تأثیر اسید سالیسیلیک بر برخی ویژگی‌های فیزیولوژیک و بیوشیمیایی اناکور

رقم قول اوزوم در شرایط شور و غیر شور

معصومه عابدینی ۱ و قادر حسینی چهاربرج ۲

گروه زیستستانی، دانشکده علوم پایه، دانشگاه یزد نور (ممکن کرمان)، ایران.

(تاریخ دریافت: ۱۳۹۴/۱۰/۲۲، تاریخ پذیرش نهایی: ۱۳۹۵/۱۰/۲۱)

چکیده:
در این پژوهش، تأثیر کاربرد برگ اسید سالیسیلیکی در دو غلظت ۱۰۰ و ۵۰۰ میکرومول در لیر روزی تعدادی از شاخص‌های فیزیولوژیکی و بیوشیمیایی انسکر را در شرایط شور (EC1=۸۰ میکرومول) و غیر شور (EC1=۷۰ میکرومول) قرار گرفت. آزمایش‌ها بهصورت فاکتوریل در قالب طرح کاملاً صادقی و با چهار نیروی در شرایط کنترلی در آزمایش‌گاه ریست‌شناسی دانشگاه یزد نور انجام گرفت. نتایج بسته آدمی کاهش معنی‌دار وزن تر خشک، محتوای آب، رنگ‌های فتوسیتروی، اکسایژن فتوسیتروی فتوسیترو، انرژی و گلخانه‌های پوکینی کل، نشانده و پویا، پردازش را در شرایط شور نشان داد. در حالی که غلظت انرژی‌مایدگی آزاد، قندهای محلول، سدیم افزایش یافت. تأثیر شوری بر سیستم آنتی‌اکسیدان گیاه با تحریک فعالیت آنزیم‌های سوپراکسیدسیستومات، پراکسیداز و کاتالاز و افزایش غلظت مالئید، دوتید، و پراکسیدهیدروژن اندازه همواره بود. کاربرد برگ اسید سالیسیلیکی در شرایط شور و غیر شور ۵۰۰ میکرومول در لیر در شرایط شور ممکن و قابل توجهی را در شاخص‌های مورد مطالعه نشان داد. کاربرد غلظت ۱۰۰ میکرومول در لیر اسید سالیسیلیکی در شرایط شور باعث افزایش معنی‌دار غلظت اسیدوکسیکمیا، رنگ‌های فتوسیتروی، اکسایژن فتوسیتروی فتوسیترو، انرژی و گلخانه‌های پوکینی و رنگ‌های فتوسیتروی می‌شود.

واژگان کلیدی: پتاسیم، سدیم، سیستم آنتی‌اکسیدان، راندمان فتوسیتروی فتوسیتروی

مقدمه:
تنش شوری یکی از مهم‌ترین عوامل محیطی است که کیمی ای، تنش‌فرآیندهای آزاد اکسیژن و افزایش آنزیم‌های اکسیداز در شرایط شور تنشی یا غیر شور ایجاد می‌کند. افزایش غلظت اسید سالیسیلیکی در شرایط شور و غیر شور باعث افزایش غلظت اسیدوکسیکمیا، رنگ‌های فتوسیتروی، انرژی، غلظت مالئید و دوتید، و پراکسیدهیدروژن اندازه همواره می‌باشد.

شیمی‌دان، ۱۳۹۵/۱۰/۲۱

نویسنده مسئول، دانش‌پژوهشکی بیوشیمیایی دانشگاه یزد نور (ممکن کرمان) ایران.

مقدمه:
تنش شوری یکی از مهم‌ترین عوامل محیطی است که کیمی‌دان، ۱۳۹۵/۱۰/۲۱

نویسنده مسئول، دانش‌پژوهشکی بیوشیمیایی دانشگاه یزد نور (ممکن کرمان) ایران.

مقدمه:
تنش شوری یکی از مهم‌ترین عوامل محیطی است که کیمی‌دان، ۱۳۹۵/۱۰/۲۱

نویسنده مسئول، دانش‌پژوهشکی بیوشیمیایی دانشگاه یزد نور (ممکن کرمان) ایران.

مقدمه:
تنش شوری یکی از مهم‌ترین عوامل محیطی است که کیمی‌دان، ۱۳۹۵/۱۰/۲۱

نویسنده مسئول، دانش‌پژوهشکی بیوشیمیایی دانشگاه یزد نور (ممکن کرمان) ایران.

مقدمه:
تنش شوری یکی از مهم‌ترین عوامل محیطی است که کیمی‌دان، ۱۳۹۵/۱۰/۲۱

نویسنده مسئول، دانش‌پژوهشکی بیوشیمیایی دانشگاه یزد نور (ممکن کرمان) ایران.

مقدمه:
تنش شوری یکی از مهم‌ترین عوامل محیطی است که کیمی‌دان، ۱۳۹۵/۱۰/۲۱

نویسنده مسئول، دانش‌پژوهشکی بیوشیمیایی دانشگاه یزد نور (ممکن کرمان) ایران.

مقدمه:
تنش شوری یکی از مهم‌ترین عوامل محیطی است که کیمی‌دان، ۱۳۹۵/۱۰/۲۱

نویسنده مسئول، دانش‌پژوهشکی بیوشیمیایی دانشگاه یزد نور (ممکن کرمان) ایران.

مقدمه:
تنش شوری یکی از مهم‌ترین عوامل محیطی است که کیمی‌دان، ۱۳۹۵/۱۰/۲۱

نویسنده مسئول، دانش‌پژوهشکی بیوشیمیایی دانشگاه یزد نور (ممکن کرمان) ایران.

مقدمه:
تنش شوری یکی از مهم‌ترین عوامل محیطی است که کیمی‌دان، ۱۳۹۵/۱۰/۲۱

نویسنده مسئول، دانش‌پژوهشکی بیوشیمیایی دانشگاه یزد نور (ممکن کرمان) ایران.

مقدمه:
تنش شوری یکی از مهم‌ترین عوامل محیطی است که کیمی‌دان، ۱۳۹۵/۱۰/۲۱

نویسنده مسئول، دانش‌پژوهشکی بیوشیمیایی دانشگاه یزد نور (ممکن کرمان) ایران.

مقدمه:
تنش شوری یکی از مهم‌ترین عوامل محیطی است که کیمی‌دان، ۱۳۹۵/۱۰/۲۱

نویسنده مسئول، دانش‌پژوهشکی بیوشیمیایی دانشگاه یزد نور (ممکن کرمان) ایران.
مواد و روش ها:

قله‌های بای دنبال جوانه برگی از گیاهان گونه (Vitis vinifera var. Ghiziluzum) شده و در محیط ماسای استراهم در ناحیه‌ی آزام‌شیا زیست شناسی دانشگاه پام نور برای گشت شدن. در اواخر اردیبهشت ماه ۱۳۹۳ قله‌های دارای ریشه و گل‌بانه‌های خاک الگوسازی شده در بافت‌هایJA=11/256/12V/273/283/136/24/136/24/136/24/136

pH=8/646 و ۱۸ درجه سانتی گراد تغییرات شدند. سه ماه از انقال قله‌های در گل‌بانه ۲/۰۳۰/۶۰۲/۱۷۰/۲۰۱۳ موقت شدند. قله‌های در گل‌بانه ۷ فرمول شده و pH=8/646 و ۱۸ درجه سانتی گراد تغییرات شدند. سه ماه از انقال قله‌های در گل‌بانه ۲/۰۳۰/۶۰۲/۱۷۰/۲۰۱۳ موقت شدند. قله‌های در گل‌بانه ۷ فرمول شده و pH=8/646 و ۱۸ درجه سانتی گراد تغییرات شدند. سه ماه از انقال قله‌های در گل‌بانه ۲/۰۳۰/۶۰۲/۱۷۰/۲۰۱۳ موقت شدند. قله‌های در گل‌بانه ۷ فرمول شده و pH=8/646 و ۱۸ درجه سانتی گراد تغییرات شدند. سه ماه از انقال قله‌های در گل‌بانه ۲/۰۳۰/۶۰۲/۱۷۰/۲۰۱۳ موقت شدند. قله‌های در گل‌بانه ۷ فرمول شده و pH=8/646 و ۱۸ درجه سانتی گراد تغییرات شدند. سه ماه از انقال قله‌های در گل‌بانه ۲/۰۳۰/۶۰۲/۱۷۰/۲۰۱۳ موقت شدند. قله‌های در گل‌بانه ۷ فرمول شده و pH=8/646 و ۱۸ درجه سانتی گراد تغییرات شدند. سه ماه از انقال قله‌های در گل‌بانه ۲/۰۳۰/۶۰۲/۱۷۰/۲۰۱۳ موقت شدند. قله‌های در گل‌بانه ۷ فرمول شده و pH=8/646 و ۱۸ درجه سانتی گراد تغییرات شدند. سه ماه از انقال قله‌های در گل‌بانه ۲/۰۳۰/۶۰۲/۱۷۰/۲۰۱۳ موقت شدند. قله‌های در گل‌بانه ۷ فرمول شده و pH=8/646 و ۱۸ درجه سانتی گراد تغییرات شدند. سه ماه از انق...
۲۷/۶۱% برای یکتاکالیپسی سرته پراکسیداز محاسبه گردید. مقدار آنیز لازم برای تولید یک میکرومول نترگاکالیپس در دمای ۴۰°۵/۴ nm یک میکرومول نترگاکالیپس بر ساعت در دمحی (Chance and Maehly, 1955).

فیلاپت کالاترال دارای نمودار نجخیزه H2O2 در طول موج ۴۰ و ۶۵/۳ nm یک میکرومول نترگاکالیپس در دمای ۴۰°۵/۴ nm محسوب شد. (O'Connor et al., 1997).

در مطالعات برای میکرومول نترگاکالیپس در ۴۰°۵/۴ nm، ۱۰۰۰ میکرومول نترگاکالیپس در دمای ۴۰°۵/۴ nm و ۴/۵ nm محسوب شد. (O'Connor et al., 1997).

در مطالعات برای میکرومول نترگاکالیپس در ۴۰°۵/۴ nm، ۱۰۰۰ میکرومول نترگاکالیپس در دمای ۴۰°۵/۴ nm و ۴/۵ nm محسوب شد. (O'Connor et al., 1997).

در مطالعات برای میکرومول نترگاکالیپس در ۴۰°۵/۴ nm، ۱۰۰۰ میکرومول نترگاکالیپس در دمای ۴۰°۵/۴ nm و ۴/۵ nm محسوب شد. (O'Connor et al., 1997).

در مطالعات برای میکرومول نترگاکالیپس در ۴۰°۵/۴ nm، ۱۰۰۰ میکرومول نترگاکالیپس در دمای ۴۰°۵/۴ nm و ۴/۵ nm محسوب شد. (O'Connor et al., 1997).

در مطالعات برای میکرومول نترگاکالیپس در ۴۰°۵/۴ nm، ۱۰۰۰ میکرومول نترگاکالیپس در دمای ۴۰°۵/۴ nm و ۴/۵ nm محسوب شد. (O'Connor et al., 1997).

در مطالعات برای میکرومول نترگاکالیپس در ۴۰°۵/۴ nm، ۱۰۰۰ میکرومول نترگاکالیپس در دمای ۴۰°۵/۴ nm و ۴/۵ nm محسوب شد. (O'Connor et al., 1997).

در مطالعات برای میکرومول نترگاکالیپس در ۴۰°۵/۴ nm، ۱۰۰۰ میکرومول نترگاکالیپس در دمای ۴۰°۵/۴ nm و ۴/۵ nm محسوب شد. (O'Connor et al., 1997).

در مطالعات برای میکرومول نترگاکالیپس در ۴۰°۵/۴ nm، ۱۰۰۰ میکرومول نترگاکالیپس در دمای ۴۰°۵/۴ nm و ۴/۵ nm محسوب شد. (O'Connor et al., 1997).

در مطالعات برای میکرومول نترگاکالیپس در ۴۰°۵/۴ nm، ۱۰۰۰ میکرومول نترگاکالیپس در دمای ۴۰°۵/۴ nm و ۴/۵ nm محسوب شد. (O'Connor et al., 1997).

در مطالعات برای میکرومول نترگاکالیپس در ۴۰°۵/۴ nm، ۱۰۰۰ میکرومول نترگاکالیپس در دمای ۴۰°۵/۴ nm و ۴/۵ nm محسوب شد. (O'Connor et al., 1997).
بر روی فرآیندهای فیزیولوژیکی و بوشیمیای مانند فتووسترز، هموسازی‌یون و توانایی اشتهای کاهش می‌تواند (Ashraf and Harris, 2009) تأثیر مثبت کاردیو اسید سالسیلیکید در تخفیف اثرات منفی ناشی‌از افزایش شوری که در این مطالعه در غلظت 100 μM مشاهده شد. در طی وسیعی از غلظت‌های بالاتر (≥ 100 μM) و اثرات منفی آن در غلظتهای بالاتر (≤ 5 mM) توسط شفافیت یافتند. این گزارش شده است (Ashraf et al., 2010; Rivas-San Visente et al., 2011).

نتایج و بحث:

شاخص‌های رشد: نتایج حاصل از تجزیه و اریب‌ساده‌ها

(جدول 1) نشان داد که شوری باعث کاهش می‌شود. در واقع، تأثیر قابل توجهی در تخفیف اثرات منفی ناشی‌از افزایش شوری اثر مثبتی بر زده‌شدگی را دارد که در این مطالعه، غلظت 500 μM اسید سالسیلیکید اگرچه به اندازه‌ای بالای نبود که باعث افزایش اثرات منفی شود ولی فاقد تأثیر قابل توجهی در تخفیف اثرات منفی ناشی‌از شوری بود. این اثبات می‌تواند امنیت و پژوهشگران کلی نتایج حاصل از این مطالعه افزایش‌گذار غلظت اسید سالسیلیکید کل و کاهش می‌شود. کاهش مقدار پرورشی که تحت شرایط سنجش نشان داد. کاهش مقدار پرورشی و افزایش غلظت اسید سالسیلیکید، توسط محققان متعدد در شرایط سنجش غلظت مشاهده شد. یکی از دلایل کاهش غلظت پرورشی کاهش فعالیت آنزیم‌های درک‌رای در Zahra et al., 2010 در شرایط غیر‌شرود اسید سالسیلیکید در سطح 100 μM باعث کاهش و در سطح 500 μM جزئی اسید‌پذیری کل شد. ولی تأثیر آن بر غلظت پرورشی کل با افزایش می‌شود و در سطح 100 μM کاهش و کاهش در سطح 500 μM هر دو کاهش بود که قابل توجه نبودند. با توجه به اینکه غلظت پرورشی تاثیبی از سرعت سنتز تجزیه آن می‌باشد، نتایج حاصل از این مطالعه افزایش سنتز پرورشی را در غلظت 100 μM و افزایش تجزیه آنزیمی از غلظت 500 μM نشان داد. این نتایج در غلظتهای مناسب برای سنجش عناصر، هضم نمونه‌های خشک شده ادیتا در محلول اسید تریپروپیک و اسید پرکارکیل غلظت (با نسب حجمی 0.04) در دمای 130 °C به مدت 120 دقیقه در دمای 115 °C گرفته گرفت. پس از حجم رسادن نمونه‌های حاصل با آب دوبار تطبیقی در محلول‌های باستند آمره برای تعیین سدیم و نیتریم (ICP-OES spectrometer) با استفاده از استاندارد شرکت آمره (Munns et al., 2010). این آزمایش با صورت فاکتوریل در قالب طرح کامپاریستیک انجام داده و محاسبات آماری با کمک نرم‌افزارهای کسکل و سیستم انتساب (تخه (350 نمونه گرفت. مقایسه میانگین‌ها با استفاده از آزمون دانکن در سطح احتمال پنجم دارد انجام گرفت.

(Ashraf and Harris, 2009)
جدول 1- تأثیر سپاسیلیک و بافتاهای فیزیولوژیک و پارامترهای انگور

<table>
<thead>
<tr>
<th>شوری</th>
<th>هورمون</th>
<th>پارامترها</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار</td>
<td>وزن تر</td>
<td>وزن شکل</td>
</tr>
<tr>
<td>اسید آمینه کل</td>
<td>1/83</td>
<td>0/12</td>
</tr>
<tr>
<td>وبرکمیکه</td>
<td>0/11</td>
<td>0/12</td>
</tr>
<tr>
<td>اسید آمینه کل</td>
<td>1/63</td>
<td>0/12</td>
</tr>
<tr>
<td>فعال</td>
<td>0/11</td>
<td>0/12</td>
</tr>
<tr>
<td>پرونین کل</td>
<td>1/63</td>
<td>0/12</td>
</tr>
</tbody>
</table>

جدول 2- تأثیر اسید سالیسیلیک روی شاخص‌های رشد و غلتخ پروپتین و اسید آمینه کل انگور رقم قزانیوم تحت شرایط شور و غیرشور

<table>
<thead>
<tr>
<th>پروپتین (mg/g.FW)</th>
<th>اسید آمینه کل (mg/g.FW)</th>
<th>مقادیر نسبت آب/ب (g)</th>
<th>وزن تر (g)</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/64±0/1 ab</td>
<td>2/23±0/1 a</td>
<td>8/0±0/1 a</td>
<td>2/45±0/1 ab</td>
<td>شاهد</td>
</tr>
<tr>
<td>1/64±0/1 ab</td>
<td>2/22±0/2 a</td>
<td>8/0±0/1 a</td>
<td>2/45±0/1 ab</td>
<td>اسید سالیسیلیک 100 µM</td>
</tr>
<tr>
<td>1/64±0/1 ab</td>
<td>2/22±0/2 a</td>
<td>8/0±0/1 a</td>
<td>2/45±0/1 ab</td>
<td>اسید سالیسیلیک 500 µM</td>
</tr>
<tr>
<td>1/64±0/1 ab</td>
<td>2/22±0/2 a</td>
<td>8/0±0/1 a</td>
<td>2/45±0/1 ab</td>
<td>شوری 100 µM</td>
</tr>
<tr>
<td>1/64±0/1 ab</td>
<td>2/22±0/2 a</td>
<td>8/0±0/1 a</td>
<td>2/45±0/1 ab</td>
<td>شوری 100 µM</td>
</tr>
</tbody>
</table>

اختلاف بین مقادیر مربوط به هر شاخص که دارای حروف مشترک است، بر اساس آزمون دانکن از نظر آماری معنی‌دار نمی‌باشد (P<0.05).
جدول 4- تأثیر اسید سالسیلیک روی غلظت رنگی‌های فتوسنتزی. فند محلول و نشانه‌گر در انگور رقم فزالوزوم تحت شرایط شور و غیشور.

<table>
<thead>
<tr>
<th>شوری</th>
<th>شوری</th>
<th>فن محلول</th>
<th>کاروتئنید</th>
<th>کاروتئنید</th>
<th>a/b</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>1207±1</td>
<td>37±4</td>
<td>10145±8</td>
<td>2.8</td>
<td>100 µM</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>177±8</td>
<td>10145±8</td>
<td>4</td>
<td>500 µM</td>
<td>500 µM</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>179±1</td>
<td>30±5</td>
<td>30570</td>
<td>4</td>
<td>500 µM</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7</td>
<td>25±5</td>
<td>1207±1</td>
<td>4</td>
<td>500 µM</td>
<td>500 µM</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>10145±8</td>
<td>10145±8</td>
<td>2.8</td>
<td>100 µM</td>
<td>100 µM</td>
</tr>
</tbody>
</table>

Absolute نشانه‌گر ضریب اسید سالسیلیک در ضریب شوری توزیع کاروتئنید بعنوان شاخصی از مقاومت به شوری توزیع در هر دو سطح باعث افزایش جزئی غلظت فن محلول و در سطح 250 µM باعث افزایش جزئی غلظت نشانه‌گر شده که از نظر آماری معنی‌دار بود. کاروتئنید شوری به عنوان یکی از ترکیبات مورد تقدیم برای مقاومت گیاهان در برای شوری معیاری شدند (2009). قابل توجه، نشانات (جدول 4 و 5). تأثیر به‌دست آمده از ثغیقیات نشان داد که فن محلول محتوی بر روی کاروتئنید در گیاهان کم است تحت شوری گزارش شده که در راستای افزایش ظرفیت آنتی اکسیدانی گیاه جهت حفاظت از سیستم فتوسنتزی بود (2007) و تأثیر به‌دست آمده در این تحقیق همس‌بینی داشته داشته که از سیستم کاروتئنید بعنوان یکی از کاروتئنید a و کاروتئنید b با کاربرد اسید سالسیلیک در شرایط شوری یکی از عوامل حفظ نخر بر طرف فتوسنتز تحت شرایط نشت می‌باشد (2007).
جدول 5- تأثیر سالسیلیک اسید بر رشد و ساختار وزنی این مدل نبات بر روی فورستیم (Fv/Fm) (در انگور رقم قول اولوز تحت شرایط شور و غیرشور. اختلاف بین مقادیر (mean±SE) استیانه‌های که دارای حروف مشترک است، بر اساس آزمون دانک از نظر آماری معنی‌دار نمی‌باشد (p<0.05).

پروتئین‌های حساس به سیستم نباتی در روش‌های مختلف از تأثیر سالسیلیک اسید از نظر آماری معنی‌دار نمی‌باشد (Hui-Jie et al., 2011). در حالی که پایداری توجه کردن به پیش از گونه دیگر و همکاران (2007) در Arfan می‌تواند منتفی باشد برای مثال تحت تأثیر فورستیم II مطالعه خود رؤی یک گروه نشان داد (به همراه فورستیم) تحت تأثیر شوری و سالسیلیک اسید قرار نمی‌گیرد و این ویژگی در کاهش فورستیم گیاه در شرایط شور برآور است. غلط پروردها سید و پتاسیم: انداره‌گیری غلط پروردها سید و پتاسیم در شرایط شور و غیرشور و کاهش نشان داده که غلظت پروردها در شرایط اسید سالسیلیک در شرایط غیر شور در غلظت پروردها سید و پتاسیم معنی‌دار نبود. در شرایط شور کاربرد اسید سالسیلیک تأثیری روی غلظت سید و پتاسیم در پرکردهای پیر نداشت، ولی باعث کاهش معنی‌دار آن بوده در سطح 100 میکرومولار در پرکردهای جوان و گروه SA 500 و EC 10 به ترتیب غیر معنی‌دار داشت. در شرایط شور میزان سید و پتاسیم در گروه SA 500 و EC 10 معنی‌دار بود. میزان سید و پتاسیم در گروه SA 500 و EC 10 به ترتیب معنی‌دار بود.

<table>
<thead>
<tr>
<th>شرایط</th>
<th>فورستیم</th>
<th>Fv/Fm</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>SA 100</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>SA 500</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>EC 10</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>EC 10 + SA 100</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

Fv/Fm گروه‌های پیر و جوان و نسبت فلورسانس متغیر (بیشتر) انگور رقم قول اولوز.
غلظت بافت (میلی گرم/کرم وزن خشک)

<table>
<thead>
<tr>
<th>جنس</th>
<th>بافت</th>
<th>کنترل</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
<th>آبگوشت</th>
<th>8</th>
<th>8</th>
<th>9</th>
<th>8</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

در نتای‌های اخیر، اسکندری (Ashraf et al., 2010) بیان کرده که افزایش میزان اسید از زمانی که بافت به شکل مرکب پیاگی‌های سرخ‌پوست (Kraus et al., 2010) هسته‌های روبش‌های بیمار باید گزارش شود و در این صورت آبگوشت بهتر در بقیه‌های مصرفی داده‌های مربوط به میزان اسید خود را ارائه نماید. این نتای‌ها نشان می‌دهند که افزایش میزان اسید در بافت می‌تواند بهبودی را به‌طور گسترده‌ای در این جنس‌ها ایجاد کند. Marco و همکارانش (2017) نیز نشان می‌دهند که افزایش میزان اسید در بافت می‌تواند بهبودی را به‌طور گسترده‌ای در این جنس‌ها ایجاد کند.
جدول 1- تاثیر تغییر واریانس دوفاکتور (بیانکی مربعات) بررسی اثر شوری، هورمون و اثر متقابل شوری با هورمون بر فعالیت آنزیمها و غنظت متابولیت‌های سیستم آنزیم کاسپیا انتگر رقفلاروزوم

<table>
<thead>
<tr>
<th>شوری</th>
<th>هورمون</th>
</tr>
</thead>
<tbody>
<tr>
<td>شوری</td>
<td>هورمون</td>
</tr>
<tr>
<td>135***</td>
<td>177***</td>
</tr>
<tr>
<td>130**</td>
<td>170**</td>
</tr>
<tr>
<td>125***</td>
<td>160***</td>
</tr>
<tr>
<td>120**</td>
<td>150**</td>
</tr>
<tr>
<td>115***</td>
<td>145***</td>
</tr>
<tr>
<td>110**</td>
<td>135**</td>
</tr>
<tr>
<td>105**</td>
<td>130**</td>
</tr>
<tr>
<td>100***</td>
<td>125***</td>
</tr>
<tr>
<td>215*</td>
<td>220*</td>
</tr>
</tbody>
</table>

آتن در سطح احتمال ۰/۰۵; ** آتن در سطح احتمال ۰/۰۱; *** آتن در سطح احتمال ۰/۰۰۱

سپراکسیدوپرونز، کاتالاز و پراکسیداز می‌شود. افزایش فعالیت آنزیم‌های سیستم آنزیم کاسپیا گیاهان در شرایط شوری یک پدیده رایج جهت سردسازی رادیکالهای آزاد تولید شده‌است. Saikachout et al., 2013; Abedini et al., 2009.

کاهش فعالیت آنزیم‌های سیستم آنزیم کاسپیا در این مطالعه با کاربرد اسید سالیسیلیک ۱۰۰ میکروامول می‌تواند با نقص مستقیم اسید سالیسیلیک در این بدن رادیکالهای آزاد در کاهش، افزایش تاجیع القه شده در فعالیت آنزیم سپراکسیدوپرونز، کاتالاز و پراکسیداز ایجاد شود. افزایش فعالیت آنزیم‌های سیستم آنزیم کاسپیا با کاهش اسید سالیسیلیک ۵۰۰ میکروامول نتیجه‌ای کاهش غنظت پراکسیدوز و ایفا گردید.

در این مطالعه غنظت مالوندیآلید نمایان‌کننده فراورده پراکسیدازون لیپیدهای غشایی و پراکسیدوز رون تحت شرایط فاکتور نشان داد. نشان دهنده این کاهش تولید درایکالهای آژاد اسکبیز (ROS) می‌شود که افزایش این رادیکال‌ها به آگز واکنش زنجیره‌ای می‌تواند منجر به آگز مکمل‌الهای مانند پروتئین‌های لیپید‌ها، لیپید‌ها و اسیدهای داخلی تولیکس شود (McCord, 2000).

تسکین غنظت در مقابل نشان اکسیداتوپورتقات کند (Demiral, 2009). تحقيقات در گیاهان مانند گندم نشان داد که فعالیت آنزیم کاسپیا و افزایش ظرفیت آن در شرایط تنش ایفا تا حد امکان در مقابل نشان اکسیداتوپورتقات می‌کند (Demiral, 2009).
جدول ۷- تأثیر اسید سالیسیلیک روی فعالیت آنتی‌ویا و غلظت متاکلیئه‌های آنتی‌کسیدان در انگور رقم قزل‌ازوم تحت شرایط شور و غیرشور.

<table>
<thead>
<tr>
<th>MDA (nmol.g⁻¹FW⁻¹)</th>
<th>H₂O₂ (µmol.g⁻¹FW⁻¹)</th>
<th>POD (U/mg.pro.min)</th>
<th>CAT (U/mg.pro.min)</th>
<th>SOD (U/mg.pro.min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20±3/1</td>
<td>0/8±1.2/2</td>
<td>10/1±1/1</td>
<td>5/2±0/1</td>
<td></td>
</tr>
<tr>
<td>2±1/2</td>
<td>0/7±1/2</td>
<td>11/1±1/1</td>
<td>4/2±0/3</td>
<td></td>
</tr>
<tr>
<td>3±1/2</td>
<td>0/9±0/1</td>
<td>7/4±0/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1±0/1</td>
<td>9/4±1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(µM)</td>
<td>(µM)</td>
<td>(µM)</td>
<td>(µM)</td>
<td>(µM)</td>
</tr>
</tbody>
</table>

نمان داد که یا کاهش رشد، غلظت رنگ‌برهای فتوستروی، غلظت تهلیم و کاراپاد فتوسیستم II و فراش غلظت مالونی‌آلیدنی، پراکسیدهیدروژن، فعالیت آنتی‌کسیدان سیستم آنتی‌کسیدان و غلظت سدیم در گیاه هموار بود. در این گیاه کابرید اسید سالیسیلیک با غلظت ۵۰۰ میکرومول توانست در بهبود پارامترهای منجر از کاهش فتوسیندار و کاهش و افزایش غلظت ۱۰۰ میکرومول آن توانست از طریق افزایش میکرومول تنظیم و در شرایط شوری پاسخ میکرومول‌ها آسیب به فتوسیستم II کاروتینوزه‌ها را به مدت چهار کالر در حالت ۵۰۰ میکرومول غلظت ۵۰۰ میکرومول میکرومول نورد بر روی آنها نداشت.

اربین (Abedini and Daie, 2015)، (Mittova et al., 2004) و (Chawla et al., 2013) نشان داده است که غلظت ماده گیره‌های در رشد گیاهان نقش مهمی داشته است. اگر هموار بود، در این گیاه کابرید سالیسیلیک با غلظت ۵۰۰ میکرومول و افزایش میکرومول توانست در بهبود پارامترهای منجر از کاهش فتوسیندار و کاهش و افزایش غلظت ۱۰۰ میکرومول آن توانست از طریق افزایش میکرومول تنظیم و در شرایط شوری پاسخ میکرومول‌ها آسیب به فتوسیستم II کاروتینوزه‌ها را به مدت چهار کالر در حالت ۵۰۰ میکرومول غلظت ۵۰۰ میکرومول میکرومول نورد بر روی آنها نداشت.

در میان پژوهه‌های موجود در این زمینه، برخی از آنها نشان داده‌اند که اسید سالیسیلیک با غلظت ۵۰۰ میکرومول میکرومول‌ها بر روی گیاهان نقش مهمی داشته است. اگر هموار بود، در این گیاه کابرید سالیسیلیک با غلظت ۵۰۰ میکرومول و افزایش میکرومول توانست در بهبود پارامترهای منجر از کاهش فتوسیندار و کاهش و افزایش غلظت ۱۰۰ میکرومول آن توانست از طریق افزایش میکرومول تنظیم و در شرایط شوری پاسخ میکرومول‌ها آسیب به فتوسیستم II کاروتینوزه‌ها را به مدت چهار کالر در حالت ۵۰۰ میکرومول غلظت ۵۰۰ میکرومول میکرومول نورد بر روی آنها نداشت.

نتیجه‌گیری کلی: این پژوهش حساسیت رقم قزل ازوم انگور را به شرایط شور و غیرشور می‌شود.

