مطالعه اثر کاربرد زنلیت بر تعیین نشته کم آبیاری و بهبود کارکردهای گیاه شاهدندگی

محمود بهادر و محمود رضا تدین
گروه زراعت، دانشگاه کشاورزی، دانشگاه تهران
(تاریخ دریافت: 09/09/1394، تاریخ پذیرش نهایی: 05/03/1395)

چکیده:
یکی از راهکارهای مقابله با نشته خشکی، استفاده از گیاهان زراعی محمل همراه با کاربرد مواد مهندسی آب در خاک مانند زنلیت می‌باشد. شاهدندگی از گیاهان دانه روغنی و دارویی است. به‌منظور بررسی نشته زنلیت در تعیین نشته کم آبیاری و بهبود کارکردهای شاهدندگی به‌کار رفته است. در این مطالعه بر روی گیاهان از گیاهان دانه روغنی و دارویی استفاده شد که در خاک استخر به صورت کریت خرد شده به قابل طرح برق‌کهای کامل تصدیقی با س نرکی در داخل شهروند گردیده و به‌کار رفته است. نتایج نشان داده که تغییرات شاخص طبیعی و زنلیت در سطح صفر، ۵ و ۱۰ درصد می‌باشد. نتایج نشان داده که تغییرات شاخص طبیعی و زنلیت در سطح صفر، ۵ و ۱۰ درصد می‌باشد. به‌طور کلی، زنلیت موجب تغییر زیان ناشی از کمبود آب در صفات مورد بررسی گردید. از این رو با توجه به نشته زنلیت در ایجاد شرایط لازم جهت رشد بهتر شاهدندگی، کاربرد مقدر ۱۰ تن زنلیت در هکتار بی‌پروزه در شرایط نشته شدید می‌تواند به‌نظر رسید.

واژه‌های کلیدی: پایداری فشا، سرعت جذب خاصل، شاخص طبیعی و زنلیت، شاخص‌های رشد، مواد جاذب‌رطوبه

مقدمه:
شاهدندگی گیاهی پیکساره علفی و دوبیاپی بوده که از ده‌ها سال پیش مورد استفاده قرار می‌گرفته است (سکلناگ، ۲۰۰۹). این گیاه به‌طور وسیع در سراسر جهان پراکنده شده، ولی منشأ اصلی آن مناطق مرتفع آسی است. شاهدندگی به‌طور کامل استرخ و تولید تركیبات دارویی و مخدر کشت می‌گردد. الاف شاهدندگی برای ساخت مواد عایق در ساختمان، صنایع اتوسیلول سایزی، کاغذسازی و تولید پارچه کاربرد دارد (دولانگ و همکاران، ۲۰۰۹).
پاژدنگی‌ها کاسته شده از ترغیب در طرفی دمای هوا، بخیر و تعریق و در تئیه نیاز آن‌ها به اندازه‌گیری می‌باشد. بنابراین، در چنین مرحله‌ای از شدت‌گذاری یا کاهش آب موانعی شده و هدف از تنش خشکی و گرمایی را ترجیح می‌دهد که این امر می‌تواند باعث کاهش تولید در ناحیه‌ای یا تراشی تبدیل دستریس به آب و به دنبال آن موانع غذایی محدود می‌گردد که این‌پدیده می‌تواند از یک یا چند گموظی‌های میکروویویک زمان‌بندی نموده و یا حتی باعث توقف آن‌ها گردد. تنش خشکی منجر به انسداد روزنهای و کاهش نوری بکار گرفتن آب برگ یافت‌های گیاهی، کاهش فتوسنتز و ممنعت از رشد. تجمع آب ورودی (ABA) پولین، سولونیول، تربکسیات، پاک‌کننده رادیکال‌ها (آکوتیکرین، آلیفانتونفول)، mRNA بروتئین‌ها و همکاران

2003.

یکی از مهم‌ترین تغییرات میکروویویک صورت گرفته در گیاهان تحت تنش خشکی تغییر در میزان کارولفیل است. مطالعات نشان می‌دهد که تنش خشکی علاوه بر کاهش سطح برگ، موجب کاهش میزان کارولفیل برگ‌ها نیز می‌گردد که باعث کاهش تولید مواد نظیر کوگوهیدرات‌ها و بروتئین‌ها می‌گردد.

1380.

انعطاف‌پذیری توسعه برگ به عنوان یک فاکتور مهم جهت حفظ و کنترل مصرف آب در گیاهان محصول می‌گردد. در این مراحل نمایشگری، حتی تنش بسیار زیاد می‌تواند سرعت رشد برگ و در نهایت، شاخص سطح برگ را کاهش دهد. کاهش سطح برگ منجر به کاهش تولید مواد فتوسنتزی می‌شود. علاوه بر این، تسریع بی‌پره برگ‌ها و ریزش آنها نیز که به عنوان یک فاکتور کاهش عکسی آب و ادامه بقا در گیاهان مواجه با تنش خشکی مطرح است. سرعت جذب خالص از محاسبه تجمیع ماده خشک در هر واحد سطح برگ و در واحد زمان بسته به آبی‌آبی که برگ اندام اصلی فتوسنتز یکاب می‌گردد، هرکمک کاهش در توسعه برگ بر سرعت رشد گیاه و سرعت جذب خالص اثر
مواد و روش‌ها:

به منظور بررسی نقش زنوتیت و اثر تغییر دهنده‌گی آن بر کارکردگی باشی و خاصیت‌های زندگی شاهده، آزمایشی به صورت کرت‌های خرد شده در قالب طرح تک‌کوچک‌ها کامل تصادفی با سه تکرار در نمونه سال 1393 در مرغور بوشهر داشت‌گاه شهرک‌های آذربایجان شرقی، بوشهر قرار گرفته بود. این امر آزمایش‌های موفقیت‌آمیز در عملیات انجام شد. عامل اصلی شامل تنش خشکی در پهنه سطح (نام 80، 50، 40، 30 و 20 سانتی‌متر، ترکیب آبی‌رست) و رعایت فرمالی زنوتیت در سطح (صفر، 5 و 10 تن در هکتار) بود. این داده‌ها در مزرعه عملیات خاویزی انجام و پس از کردن سطوح اعمال گردید. سپس به روش‌های پیشنهادی به‌کار می‌رفت. پس از انجام و پیش‌بینی کشت رفت. به منظور انتخاب گیاه آنلاین، از زمان سیم شدن با فواصل مشخص در هر مرحله، سه بونه در هر کرت برداشت Leaf Area (GA) لایه‌گیری. طی فصل رشد، عمليات لازم از جمله مبارزه با ملل‌های هزینه به صورت دستی و کوده‌الکتری در اساس توصیه‌آزمایشگاه مرکز تحقیقات گیاه‌شناسی و منابع طبیعی شهرک‌های انجام شد. بدین ترتیب، که نسبت مناسب‌سازی باعث گیاه به میزان سیب و میوه، گروه کشاورزی میزبان به میزان 50 و 150 کیلوگرم در هکتار قابلیت داشت که کود اوره به میزان 150 کیلوگرم در هکتار که این قابلیت خواهند کرد که این قابلیت خواهند 30 سانتی‌متر (این فاصله در حدود 30 سانتی‌متر، با بار ناپذیر از سطح)
شده تشخیصی، شاخص سطح برق کاهش بافت، به طوری که به کاربرد 10 تن زنولیت در هکتار و در شرایط
تیمین 40 درصد تیک زمان، 37 درصد نسبت به تیمار
شاید در زمانی که مقدار گزارش سطح برق در اوج خود
بود، کاهش نشان داد (شکل 1). از آنجا که سطح برق، تأثیر
عمدهای در میزان علائم و سرعت رشد زیان زراعی دارد، به
همین سبب ویژگی‌های پیچیده داشته و افزایش آن
تعداد و اندازه برگ‌ها هستند. سپس و همکاران (1996) و
نیلسان و نلسون (1998) نیز در بررسی خود نشان دادند که
نش تشن خشکی، باعث کاهش سطح برق شد. همچنین مشاهده
شد که در تیمار کاربرد 10 و 5 تن زنولیت در هکتار، سطح برق شاهدتنها با آنتگون افزایش برای به ورژه در تیمار
تیمین 100 درصد نیاز آن به اوج خود رسید. این نتیجه، شاید
حاکمیت نشان دهنده در کمک به کیفیت در رسیدگی و پتانسیله
رشدی خود به نیمه نخست دوره رشد بود. علاوه بر این، با
مقاومه سطوح نش تشن خشکی در مقایسه عدم کاربرد زنولیت، مشاهده گردید که در شرایط تیمین 80 و 40 درصد نیاز آن، روند آتشفشانی سطح برق نزدیک به کیفیت گزارش. با مقایسه
سطح مذکور در تیمار کاربرد 5 تن زنولیت در هکتار، می‌توان
نقش برخی روند زنولیت در افزایش مقدار سطح برق را حذف دهد.

دوم سطح برق: دوم سطح برق، بیان کننده برگ و یا
برکه گیاه، در طول دوره رشد داشته است. دوم سطح برق
هم یکی از نمایه بزرگ و بهترین مقدار فتوستاتی خانه
گیاهی را در می‌کند و محاسبات مناسبی که به‌صورت
نور دریافت شده در طول فصل رسید نیز است (سواقین و
همکاران. 1389،) روند تغییرات دوم سطح برق شاهدتنها نیز
مشابه با روند شاخص سطح برق بود. به طوری که ابتدا روند
افراشی داشت و سپس در اواخر فصل رسید نیز همان‌گونه با
مرحله حذف بیوته در هر یک از جمله کاهش تعاد
بوده در واحد سطح و یا کاهش تعاد بیوتهای بالغ و
همچنین پیروی سبز برگ‌ها کاهش یافت. همچنین نتایج
نشان داد نفوذ به بیزه‌های آبیاری از نفوذ بین سطوح
زنولیت چشم‌گیرتر بود، به عبارت دیگر، با کاهش میزان آب
درور رشد وجود داشت (شکل ۳). سرعت رشد محصول: بررسی منحني تغییرات رشد محصول نشان داد: در مراحل اولیه رشد، سرعت رشد محصول در کمترین مقدار خود بوده و پس از آن با کامل شدن پوشش گیاهی و استفاده مطلوبتر از نور خورشید و همچنین انرژی سطح بیکر، مقدار آن افزایش یافت (شکل ۴). در ادامه دوره رشد، تغییرات بیشتر سرعت رشد محصول پس از خشک شدن پوسته‌های نر و همچنین کاهش سطح بیکر به دلیل افزایش رفتار کاهشی نفوذ نور به داخل سیستم‌های گیاهی و همچنین کاهش کارایی اندام‌های فوستنژ کننده رو به بالا پیدا کرده بود. همچنین در بررسی نشان داد که بر روند تغییرات سرعت رشد محصول، نشان دهنده باعث کاهش سرعت رشد محصول گرویده (شکل ۴). در شرایط آبیاری در هر سطح کارپرده زنولیت، حداکثر دوام سطح برگ نبت شده کاهش یافت؛ کاهش مذکور در همراه‌های مختلف منفی بود (شکل ۵). در واقع، نشانه‌های نور مرسد که کم‌کم آب باعث تسریع فرآیند پروره‌ها شدند در این شرایط حداکثر عمر مفید برگ‌ها نسبت به شرایط آبی بهره‌کاهش یافت. نتایج چنین نگاه‌های انجام شده نیز حاکی از تسریع سرعت زوال و پروره برگ‌ها در شرایط تنش خشکی هستند (نوع ۴ و همکاران، ۱۹۹۰). بود (Nunez- Barrios, ۱۹۹۱ و Husain, ۱۹۹۱). در این مطالعه در مقایسه سطوح تامین ۸ و ۶ درصد نیاز آبی در تیمارهای عدم کارپرده و کارپرده ۵ گیاه زنولیت در هرکار مشخص کرد که کارپرده زنولیت موجب حفظ دوام سطح فوستنژ کننده گیاه در طول فصل رشد گردد (شکل ۶). در این بین، رابطه مستقیم بین صفات سطح برگ و دوام سطح برگ در کل

شکل ۱- روند تغییرات شاخه سطح برگ شاهدانه در برهمکنش سطح زنولیت در رعایت آبی‌های مختلف

در این شرایط، سطح برگ نسبت به شرایط آبی بهره کاهش یافت. نتایج چنین نگاه‌های انجام شده نیز حاکی از تسریع سرعت زوال و پروره برگ‌ها در شرایط تنش خشکی هستند (نوع ۴ و همکاران، ۱۹۹۰).
تغییرات سرعت رشد محصول کاهش یابد، اما این کاهش بسته به میزان استفاده از زولوت و نیز شدت نش نیا متفاوت بود.

سرعت جذب خاص: اثر سرعت مختلف رژیم آبی بر سرعت جذب خالص در گیاه شاهدنه نشان داد که در اندیکاتوری فصل رشد به دلیل کاهش سایه‌دانداری بروز نیست. میزان جذب خالص مقداری افزایش یافته ویا از ادامه فصل رشد کاهش یافته (شکل ۱). نتایج تحقیقات دیگر نیز نشان داد که نش خشکسی اعتبار کاهش سرعت جذب خالص شد که علت آن زیرا عدم ایجاد مناسب بین‌بسته‌شدن روزنه‌ها و به دنبال آن کاهش میزان فتوستری. کاهش توانایی گیاه در تخصیص مواد فتوستری به فراوانی رشد و همچنین افزایش مصرف مواد فتوستری در فراوانی نفس گزارش کردند (بیابنلو جمنز و

نمودار ۲- روند تغییرات دوام سطح برگ شاهده‌های در برمکش سطوح زولوت در رژیم‌های آبی مختلف

تأمین ۱۰۰ و ۸۰ درصد نیاز آبی سایه‌دانداری بروز نیست به شرایط ۴۰ درصد نیاز رطوبتی بیشتر بود و احتمالاً به همین جهت کاهش سرعت رشد محصول در مراحل پایانی در این تیمارها بیشتر بود.

از طرف دیگر، کاهش سرعت رشد محصول، در تیمارهای نش خشکسی ممکن است به اثر منفی نش خشکسی بر شاخص سطح بروز می‌ریزد (شکل ۲). افزایش شدت نش خشکسی، از طریق کاهش تعداد و سطح برگ‌ها و دوام سطح برگ سبب کاهش شاخص سطح برگ و به عبارت دیگر توان فتوستری گیاه شد. از طرف دیگر، نفس زولوت (بیابنلو جمنز ۱۰ تن زولوت در هکتار) در حفظ آب در محیط ریشه، موجب شد که اثرات منفی نش خشکسی بر روئید شد.
شکل ۲- روند تغییرات سرعت رشد محصول در پرهمکش سطح زنلیت در رژیم‌های آبیاری مختلف

در این شرایط افزایش وزن اولیه به دلیل افزایش یافته‌ای تمایز یافته‌ای به همراه در فرآیند رشد و تولید غرفه‌ای بود.
نسبت تولید مواد فتوستراتی به کل وزن خشک کاهش یافت. لازم به ذکر است که زنلیت، با وجود تغییرات رطوبت در منطقه رشد گیاه و کمک به انقلال مواد معدنی به اندام‌های هواپیمایی شاهدگاه، نهش بارزی در بالا نگهدارنی میزان سرعت نسبی رشد نداشت. در این خصوص هر یک از سطح‌های زنلیت تقریباً مشابه سطح دیگر بود. در ادامه، با کاهش سطح برگ در گیاه، رشد نسبی شروع به کاهش کرد. در این رابطه، ساکی‌نژاد (۱۳۸۲) همکاران، ۲۰۰۳. از طرف دیگر، همواره شدن مقدار بینشینه جذب خالص در سطح کاربرد ۱۰ تن زنلیت و اختلاف زیاد با سطح عدم کاربرد زنلیت، بیانگر اثر تخفیف هندسی رژیم آبیاری بر شاخه‌های رشدی مثل سرعت جذب خالص بود.
سرعت رشد نسبی: روند تغییرات سرعت رشد نسبی در شکل ۵ نشان داد که افزایش شاخه سطح برگ و در نتیجه افزایش توان تولید گیاه تا اواست مرحله گل‌دهی، سرعت رشد نسبی افزایش و پس از آن با افزایش سن ریشه برگ‌ها و در معرض سایه قرارگرفتن برگ‌های پایینی که در مجموع سبب کاهش توان فتوستراتی گیاه شد، کاهش یافت. ضمن آنکه...
نتایج مقایسه میانگین‌ها نشان داد که کارایی زنلیت به عنوان ماده نگهدارنده آب در شرایط تأمین ۶۰ درصد و ۲۰۰ درصد رطوبت، نسبت به عدم کاربرد زنلیت در تیمارهاي مذکر تأثیر کمتری داشت (شکل ۶). به عبارتی دیگر، به نظر می رسد اثر مفید زنلیت در مورد صفت شاخص کلروفیل در شرایط تنش شدید بارز نبود. همچنین به تأمین ۱۰۰ درصد نیاز آبی شاهدانه، موجب گردید که میزان سیزینگی برگ در سطح بالا باقی بماند. افزایش مقادیر سیزینگی برگ در شرایط تنش خشکسی، احتمالاً به دلیل کاهش سطح برگ و تجمع کلروفیل در سطح کمتر برگ‌ها بود.

پایداری غشا: نتایج تجزیه واریانس اثرات اصلی و متغیر نشان داد که آیا، زنلیت و برهمکنش آیا و زنلیت اثر گزارش داد که افزایش شدت تنش خشکسی احتمالاً از طریق سرعت بخشیدن به تنش مشاهده شده بود. کاهش سرعت تشکیل بافت‌های مرستیمی موجب کاهش سرعت بهبود شد. قیاسی (۱۳۸۵) نیز نشان داد که روند تغییرات سرعت رشد نسبی در تیمار‌های تنش خشکسی متوسط و شدید مشابه شرایط مطلوب بود، با این تفاوت که مقدار سرعت رشد نسبی در تیمار تنش خشکسی کمتر از شاهد بود.

میزان سیزینگی برگ: نتایج حاصل از تجزیه واریانس داده‌های مربوط به قرارت SPAD نشان داد که نه برهمکنش تنش خشکسی و زنلیت اثر مثبتی در سطح احتمال ۱ درصد بر این صفت داشت و اثرات ساده هر یک از عوامل مورد بررسی، معنی‌دار نبود (جدول ۱). همچنین، بررسی

شك۱- روند تغییرات سرعت جذب خالص در برهمکنش سطوح زنلیت در روزهای آبیاری مختلف

نتایج مقایسه میانگین‌ها نشان داد که کارایی زنلیت به عنوان ماده نگهدارنده آب در شرایط تأمین ۶۰ درصد و ۲۰۰ درصد رطوبت، نسبت به عدم کاربرد زنلیت در تیمارهاي مذکر تأثیر کمتری داشت (شکل ۶). به عبارتی دیگر، به نظر می رسد اثر مفید زنلیت در مورد صفت شاخص کلروفیل در شرایط تنش شدید بارز نبود. همچنین به تأمین ۱۰۰ درصد نیاز آبی شاهدانه، موجب گردید که میزان سیزینگی برگ در سطح بالا باقی بماند. افزایش مقادیر سیزینگی برگ در شرایط تنش خشکسی، احتمالاً به دلیل کاهش سطح برگ و تجمع کلروفیل در سطح کمتر برگ‌ها بود.

پایداری غشا: نتایج تجزیه واریانس اثرات اصلی و متغیر نشان داد که آیا، زنلیت و برهمکنش آیا و زنلیت اثر گزارش داد که افزایش شدت تنش خشکسی احتمالاً از طریق سرعت بخشیدن به تنش مشاهده شده بود. کاهش سرعت تشکیل بافت‌های مرستیمی موجب کاهش سرعت بهبود شد. قیاسی (۱۳۸۵) نیز نشان داد که روند تغییرات سرعت رشد نسبی در تیمار‌های تنش خشکسی متوسط و شدید مشابه شرایط مطلوب بود، با این تفاوت که مقدار سرعت رشد نسبی در تیمار تنش خشکسی کمتر از شاهد بود.

میزان سیزینگی برگ: نتایج حاصل از تجزیه واریانس داده‌های مربوط به قرارت SPAD نشان داد که نه برهمکنش تنش خشکسی و زنلیت اثر مثبتی در سطح احتمال ۱ درصد بر این صفت داشت و اثرات ساده هر یک از عوامل مورد بررسی، معنی‌دار نبود (جدول ۱). همچنین، بررسی
تخرب شد. همچنین نتایج نشان داد که زنولیت در افزایش درصد پایداری غشا در تیمارهای مورد بررسی، نقش مفیدی نداشت. قبادی (1385) نیز نشان داد که با شدت یافتن نش خشکی، سلول‌های پایداری غشا خود را از دست می‌دهند. جانگ و هواونگ (2002) نیز ضمن بررسی خود مشاهده کردن که تحت تأثیر نش خشکی، نسبت الکترولیت‌ها افزایش یافت.

در ویژه‌تر ماده، نمودار شکل ۵ به طور کلی منحنی تجربه ماده خشک از مدل سیگموندی تبعیت کرده و از سه مرحله تشکیل شد. در مراحل اولیه رشد، شدت افزایش وزن خشک گیاه کم و هم‌بندی با افزایش شاخص سطح برگ (شکل ۱) با شدت بیشتری افزایش یافت. در پایان دوره معنی‌داری بر ویژگی پایداری غشا داشت (جدول ۱). همچنین عدم کاربرد زنولیت در هکاره به هر تایی تأثیر ۱۰۰ درصد نیاز آیی گیاه بیشترین و تیمارهای کاربرد ۱۰ تن زنولیت و تأثیر ۶۰ درصد نیاز رطوبتی (۱۴/۴ درصد کمتر از تیمار شاهد)، عدم کاربرد زنولیت و تأثیر ۴۰ درصد نیاز آیی (۱۴/۲ درصد کمتر از تیمار شاهد) کمترین میزان پایداری غشا را داشتند (شکل ۷). اعمال نش خشکی، بیوزه نش شدید، موجب اختلال در روند عاید فعالیت غشا سلولی در برگ گیاه و احتمالاً به دنبال آن افزایش تنش‌پذیری غشا برای الکترولیتهای را موجب شد. به عبارت دیگر، غشا سلول در حفظ استهکام ساختار برگ، بیوزه در شرایط عدم تأمین رطوبت لازم جهت رشد و نمو، به ویژه در شرایط نش شدید، دچار

شکل ۵- روند تغییرات سرعت رشد نسبی در برهمکنش سطوح زنولیت در رژیم‌های آبیاری مختلف
جدول ۱ - تجزیه واربند صفات پایداری غشا و شاخص کلروفل

| شاخص کلروفل | درجه آرایی | متغیر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۰۳</td>
<td>۱</td>
<td>تکرار</td>
</tr>
<tr>
<td>۰/۳/۱۳۶۴</td>
<td>۲</td>
<td>نش خشکی</td>
</tr>
<tr>
<td>۰/۲۲۵</td>
<td>۳</td>
<td>خطای اصلی</td>
</tr>
<tr>
<td>۸/۹</td>
<td>۴</td>
<td>زنولیت</td>
</tr>
<tr>
<td>۰/۶/۲۰۴۲</td>
<td>۵</td>
<td>نش × زنولیت</td>
</tr>
<tr>
<td>۱/۴/۱۴۷</td>
<td>۶</td>
<td>خطای فرعي</td>
</tr>
<tr>
<td>۱/۴/۱۴۰</td>
<td>۷</td>
<td>ضریب تغییرات</td>
</tr>
</tbody>
</table>

۰/۰۰۳ و ۰/۲۲۵ به ترتیب غیر معنوی دار و معنی دار در سطح احتمال ۰/۵ و ۱ درصد.

شکل ۶- برهمکنش رژیمهای مختلف آبیاری و سطوح زنولیت بر شاخص کلروفل

شکل ۷- برهمکنش رژیمهای مختلف آبیاری و سطوح زنولیت بر پایداری غشا
به‌طور کاربردی زنلیت بر تغییرات ماده خشکی گیاه در طول دورة رشد مشاهده گردید که اعمال زریم آبی در همه سطوح کاربرد زنلیت موجب کاهش کل ماده خشک گیاه شد (شکل 10). ولی لازم به ذکر است که این کاهش در همه سطوح با هم برابر نبود. از آن حاکم می‌باشد که خشکسازی با پیش‌روتی رشد گیاه، افزایش پافت، در مراحل اولیه رشد، نتیجه ماده خشک در همه تیمارها باین بود و اختلاف چندانی بین تیمارها مشاهده نشد. در این مرحله، گیاه بسیار کوچک و رشد شاخ‌ساز ناجی بود. بعد از اکرانی رشد گیاه، رشد شاخ‌ساز و سطح فتوسنت کنده افزایش پافت و سرعت تجمع ماده خشک پیشرفت شد. ممکن است یکی از علل اصلی کاهش تجمیع ماده خشک، کاهش سطح برگ (شکل 1) و در نتیجه کاهش سطح فتوسنت کنده و در نهایت کاهش نیاکننده گیاه بوده باشد. همیستگی نسبت تیمار 100، 10 و 0 درصد نیاز آبی، از نظر روند تجمع ماده خشک نسبت به سایر سطوح زنلیت بیشتر بود. همچنین، برترین سطح زریم آبی از نظر روند تجمع ماده خشک در همه سطوح کاربرد زنلیت، تأیید 100 درصد نیاز آبی بود (شکل 8).
شکل 9 - ارتباط بین شاخص سطح برگ با دوام زیست‌نоде (BMD)، دوام سطح برگ (LAD)، سرعت رشد محصول (CGR) و ماده خشک (DM) در تیمارهای مورد بررسی در آزمایش DM

شکل 10 - روند تغییرات ماده خشک شاهدانه در برهمکنش سطوح زنلیت در رژیم‌های آبیاری مختلف
شکل 11- ضرایب همبستگی پیروی به شاخ‌های سطح برگ (LAI)، دوام سطح برگ (LAD)، دوام زیست‌نوده (BMD) و سرعت رشد محصول (CGR) با عامل‌کرد دانه (GY).

**، *، **: به ترتیب معنی‌دار در سطح احتمال 5 و 1 درصد

در بررسی ضرایب همبستگی بین شاخ‌های رشدی در مراحل مختلف رشد گیاه شاهدانه با عملکرد مشاهده شد که در همه مرحله سرعت رشد نسبی، دوام زیست‌نوده، دوام سطح برگ و شاخ‌های سطح برگ بیشترین همبستگی را با عملکرد داشتند (شکل 11). این نتایج همچنین نشان داد که در اواخر رشد، همبستگی شاخ‌های رشدی با عملکرد دانه افزایش یافت و معنی‌دار، اما کم بود. ولی با پیشرفت مراحل رشدی و برگ‌شردن شاهدانه برای همبستگی صفات با عملکرد افزایش داشت. بررسی ضرایب همبستگی نشان داد و معنی‌دار بین صفات نیز گونای این مطالعه بود. کریمی (1988) نیز نشان داد که رشد گیاه، تا حد زیادی از سطح برگ و فعالیت بافت‌های فوستئتر کننده تعیین می‌کند و سرعت رشد برگ، اغلب مهم‌ترین عامل تعیین کننده تولید گیاه به شمار آمد. از طرف دیگر، حضور مواد جاذب الرطوبه مانند فوستئتر به ویژه در تیمارهای نش نشان موجب روند افزایش ماده خشک گیاه شد. علاوه بر کاهش سطح برگ، کاهش دوام سطح برگ و کارآمدی فوستئتری گیاه و بزادن‌درگی‌های روزنه‌ای و غیر روزنه‌ای فوستئتر در شرایط تنفس خشکی (پاسخنامه، 1379، بهارکاوا و پارانچی، 2004) علل دیگری هستند که در کاهش میزان فوستئتر خالص و تولید مطلوب مواد پرورده از جهت رشد و توسیع
که با افزایش شاخص سطح برگ، دوام سطح برگ و دوام بوماس به ویژه در میانه فصل رشد، عملکرد دانه نیز افزایش یافته و در نتیجه بیشتر عملکرد دانه، باید سطح فتوستن کندنه گیاه (برگها) و نداوم سیمانی سطح برگ را افزایش داد تا موارد فتوستنی بیشتری تولید شده و به دانه‌ها انتقال یابد.

نتیجه گیری:
نقش زنولیت در بهبود عملکرد در گیاهان زراعی روشن بوده است، اما این مطلب که زنولیت چگونه موجب این افزایش می‌گردد، مورد بررسی قرار نگرفته بود. نتایج این پژوهش...

منابع:
پاسان اسلام. (۱۳۷۹) ارزیابی شاخص‌های فیزیولوژیک برای گریختن مقاوم به خشکی کلزا. پایان‌نامه دکتری زراعت. دانشگاه تربیت، تبریز، ایران.
رنجبرچیه، م، اصفهانی، م، کاووسی، م، و بیانی، م. (۱۳۸۳) تأثیر آبیاری و مصرف زنولیت طبیعی بر عملکرد کمی و کیفی توتون کوکر ۲۴۷، پژوهش‌نامه علم کشاورزی. ۱: ۷۳-۹۳.
سوکانی، م، واعظی، ش. و صباغیور، س. ح. (۱۳۸۹) ارزیابی خصوصیات مرفو‌فیزیولوژیک عملکرد دانه و اجرای آن در زنولیتهای لوییا سفید، مجله علم زراعی ایران، ۱۲: ۴۵۱-۴۶۳.
غلامحسینی، م، فلادان، ا، مدرس‌نژادی، ع، و جمشیدی، ا. (۱۳۸۶) تأثیر کاربرد کمپوزیت های زنولیتی در اراضی سبز بر عملکرد دانه و سایر صفات زراعی افغانستان. مجله علم محیطی‌های افغانستان. ۱۷: ۳۳-۴۰.
غلامحسینی، م، افکاری‌خانی، م، و ملکی‌نژاد، چ. (۱۳۸۸) تأثیر زنولیت در کاهش آب‌نیرویی نیتروژن در یک خاک شی تحت کشت کلزا اولفاهی. مجله پژوهش‌های کشاورزی (علم خاک و آب) ۳۳: ۶۰-۶۹.
همه‌پژوهان، ج، ده‌افشی، ع، و رضوانی، ا. (۱۳۸۰) بررسی تغییرات مزان کلونولیتهای a و b و کارتنولیت در مراحل مختلف رشد کلزا ترازخشت شده با انترسین زن آلومینیوم سنترال، هفتمین کنگره علوم زراعت و اصلاح نباتات ایران. ۸: ۱۰ شهرومره.
داشتگاه کشاورزی دانشگاه تهران.

186-208.