تأثیر اسید سالیسیلیک در بهبود خسارت تنش سرمازدگی در Zea mays L. (پرداخت‌گر)

نویسنده مسئول، نشانی پست الکترونیکی: m.kafi@ferdowsi.um.ac.ir

چکیده:
تنش سرمازدگی معمولاً پیشتر در گیاهان مناطق گرم‌سیری و نیم‌گرم‌سیری و یا گیاهان رشد نیافته در این مناطق مشاهده می‌شود،لحظه وسیله‌ای و در زمان‌های مختلف به‌وجود اساس دارد. تشکیل حساسیت سرمازدگی به‌وسیله سازگاری فعالیت‌های آنزیمی مختلف باعث تولید انرژی است. این به دلیل نقش فعالیت‌ها در افزایش ظوره سرمازدگی می‌باشد. پژوهش‌ها نشان‌دهنده درآمدهای بهبود کاهش وزن برخوردار می‌باشد. تغییرات در شرایط رشد و نگهداری گیاهان از این رویارویی می‌باشد.

مقدمه:
خسارت ناشی از سرما در مراحل حساس رشد و نوگیاهان یکی از عوامل مهم کاهش عملکرد گیاهان و افزایش تنش سرمازدگی است. (Wang and Adams, 1980) به گونه‌ای که این مقدار به گیاهان و نیز گیاه‌های گرم‌سیری در یک ماه به‌دست می‌آید. در این راستا، اتاق‌هایی به‌منظور رشد گیاه‌ها تحت تاثیر قرار دهند. به‌همین‌نرم‌ها، برخورداری از واکنش گیاه‌ها به تنش سرمازدگی در این مراحل از اهمیت خاصی برخوردار است (Arvin and Donnelly, 2008). اسید مقدمة:

وزن‌های کلیدی: آتش اکسیدانت، کاتالاز، کارپروفیل، گیاهه زن، تولید، پروتئین، نیت‌فناکی، و تغییرات در شرایط و نگهداری گیاهان از این رویارویی می‌باشد. تغییرات در شرایط رشد و نگهداری گیاهان از این رویارویی می‌باشد.
سالسیبلیکس می توانند در ایجاد مقاومت به سرم و تأثیر بر فعالیت آنتی‌بیوتیک‌ها، سوخت و ساز و سالسیبلیس پرکاتکید هیدروژن نقش داشته باشند (Janda et al., 2003). اسید سالسیبلیس و سایر مشتقات فنی از ایجاد مقاومت گیاهان به انواع نشان نشان دهند. این اسید جزئی از مسیرهای سیگنالیستی گیاه و هیپرونیسیتی در گیاه قا مو شود (Raskin, 1991). اسید سالسیبلیس به عنوان نوعی ترکیب کاندیدا رشدن، در رشد گیاه، القای گلدندی، حرکت مواد و تغییرات اثرات سیلیف والیک و باعث شدن نشانه‌های مختلف اسید سالسیبلیس و مدت زمان تأثیر گذاری آن و افزایش تعادلی را در گیاه سبب می‌کند (Hayat and Ranney, 2004, Senaratna et al., 2003). سپس، مقدار پرولین آزاد در بیماری در گیاهک با تشخیص محیطی مانند نشان نشان داده می‌شود که مقدار سالسیبلیس به مقدار زیادی افزایش می‌یابد و سبب تثبیت گیاهان شده در هنگام داشتن سرمایه را می‌کند (Raney, 1991). تجمیع پرونید آزاد اغلب با مقاومت گیاهان در وضعیت دسترس تنش های زیاد به ویژه دماغ کم ارتباط است (Raney, 1991). پرونید نشان می‌دهد که سالسیبلیس گیاهان تحت تنش درد و در تنظیمات اسپرمولون و نیز در مقاومت‌های نیز ملور است (Yelensky, 1979). وقتی بافت گیاهی در معرض سرمایه قرار می‌گیرد تولید مولکول ی های گیاهی مبتنی در آن افزایش می‌یابد. این مولکول ها به ترتیب برخی از نشانه‌های پرکاتکید و همیپاتون استفاده نشان دهند. و در نهایت شناسایی گیاهی برای کاهش اثرات ایمیلکولون در ترکیب سالسیبلیس سالسیبلیس گیاهی استفاده در کاهش سرماهای (SOD) و کاتالاز (Apel and Hirt, 2004) از افزایش می‌دهد (CAT). وقتی اسید سالسیبلیس در غلظت مایع باعث افزایش در نشان اسپرمولون به ویژه در پاتوژن‌ها استفاده می‌شود، این هورمون باعث بالا رفتن سمنت آنتی‌بیوتیک‌ها بفیت گیاهی از طریق نشان داده کردن آنتی‌بیوتیک‌های آنتی‌اکسیدان‌های سویم کئو et al., 2010, Luo et al., 2012).

مواد و روش‌ها:

این تحقیق در سال 1394 به صورت فناوری در قالب طرح کاملاً تصمیم‌گیری 3 تکرار در گلخانه تحقیقات دانشگاه کشاورزی، دانشگاه فردوسی مشهد به اجرا در آمد. گیاهان از این تکرار سالسیبلیس در دو تیمار (عمر نشان (شاهد) و نشان تیمار) در مرحله چهار بارکی) محلول استیم سالسیبلیس در س غلظت (محول 500 و 0.04 میکرو

بررسی ثانی آن بر میزان فعالیت آنتی‌اکسیدان در کل اطلاعات مشاهده کرده که فعالیت در دماهای کمتر کاهش می‌یابد. این نتیجه باید با دلیل تولید کمتر رادیکال‌های آزاد در دماهای بالاتر و یا کل سالسیبلیس کمتر در دماهای بالاتر باشد (Pennycooke et al., 2005). نتایج کریمی (1993) بر روی گل میوه مشابه نتایج دقیق شدید بات‌کار آنتی‌اکسیدان در شرایط نشان دمایی بود. همچنین اسید و همکاران (1394) نتایج مشابه بر روی سر خار گل بدست Karlidag و همکاران (2004) بر روی ذرت Farooq و همکاران و تام (2009) بر روی خیار تحقیق اثرات سرمایه در سالسیبلیس، حجم سالسیبلیس، و سالسیبلیس از جمله حجم سالسیبلیس (Senaratna و همکاران (2001) پرکاتکید کردن. اثرات نشان اکسیدان‌های ناشی از سرمایه و خشک شدن درجوی گیاه و گوجه فرنگی را مورد بررسی قرار داده، نتایج آن ها نشان داد که با کاهش سمیپاتوکسین و سالسیبلیس بر سر خارجی در شرایط نشان فعالیت آنتی‌اکسیدن از جمله سوپر اکسید دیسمنوزا و کاتالاز Randa و همکاران (2001) طبق یک تحقیق مشابه نیز میزان فعالیت این دو آنتی‌اکسیدن را تحت شرایط دمایی گیاه کاهش یافته است. هدف از این آزمایش بررسی تأثیر اسید سالسیبلیس و فعالیت فیزیولوژیک و بیوشیمیایی در مرحله چهار بارکی در میان گیاه کاهش 400 تحت شرایط نشان سراماژن مشاهده شد.
مالون دی آلائید: اثرات نش‌ساز‌داری و استیلیسیک بر میزان مالون دی آلائید در سطوح یک درصد معنی‌دار بود

مولار) در نظر گرفته شد. در تاریخ اول از فروردین در حدود ۴۲
در گل‌دانه کاغذی حاوی معقله‌جیری از ماسه، پرلیت، چاه
مزرعه و درک‌کردن به نسبت مساوی و در عمق پنگ سانتی‌متری
کشت گردید و تا زمان استقرار کامپیوترهای حاضری به صورتی که
سطح خاک گل‌دانه رطوبت مورد نیاز را حفظ کنند صورت
پذیرفت. تا مرحله پهناور بگیری گیاه‌های شیش‌گیری در شرایط گلخانه
قرار داشتند و در این مرحله برای اعمال نش‌ساز‌داری
گیاه‌هایی درت به داخل اتفاقی سرد انتقال داده شدند.

ساعت قبل از انتقال گیاه‌هایی به اتفاقی سرد توسط
سالتیلیک محصول پوست‌داری. پس از اتفاقی در خرید
25 درجه سانتی‌گراد بود و سپس از قرار دادن نمونه‌ها به سرعت دو
درجه سانتی‌گراد در نشسته کاهش یافت و در دمای پنج درجه به
مدت 12 ساعت باقی ماند. کلیه اندازه‌گیری های صورت گرفته
24 ساعت پس از نش‌ساز‌داری صورت گرفت.

میزان مالون دی آلائید (MDA) به روش گو و همکاران
(Minami and Yoshikawa, 1979). تاثیب بر اکسیداز (GPX)
از روش پاگلیا (1987)، آنتیز
(Mirani and Yoshikawa, 1979)
کاتالاز (CAT)
(Aebi, 1984)
بوشیکوا (Guo et al., 2005)
و پیوسته به بررسی‌های از روش اورهلر
(Orhanl, 2004) و همکاران
(Orhanl, 2004) و همکاران
(CAT)
(Aebi, 1984)
بوشیکوا (Guo et al., 2005)
و پیوسته به بررسی‌های از روش اورهلر
(Orhanl, 2004) و همکاران
(CAT)
(Aebi, 1984)

NT: passیابی اندازه‌گیری محتمال آب‌بری، نمر چوبی و توسعه
یافته انتخاب گردید و سپس در قطعه هم اندوزه در
سانتی‌متری نهی و پس از نوزین وزن ت‌مول‌نی‌ها. پلاک‌ها
در پنگی داشتی آب‌بری فوراً مصرف به مدت ۱۲ ساعت، اشباع و
تودین شده، پس از نوزین شده در آن درجه
سانتی‌گراد به مدت 24 ساعت قرار گرفته و وزن خشک آنها
تغییر گردید. سپس محصول آب‌بری از معادله 1 محسوب شد.

\[
\text{RWC}=\frac{Ww-Dw}{Ww}\times 100
\]

RWC=Ww-Dw/ Ww

\[
\text{RWC}=\frac{Ww-Dw}{Ww}\times 100
\]

RWC=Ww-Dw\times 100

\[
\text{RWC}=\frac{Ww-Dw}{Ww}\times 100
\]
جدول 1- مانع تغییر، درجه آزادی و میانگین سرمایگی اثر تنش سرمای زدگی و اسید سالسیلیک بر آنزیم‌های آنزیم‌های آتی اکسیدان‌ها، پرولین، نشت الکترولیتی و محتوی آب نسبی در شرایط گلخانه‌ای

<table>
<thead>
<tr>
<th>آنزیم‌های آتی اکسیدان‌ها</th>
<th>درجه آزادی</th>
<th>سرمایگی</th>
<th>پرولین</th>
<th>کاتالاز</th>
<th>سوپراکسید دیمتساز</th>
<th>دی تروئین</th>
<th>مالون دی آلدهید</th>
<th>محتوی آب نسبی</th>
<th>الکترولیت</th>
<th>نش</th>
</tr>
</thead>
<tbody>
<tr>
<td>تنش سرمایزدگی</td>
<td>1</td>
<td>17/1</td>
<td>16/2</td>
<td>32/2</td>
<td>60/2</td>
<td>32/2</td>
<td>8/0</td>
<td>7/0</td>
<td>16/0</td>
<td>16/0</td>
</tr>
<tr>
<td>عدم تنش سرمایزدگی</td>
<td>2</td>
<td>16/2</td>
<td>32/2</td>
<td>17/1</td>
<td>60/1</td>
<td>32/1</td>
<td>8/0</td>
<td>7/0</td>
<td>16/0</td>
<td>16/0</td>
</tr>
<tr>
<td>اسید سالسیلیک</td>
<td>3</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>11/1</td>
<td>31/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
</tr>
</tbody>
</table>

جدول 2- مقایسه میانگین اثرات تنش سرمای زدگی و اسید سالسیلیک بر آنزیم‌های آتی اکسیدان‌ها و پرولین ذرت در شرایط گلخانه‌ای

<table>
<thead>
<tr>
<th>پرولین (μmol g⁻¹ fw)</th>
<th>کاتالاز</th>
<th>سوپراکسید دیمتساز</th>
<th>دی تروئین (nMol g⁻¹ fw)</th>
<th>مالون دی آلدهید (μmol g⁻¹ fw)</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>27/1</td>
<td>1/56</td>
<td>2/73</td>
<td>21/4</td>
<td>31/4</td>
<td>2/67</td>
</tr>
<tr>
<td>27/1</td>
<td>1/56</td>
<td>2/73</td>
<td>21/4</td>
<td>31/4</td>
<td>2/67</td>
</tr>
<tr>
<td>17/1</td>
<td>1/56</td>
<td>2/73</td>
<td>21/4</td>
<td>31/4</td>
<td>2/67</td>
</tr>
<tr>
<td>27/1</td>
<td>1/56</td>
<td>2/73</td>
<td>21/4</td>
<td>31/4</td>
<td>2/67</td>
</tr>
</tbody>
</table>

میانگین‌های ممکن در هر ستون حداقل دارای یک حرف مشترک هستند بر اساس آزمون LSD در سطح احتمال 5 درصد با هم تفاوت معنی‌دارند.

اکسیداسیون اسیدهای چرب می باشد و می تواند به عنوان شاخص پراکسیداسیون لیپید غشای سلولی که در انرژی گونه‌های فعال اکسیژن (Reactive oxygen species) یافت می‌شود که مورد توجه قرار می‌گیرد. اسید سالسیلیک باعث نمایش نشته جلوگیری باعث آنتی اکسیدان‌های فعال در کردن سیستم آنتی اکسیدان‌های های گیاهی از طریق فعال کردن آنزیم‌های آنژی‌های اکسیداز سوپراکسید دیمتساز و کاتالاز می‌شود و در نهایت میزان مالون دی آلدهید را در گیاهان تحت تنش کاهش می‌دهد (Popova et al., 2007).

(جدول 1). غلظت مالون دی آلدهید در شرایط تنش سرمایزدگی نسبت به عدم تنش (شاهد). 17/3 درصد افزایش پیدا کرد. محصول پایین اسید سالسیلیک با غلظت 400 میکرو مولار سبب کاهش 50 درصدی غلظت مالون دی آلدهید نسبت به عدم محصول پایین (شاهد). شد (جدول 2). پراکسیداسیون لیپید‌های غشای سلولی از طریق تجمیع مالون دی آلدهید موجب ایجاد آنزیم سوپراکسید در گیاهان می‌گردد و تیمار اسید سالسیلیک با کاهش مالون دی آلدهید می‌تواند با جلوگیری از پراکسیداسیون چربی آسید سرمایزدگی را کاهش دهد (Asgharia and Aghdam, 2010).

(1999) بیان کردند مالون دی آلدهید محصول نهایی
نتایج امید سالسیلسیک در بهویس خصوصی تنش سرامادگی در...

کاهش ۲۷۳ درصدی در تیروزین نسبت به عدم کاربرد آن شد (جدول ۲). بین مقادیر تیروزین و مالون دی آلادین همیستگی مثبت و بسیار معنی‌داری (۰/۰۸۴<۰<۰/۰۵) مشاهده شد (جدول ۵) که نشان‌دهنده افزایش مقادیر دی تیروزین با فعالیت مالون دی آلادین است. در بررسی Hedges و همکاران (۱۹۹۹) نیز مشاهده شد که بین دی تیروزین و مالون دی آلادین همیستگی مثبت وجود دارد. در زمان بروز تنش های محیطی آزاد شدن رادیکالهای آزاد باعث تخریب پروتئین‌ها می‌شود. در این حال اگزکسیون آمینه آزاد شده و از اتصال در اسید آمینه تیروزین، دی تیروزین ایجاد می‌شود (Dhindsa et al., ۱۹۸۰).

ذکر شده است که افزایش این تنش دهنده اثرات مخرب تنش محیطی هیات کلسترول، بپروری می‌کند (Dhindsa et al., ۱۹۸۰). و لذا به نظر می‌رسد که آسیب وارده به غشاء سلول ها تحت تأثیر نشان‌دهنده سیلیسیک (فازی) مالون دی آلادین) منجر به بروز نش سرامادگی در گیاه شده و به دنبال آن مقادیر دی تیروزین افزایش یافته است.

سیروکسیدئموز: اثر نش سرامادگی و اسید سالسیلسیک بر میزان سوپر اکسید دیمیترز معنی دار بود (جدول ۴). تنش سراما سبب کاهش ۱۴/۷ درصدی سوپرکسیدئموز نسبت به تیمار عدم نش سرامادگی شد (جدول ۵). همچنین استفاده از سالسیلسیک با خلفت ۴۰۰ و ۲۵۰ میکرو مولار به ترتیب منجر به افزایش غلظت سوپرکسیدئموز (در ترتیب ۱۴/۷ و ۲۶/۸ درصد) نسبت به عدم کاربرد آن شد (جدول ۲). بین مقادیر سوپر اکسید دیمیترز و دی تیروزین و مالون دی آلادید همیستگی منفی و بسیار معنی‌داری (۰/۰۸<۰<۰/۰۵) مشاهده شد (جدول ۵). کاربرد اسید سالسیلسیک در زمان نش سرامادگی آنزیم‌های آنتی اکسیدان‌ها از سوپر اکسید دیمیترز را فعال می‌کند و از این طریق تخمیر در بر زدن تنش سرامادگی را افزایش می‌دهد (Wang et al., ۲۰۰۶). تنش سراما موجب افزایش تولید آنزیم‌های محیطی از جمله آنتیوکسیدان سوپر اکسید در بینکوندن سلول و خصائص اکسیدانی می‌شود. در

چنین شرایطی، فعالیت آنزیم سوپر اکسید دیمیترز به عنوان
پرولین به عنوان یک سازوکار مقاومت در برای نشان سرمایه‌گذی در گیاهان مطرح می‌باشد. در گیاهان پرولین تجمیع یافته در پایه به نشان سرمایه‌گذی نقش مهمی در سبب زدایی انسجام (Yadegari et al., 2007) و همکاران (2008) مشاهده کرده‌اند که سرمایه‌گذی افزایش پرولین در گند به‌هایه شد. افزایش افزایش سلولی این فاکتور به موجب افزایش بیوستاتیک و نگهداری پرولین دارد افزایش میزان پرولین علاوه بر این، در شرایط نش نشان سرمایه‌گذی می‌کند (2007). امید سالیکس باعث بالا رفت نیل سیستم آنی اکسیدات ناف، افزایش کاهش از طریق عفاف کرد آزمی‌های میانی اکسیدات سپرایکسید دیسموتاکس و کاتالاز می می‌شود و در نهایت میزان مولوی آن در گیاهان تحت نش نشکه کاهش می‌باید (Shima et al., 2003). Popova et al., (2007) نمی‌شود. افزایش افزایش کاهش دیسموتاکس، گلیتانپوسپریداز، کاتالاز فعالیت کاتالاز وجود دارد و این نتیجه گیری کردند که فعالیت کاتالاز در گیاهان تحت تأثیر نش بشکه‌های بیشتری در شرایط نش است که از طریق قابلیت تنظیم اسمره و دندانی رشته در جداب بچه حاصل می‌شود (Kiara and Roy, 1999).

نتایج کلیلی: اثر نش سرامیدگی و اکسیدسالسبریلیک بر میزان

پرولین در سطح یک درصد معنی‌دار بود (جدول 1). نش سرامیدگی سبب افزایش 12 درصدی پرولین نسبت به عدم نش سرامیدگی بود (جدول 2). پیش‌بینی میزان پرولین مربوط به تیمار کاربرد 400 میکرو مول‌ایده سالیکس بود که 51/2 درصد بیشتر از تیمار شاهد بود (جدول 2). بین مقادیر پرولین با سپرایکسید دیسموتاکس، گلیتانپوسپریداز و کاتالاز همبستگی مثبت و معنی‌دار (0.01) و (0.001) مشاهده شد. در صحبتی که پرولین با میزان آن در اندیشه و دی تیروزین همبستگی مثبت و معنی‌دار (0.01) و (0.001) وجود داشت (جدول 5). نتایج کلیلی.
جدول 3- مقایسه اثرات افزایش تنش سرم زدگی و اسید سالسیلیک برشک کلکتولیت، محتوی آب نسبی و وزن خشک در فاز تغییر دش یافته

| درجه افزایش تنش سرم زدگی | محتوی آب نسبی | وزن خشک ساقه | وزن خشک بروز خسائرتهای قابل مشاهده در گیاه داشته است. کانسولون و
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>تنش سرامازدگی</td>
<td>7.1% a</td>
<td>92% a2</td>
<td>87% a3</td>
</tr>
<tr>
<td>عدم تنش سرامازدگی (شابه)</td>
<td>7.1% a</td>
<td>92% a2</td>
<td>87% a3</td>
</tr>
<tr>
<td>اسید سالسیلیک</td>
<td>7.1% a</td>
<td>92% a2</td>
<td>87% a3</td>
</tr>
<tr>
<td>عدم محلول پاشی (شابه)</td>
<td>7.1% a</td>
<td>92% a2</td>
<td>87% a3</td>
</tr>
</tbody>
</table>

جدول 4- مقایسه میزان وابستگی اثرات تنش سرم زدگی و اسید سالسیلیک بر نشت الکترولیت، محتوی آب نسبی و وزن خشک در فاز تغییر دش یافته

<table>
<thead>
<tr>
<th>تیمار</th>
<th>نشت الکترولیت</th>
<th>وزن خشک (g)</th>
<th>وزن خشک ساقه (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تنش سرامازدگی</td>
<td>87% a3</td>
<td>92% a2</td>
<td>87% a3</td>
</tr>
<tr>
<td>عدم تنش سرامازدگی (شابه)</td>
<td>7.1% a</td>
<td>92% a2</td>
<td>87% a3</td>
</tr>
<tr>
<td>اسید سالسیلیک</td>
<td>7.1% a</td>
<td>92% a2</td>
<td>87% a3</td>
</tr>
<tr>
<td>عدم محلول پاشی (شابه)</td>
<td>7.1% a</td>
<td>92% a2</td>
<td>87% a3</td>
</tr>
</tbody>
</table>

میانگین‌های که در هر ستون حداقل دارای یک حرف مشترک هستند بر اساس آزمون LSD در سطح احتمال 0.05 درصد با هم تفاوت معنی‌داری داردند.

تاکید اسید سالسیلیک در بهبود خسارت‌های دش سرامازدگی در...
جدول ۵- همبستگی میزان آنزیم‌های آنتی اکسیدان، پروتئین، نشت الکترولیت، محتوی آب نسبی و میزان کلروفیل در سیگل کراس ۴۰۰ در شرایط گلخانه‌ای

<table>
<thead>
<tr>
<th>شماره‌ی نشت الکترولیت</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
<th>۱۱</th>
<th>۱۲</th>
<th>۱۳</th>
<th>۱۴</th>
<th>۱۵</th>
<th>۱۶</th>
<th>۱۷</th>
</tr>
</thead>
</table>

شماره‌ی نشت الکترولیت به ترتیب: ۱- فونان دی الدهید، ۲- دی تیروزین، ۳- سوپراکسیدپرموناز، ۴- کلروفیل پراکسیداز، ۵- کنتالا، ۶- پروتئین، ۷- محتوی آب نسبی، ۸- نشت الکترولیت، ۹- وزن خشک برگ، ۱۰- وزن خشک ساقه، ۱۱- وزن خشک کل، ۱۲- عدد کلروفیل در متر، ۱۳- عدد کلروفیل در متر، ۱۴- عدد کلروفیل در متر، ۱۵- عدد کلروفیل در متر، ۱۶- عدد کلروفیل در متر، ۱۷- خصائص سرما.
نتایج اسفید لیپک در بهبود خطرات تنش سرمازدگی در...

۲۸۹

همکاران (2007) نیز گزارش دادند که بین آثار ظاهری تنش سرمایی روی میوه های بادنجان و نشتهای کلرولیت و پوده های بیشتری داشتند. در بالای نشتهای بیشتر در خوروی بیشتر کلرولیت ها از گیاه و خسارت به گل سلولی می باشد.

وزن خشک: اثر تنش سرمازدگی و محلول پاشی اسید سالسیلیک بر وزن خشک برگ و وزن خشک کل گیاه در مطالعه بک در مورد منعی دار بود ولی این اثرات تاثیر علی‌الدى داشتند. در این مطالعه اکثر نشتهای سرمازدگی به آسانی خشک شدند ولی در نشتهای بیشتر وزن خشک برگ و کل گیاه (به ترتیب ۳۱/۵ و ۲۴/۵ درصد) نسبت به عدم تنش شد (جدول ۴). کاربرد اسید سالسیلیک با گل‌های ۴۰۰ میکرو مولار بسیار باعث وزن خشک برگ و کل گیاه (به ترتیب ۱۷/۹ و ۷/۱ درصد) و کل گیاه (به ترتیب ۱۱/۸ و ۱۳/۱ درصد) نسبت به عدم تنش شد (جدول ۴). اثر مقایسه تنش سرمایی و کاربرد اسید سالسیلیک بر وزن خشک برگ در مطالعه بک در مورد منعی دار بود (جدول ۳). به طوری که بیشتری وزن خشک برگ در تیمار عدم تنش سرمازدگی و کاربرد ۴۰۰ میکرو مولار اسید سالسیلیک با افزایش ۲۵ درصدی نسبت به تنها سرمازدگی با کاربرد ۴۰۰ میکرو مولار اسید سالسیلیک بود (شکل ۱). وزن خشک کل با میزان مالون دی اکلیدی، دی تیروزین، سوپراکسید، و دیسهموتان

شکل ۱- ارتفاع برگ در سه نوع تنش سرمازدگی و سالم و نشتهای خلوت برگ هنگام دریافت هیپربود ۴۰۰ درجه سانتی‌گرادیوس. از سمت چپ به ترتیب عدد اول، اولین میزان اسید سالسیلیک ۴۰۰ میکرو مولار اسید سالسیلیک به دست آمد.

گل‌ناتیون پراکسیداز، کاتالاز، پروتئین، محتوی اکسب سه، نشتهای کلرولیت و وزن خشک برگ و میزان هم‌سنجی میپردازی داری داشت (جدول ۵). تیمار گیاهان با استفاده از سالسیلیک باعث افزایش رشد و سرعت فیط نمی‌شد (Wang et al., 2006). کاربرد اسید سالسیلیک بسیار محلول شده باعث افزاش بیوماس در گیاه سیاه‌سفا می‌شد (Eraslan et al., 2003). خ(lonell et al., 2007) گزارش داشتند که بین این نشتهای وزن خشک در گیاه دقت و وابستگی این داری بر وزن ساقه داشتند (جدول ۳). اعمال تنش سرمازدگی نسبت به وزن برگ و کل گیاه (به ترتیب ۳۱/۵ و ۲۴/۵ درصد) نسبت به عدم تنش شد (جدول ۴). کاربرد اسید سالسیلیک با گل‌های ۴۰۰ میکرو مولار بسیار باعث وزن خشک برگ و کل گیاه (به ترتیب ۱۷/۹ و ۷/۱ درصد) و کل گیاه (به ترتیب ۱۱/۸ و ۱۳/۱ درصد) نسبت به عدم تنش شد (جدول ۴). اثر مقایسه تنش سرمایی و کاربرد اسید سالسیلیک بر وزن خشک برگ در مطالعه بک در مورد منعی دار بود (جدول ۳). به طوری که بیشتری وزن خشک برگ در تیمار عدم تنش سرمازدگی و کاربرد ۴۰۰ میکرو مولار اسید سالسیلیک با

خلاق سرمازدگی: در بررسی‌های گیاه‌شناسی به مدت سه ماهکاران (2007) نیز گزارش دادند که بین آثار ظاهری تنش سرمایی روی میوه‌های بادنجان و نشتهای کلرولیت و وجود داشت. مقدار بالایی نشتهای بیشتر در خوروی بیشتری داشتند. در بالای نشتهای بیشتر در خوروی بیشتری داشتند. مقدار بالایی نشتهای بیشتر در خوروی B
آزمی‌ها با افزایش مقاومت گیاه در برای تنش‌های محیطی همبستگی دارد. از طرفی به نظر می‌رسد افزایش بیوماس در اثر استفاده از اسید سالیسیلیک بخاطر فعالیت آنتی اکسیدان‌های این ماده در غذا سلولی باشد. محفظه باشی سالیسیلیک ابداع افزایش مقدار بیوماس در گیاه‌های ژنتیکی در فاصله زمانی یکسان در افزایش مقاومت بیوماس به گیاه‌های ژنتیکی یکسان در فاصله زمانی یکسان در می‌تواند اسید سالیسیلیک با افزایش میزان کلروفیل در گیاه‌ها که در آغاز فزاین پری‌هستنی، می‌تواند سبب افزایش نفوستن و در نتیجه افزایش رشد سرما بگذارد. گفت محوطه باشی اسید سالیسیلیک برای کاهش تنش سرمایه‌گذاری گیاه‌های ژنتیکی ذرت سیگال کراس ۴۰۰ که با این شرایط مقایسه می‌شود، می‌تواند به شکل گهواره‌های مفیدی می‌باشد.

نتیجه‌گیری:

به طور کلی نتایج این تحقیق نشان داد که فارم‌های همبسته ذرت سیگال کراس ۴۰۰ در معرض تنش سرمافذگی موجب برخی خصائص در گیاهی ذرت شد. احتمالاً، افزایش تنش سرما به افزایش تنش اکسیداتی و فعالیت آنتی‌اکسیدان‌های آنتی اکسیدان غواص وما در افزایش مقاومت به تنش گیاه‌های می‌باشد. میزان افزایش فعالیت این

متابع:

احمدی، ع.، احسان زاده، ب.، و جباری، ف. (۱۳۸۶) مقابله ای بر فیزیولوژی گیاهی. انتشارات دانشگاه تهران.

اسدی صمن، س.، زواره، م.، بیدلی، ه.، سفیدکن، ف.، و نعمت راسته، ق. (۱۳۸۴) بررسی پاسخ‌های بیوماسی و فیزیولوژی گیاه (Echinacea purpurea (L) Moench) دارویی سرخار گل. گیاه‌شناسی و گیاه‌پردازی گیاهی، ۱۱، ۱۱-۱۱. گیاه‌های ذرت. مجله ایرانی، سطح ژوان، م.، و جامعی‌الهمری، م. (۱۳۸۹) تأثیر کاربرد خارجی گل‌پسی بین‌النهرین در افزایش تعامل به سرما در گیاه‌های ذرت. مجله نشره پژوهش‌های زراعی ایران، ۸، ۹۴۵-۹۴۷.

