
<td></td>
</tr>
<tr>
<td>F_3</td>
<td>$Y = -0.0354 + 0.00183X$</td>
<td>$Y = -0.0269 + 0.00163X$</td>
<td>$Y = -0.0303 + 0.00178X$</td>
<td></td>
</tr>
</tbody>
</table>

به طوری که با افزایش شوری، سرعت و طول دوره پر شدن دانها تأثیر مثبتی ندارد. افزایش وزن دانه از طریق طول دوره (Gebehyou et al., 1982) بر شدیدان و سرعت پر شدن دانه (Lidon and Dias, 2009) اثرات کننده که تأثیر سرعت پر شدن دانه بر عملکرد گندم بیشتر از طول دوره پر شدن دانه می‌باشد. به نظر می‌رسد با لحاظ اینکه در شرایط علمی، کاربرد تومه پاوریهای محاسبه‌گری و بایک شیت‌های محاسبه‌گری و محاسبه‌گری توانایی از افزایش وزن دانه و به تبع آن عملکرد دانه را توجیه نمی‌نماید.

طول دوره و دوره موثر پر شدن دانه‌ها: معادلات رگرسیونی برای دانه از جدول 9- نشان داد که بین تیمارهای مختلف شوری، کودهای پیوسته و محلول پاشی با نانوکسید روی ارث‌سازی و طول دوره پر شدن دانه تفاوت‌هایی وجود دارند.
جدول 10- همبستگی بین صفات مورد مطالعه

<table>
<thead>
<tr>
<th>رتبه</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار</td>
<td>0/876</td>
<td>0/875</td>
<td>0/874</td>
<td>0/873</td>
<td>0/872</td>
<td>0/871</td>
<td>0/870</td>
<td>0/869</td>
<td>0/868</td>
<td>0/867</td>
</tr>
</tbody>
</table>

1. ارتفاع بونه 2 طول بیلیم. 3. عمان کرده بونه. 4. تعداد داده در سیله. 5. وزن صد دانه. 6. سرعت پر شدن دانه. 7. طول دوره پر شدن دانه. 8. دوره مؤثر پر شدن دانه. 9. پرولین. 10. فند محلول

** و * به ترتیب درصد و میلیارد در سطح احتمال 5 و 1 درصد مشاهده شد که کاربرد نواصباکتری های محرک رشد با فارگ

میکروژی پیشین تأثیر را بر روی این صفات داشته است.

همچنین از لحاظ محلول باشی با نانوکسید روز مشخص

گردید که محلول باشی با 0/8 گرم در لیتر نانوکسید روی

پیشین و عدم محلول باشی کمترین تأثیر را بر سرعت و

طول دوره پر شدن دانه داشت. به نظر می‌رسد که طولانی بودن

مرحله پر شدن دانه فرصت کافی برحای انتقال مواد فوتونیزی به

دانه و در نتیجه افزایش عاملکرده را فراهم می‌سازد.

** همبستگی بین صفات مورد مطالعه: جدول ضریب

همبستگی (جدول 10) نشان دهنده این است که صفات مربوط

به عاملکرده و اجزای عاملکرده و همچنین صفات مربوط به بر

شدن دانه با هم‌دیگر همبستگی مثبت و معنی‌دار با صفات

پرولین و قند محلول همبستگی منفی و معنی‌دار دارد

همچنین بین پرولین و قند محلول همبستگی مثبت و معنی

داری وجود دارد.

** منابع

ارکادانی، م. 3. مجد. ف.، مظاهری، د. و نور محمدی، ق. (1380). بررسی کارایی آزمایشگاه‌های میکروژی و استریتومایسیس به همراه

مصرف کود دامی در گندم با استفاده از فسفر. مجله علوم زراعی ایران. (1382), 37, 29-58.

Effects of endo-mycorrhiza, plant growth promoting rhizobacteria and foliar application with nano zinc oxide on effective traits at grain filling of *Triticale* under soil salinity condition

Younes Kheirizadeh Arough¹, Raouf Seyed Sharifi*²

¹ Ph.D student of Agronomy and Plant Breeding, University of Mohaghegh Ardabili, Ardabil, Iran.
² Professor, Department of Agronomy and Plant Breeding, University of Mohaghegh Ardabili, Ardabil, Iran.

(Received: 27/12/2015, Accepted: 09/05/2016)

Abstract

In order to evaluate the effects of mycorrhiza, plant growth promoting rhizobacteria and nano zinc oxide foliar application on effective traits at grain filling of *Triticale* under soil salinity condition, a factorial experiment was conducted based on randomized complete block design with three replications in research greenhouse of Faculty of Agriculture Sciences, University of Mohaghegh Ardabili in 2014. Factoral experiment included soil salinity in four levels (non-salinity, salinity 20, 40 and 60 mM NaCl), biofertilizers in four levels (no application of biofertilizers, application of mycorrhiza, Azotobacter chroococcum strain 5 + Psedomunas putida strain 186, both application PGPR + mycorrhiza) and nano zinc oxide in three levels (without nano zinc oxide, application of 0.4 and 0.8 g lit^{-1}). Results showed that grain yield per plant, yield components, grain filling rate, grain filling period and effective grain filling period decreased with increasing of soil salinity. Whereas proline and soluble sugars content increased. Means comparison showed that the highest of yield per plant (3.64 g. plant^{-1}), grain filling rate (0.00196 g day^{-1}), grain filling period (52.75 days) and effective grain filling period (36.62 days) were obtained at both applications of PGPR and mycorrhiza, foliar application 0.8 g lit^{-1} nano zinc oxide and no-salinity. The highest content of soluble sugars (99.48 mg g^{-1} FW) was obtained at both applications of PGPR and mycorrhiza, foliar application 0.8 g.lit^{-1} nano zinc oxide and salinity of 60 mM. Salinity of 20, 40 and 60 mM NaCl decreased 8.9%, 22.11% and 32.34% respectively from grain yield and application of biofertilizers and nano zinc oxide compensated 40.17%, 49.74% and 40% respectively from yield reduction. Based on the results, it seems that application of biofertilizers and nano zinc oxide can be recommended for profitable *Triticale* production under soil salinity condition.

Keywords: Proline, Stress, Yield. Bio Fertilizers, PGPR

*Corresponding Author, Email: Raouf_ssharifi@yahoo.com