پاسخ فیزیولوژیکی گیاه دارویی - صنعتی حنا
به کاربرد اسید سالسیلیک تحت تنش خشکی
حسن فرح‌بخشآویامین پسندی پور
1 گروه زراعت و اصلاح نباتات، دانشگاه شهید باهنر کرمان، 2عضو انجمن پژوهشگران جوان دانشگاه شهید باهنر کرمان
تاریخ دریافت: 1394/11/05، تاریخ پذیرش نهایی: 1395/01/26

چکیده:
برای بررسی اثر اسید سالسیلیک (صرفه، 50 و 100 میکرومولار) بر برخی خصوصیات فیزیولوژیکی گیاه دارویی-صنعتی حنا (Lowsonia inermis L.) تحت تنش خشکی (صرفه، 2-4- بار ایجاد شده توسط پیله‌ای گلیکول (1000) آمپیشی به صورت فاکتویری و در قاتل طرح کاملاً تصادفی در گلخانه تحقیقاتی دانشکده کشاورزی دانشگاه شهید باهنر کرمان انجام شد. محیط‌های فتوتزری، محیط پرتیون، فعالیت آنتی‌آکسیدانی کالار و پیله نفل اکسیداز و ماده شکل پولیگلیکلیه به عنوان بریکش از پاسخ‌های فیزیولوژیکی گیاه حنا اندازه‌گیری شدند. نتایج نشان داد که تنش خشکی ایجاد شده به طور متوسطی (0.01)٪ مقدار صاف اندازه‌گیری شده را تحت تاثیر قرار داد. فعالیت پیله نفل اکسیداز تحت تاثیر اسید سالسیلیک قرار نگرفت در حالی که کاربرد این ماده موارد مختلف صاف اندازه‌گیری شده را به طور متوسطی تحت تاثیر قرار داد. از مقابل نیاز به محدودیت کولریک کلی، محیط پرتیون، فعالیت کاتالاز و ماده شکل مبتلا گردید. بر طبق نتایج مقایسه میانگین پیشین میانگین صفات ذکر شده در تمام سطوح تنش خشکی مورد بررسی مرتبه غلظت 50 میکرومولار اسید سالسیلیک بوده است. در نهایت نشان داد، کردن که کاربرد اسید سالسیلیک تنها اثرات ناشی از تنش خشکی را از طریق تعامل پاسخ‌های فیزیولوژیکی در حنا خنک بهبود بخشید.

کلمات کلیدی: اسید سالسیلیک، تنش خشکی، حنا، رنگ‌های فتوتزری، فعالیت آنتی‌آکسیدانی

مقدمه:
تنوع سامان‌های زراعی در کشور متساوی به سرتاسر رود به ناوذی رنگ‌های طری به تنها زراعت گیاهان محضی از غلات و گیاهان صنعتی رواج داشته و بسیاری از گیاهان که در گذشته مورد کشت و کار بودند اکنون برا فراورشی سبزه و یا زردی از نظر سامان‌های زراعت کشور حاکم، که از جمله این گیاهان می‌توان به گیاه دارویی-صنعتی اشاره نمود که عمدی باربری‌های بسیار زیادی که در زمینه دارویی و رنگ‌گری دارد، امروره کشت و کار آن تها

hfarahbakhsh@yahoo.com
تیز، لبه‌دار و فوهای متمال محیطی تحت تأثیر قرار گرفتن بخصوص این عوامل برآورده می‌شود. حاصلهای حاصله‌ها محقق شدند که به نشانه‌های تأثیر بر تغییرات در حیاتیات، به ترتیب در جامعه‌ها و در عرصه‌های مختلف از جمله: تحقیقات اقتصادی، علوم اجتماعی، علوم رعایتی و علوم دانشگاهی معرفی شدند. مطالعه انجام گرفت و نتایج آن این را نشان می‌دهد که سرنوشت به ترتیب در جهان سرویس است که باید در پی تحقیقات اقتصادی و علوم دانشگاهی، مطالعات در این زمینه برگزار شود.

(Chaudhary et al., 2010)
پاس فیبرولوزیکی گیاه داروی-صیانه حنا (Lowsonia inermis L.)

جعبه غلاف صافی، جذب آن با دستایی سیبکتروومتر مدل 26-2 مدل 36/8 و TECH ۴۴۰ نانومتر خونه‌ی شبید.

نیهی عصاره آنزیمی: به منظور ساخت عصاره آنزیمی، ۲۰۰/۵ گرم از بانف تر ببرگ در یک های چینی محض ۵ ملی‌لیتر Tris-Hcl با فار ۵۰ میلی‌مولار با یک ابر ۷/۵ آب و لک و سریع و رسانه‌ی غیری بیش از گذشته ۲۵ دقیقه بین و در ۱۰۰۰۰ د و دمای ۴ درجه سانتی‌گراد سنتایزه شد.

سپس قسمت بالایی محلول به عناوین عصاره آنزیمی جدا و در فریزر با دما ۲۰ درجه سانتی‌گراد تکه‌سازی می‌شد.

سنتش معایی پروتئین: برای سنتش غلظت پروتئین، به لوله‌های آزمایش ۱۰۰۰ میلی‌لیتر عصاره آنزیمی، مقدار ۵ میلی‌لیتر مصرف بهره‌ای از شد و سریع و رسانه‌ی غیری بیش از گذشته ۲۵ دقیقه بیش از گذشته ۲۵ دقیقه بسته بنا به دستگاه اسپکترونومتر در طول موج ۹۵۰ نانومتر خونه‌ی شبید (Bradford, 1976).

روش ساخت مکث فوری: برای ساخت مکث بهره‌ای ابتدای ۹۵/۰ گرم از کوماسی بریلیانس با ۲۵ میلی‌لیتر محلول غذایی ۹۵ درصد مقدار پک ساخت حل نموده و مسی ۱۰۰ میلی‌لیتر اسید فسفریک ۸۵ درصد به صورت قطره به آن اضافه گردید. در پایان حجم کل محلول را با یا اضافه کردن آب مقطور به ۵۰۰ میلی‌لیتر رسانده و از کاغذ صافی واقعی نمایه یک بیمار داده شد.

سنتش فعالیت کاتالاز براساس کاهش جذب آب اکسیژن (کاهش مقدار H2O2 در طول موج H2O2 ۴۵۰ نانومتر و با روش Dhindsa و همکاران (۱۹۸۱) صورت ۴۵۰/۵ نانومتر و با روش Tris-Hcl گرفت. مخلوط واکنش شامل یافر یک ابر ۷/۵ و آب اکسیژن ۱۵ میلی‌مولار با واکنش کردن ۱۰۰ میلی‌مولار با عصاره آنزیمی به مخلوط ذکر شبید، واکنش شروع و تغییرات جذب در طول موج ۴۵۰ نانومتر از زمان شروع واکنش محاسبه شد.

سنتش فعالیت پلی فن اکسیداز: مخلوط واکنش جهت سنتش فعالیت پلی فن اکسیداز شامل یافر تریس ۲/۰ مولار با

بر این است که اسید سالیسیلیکی می‌تواند به عناوین بک‌نیژی آب کننده می‌باشد. با وجود ویژگی پودر برنی در حاوی این ماده به‌خاطر سیبکتروومتر و برای مجموع الحاقی که در ریز سیبکتروومتر، برای گیاه یا تحت نش که حاکی می‌باشد. در این مطالعه بررسی سطوح مختلف این ماده به‌خاطر صیانه فیبرولوزیکی تحت در شرایط تنش خشکی می‌باشد.

مواد و روش‌ها:

این آزمایش در محیط کشت هیپرتریک در دانشکده کشاورزی دانشگاه شهید باهنر کرمان در سال ۱۳۹۱ صورت گرفت. گرفت‌های حنا (Lowsonia inermis L.) از محل هیپر‌آزمایی دانشگاه بی جهت شده بودند. ابتدا در محیط محیطی کورپوئیت و ماسا کاشته و بعد از رسیدن به مرحله ۵ تا ۶ بگری به محیط کشت هیپر‌آزمایی محیط محلول غذایی هوگلدان منفی‌سازی شد. به منظور اطمنان از انتقال سالم گیاه‌ها جونا به مدت سه روز در شرایط جدید رشد نموده و مسی اولین فاکتور آزمایش یعنی تین اسید سالیسیلیک به غلظت ۴۵ صفر، ۱۰۰ میلی‌مولار به مدت ۸ ساعت از طریق جذب ریشه‌ای اعمال گردید. مجدداً گیاه‌ها به مدت ۱۲ ساعت به محیط کشت محیط محلول غذایی هوگلدان انتقال داده شدند. در این مرحله از محیط غذایی اجباری شده توسط محلول پلی اتیلن گلایکول ۱۰۰۰۰۰ (صفر-۲ و ۴ بار) گرفت. پس از گذشت ۸۸ ساعت میوه گیاهی سریع و تیروز مایع منجمد و به منظور اندازه‌گیری محیط رنگ‌های فتوسنتزی، فعالیت کاتالاز و پلی‌فوئن اکسیداز در فوریزی با دمای ۸۰ درجه سانتی‌گراد نگهداری شدند.

سنتش رنگ‌های فتوسنتزی: برای سنتش مقدار کلروفیل و کاروتئینی آب روش Lichtenthaler (1987) استفاده شد. بر این صورت که ۱/۰ گرم از برگ‌های تازه قم در هاوان چینی حاوی ۱۵ میلی‌لیتر استون ۸۰ درصد تیپیده شد و پس از
احتمال یک درصد معنی‌دار شده‌اند (جدول ۱). اثر مقایسه تنش خشکی در اسید سالسیلیک در مورد صفت محیوت کارکرد گزارش شده شد. نشان دادن دادگان مقدار این صفت مربوط به گیاهان بود که در شرایط بدون تنش (سطح صفر خشکی) باشند. غلظت ۵۰ میکرو اسید سالسیلیک تیمار شده‌بودند.

کاربرد اسید سالسیلیک خارجی باعث کاهش میزان کارکرد برق نسبت به تیمار شاهد شد که از نظر آماری معنی‌دار است. (جدول ۲) افزایش شدت نشان خشکی محیوت کارکرد برق را نسبت به تیمار شاهد دچار کاهش معنی‌داری گردید (جدول ۳). اثر مقایسه نشان خشکی در اسید سالسیلیک سی‌پتی‌کیور که در محیوت محیوت کارکرد نشان داده شده است. نتایج در مورد اسید سالسیلیک ۵۰ میکرو و مولار افزایش یافته و تنش خشکی موجب کاهش این صفت در گیاه نسبت به گیاهان شاهد شده است که از نظر آماری تغییرات معنی‌دار است. بر طبق نتایج مقایسه میزان اثر مقایسه نشان خشکی در اسید سالسیلیک (شکل ۲) بیشترین میزان پرتویی در تمام سطح تنش خشکی مورد بررسی مربوط به غلظت ۵۰ میکرو اسید سالسیلیک بود.

نتایج و بحث:

نتایج حاصل از تجربه واریانس نشان داد تأثیر تنش خشکی، اسید سالسیلیک و اثر متقابل آنها بر محیوت کارکرد a در سطح احتمال یک درصد معنی‌دار شده است (جدول ۱). بر طبق نتایج مقایسه میزان اثر مقایسه نشان خشکی در اسید سالسیلیک (شکل ۱) بیشترین میزان کاهش دچار کاهش میزان نشان خشکی محیوت کارکرد داشتند. افراد معنی‌دار ۵۰ و ۱۰۰ میکرو اسید سالسیلیک بود.

تأثیر اسید سالسیلیک بر محیوت کارکرد ۵ در سطح احتمال یک درصد معنی‌دار شده (جدول ۲) غلظت ۵۰ میکرو اسید سالسیلیک این ماده نشان داد که نمایندگی پرتویی در تمام سطح تنش خشکی و هم در شرایط بدون تنش، تأثیر معنی‌داری بر فعالیت کالریا داشت (شکل ۴). با توجه به شکل ۴ بیشترین فعالیت کالریا مربوط به گیاهان تیمار شده بود با غلظت ۱۰۰ میکرو اسید سالسیلیک تحت تنش خشکی ۴- بار بود.

فعالیت پلی‌فنول اسید سالسیلیک تحت تأثیر کارکرد اسید سالسیلیک قرار گرفت در حالی که تنش خشکی توانست موجب به ایجاد پاسبانی گیاهان شده و در تعدادی از کارکرد منجر به ایجاد پاسبانی گیاهان شده و در تعدادی از کارکرد. (جدول ۱) ترتیب حاصل از اندازه‌گیری فعالیت پلی‌فنول اسید سالسیلیک در گیاهان تحت تأثیر تنش خشکی (جدول ۱) نشان داد که فعالیت پلی‌فنول اسید سالسیلیک تحت تنش خشکی ۲- بار بود به شاهد افزایش معنی‌داری نداشت. فعالیت این آزمی با افزایش پی اج برای ۳/۱۸۵۰ میلی مولار و ۱۰۰۰ میکرو لیتر عصاره آزمی‌بود. در حضور آزمی پلی‌فنول اسید سالسیلیک پیرکار می‌شود. در حضور آزمی‌بود، پیرکار الکتریکی تبدیل می‌شود. تغییر در جذب پیرکار در ۲۰۰ نانومتر، بر این دقتی در داده ۵۰ درجه سانتی‌گراد نسبت به زمان شروع (Kar and Mishra، ۱۹۷۶).
پاسب فیزیولوژیکی گیاه دارویی-پیشنهاد حنا (Lowsonia inermis L.)

جدول 1- میانگین مربوطات حاصل از تجربه واریانس داده‌های مربوط به صفات اندازه گیری شده

صفت	درجه تغییرات	کلمه A	کلمه B	کلمه C	پیوند *
تنش خشکی	2	973**	2139**	2139**	**< 0.01
اسید سالسیلیک	2	523**	253**	253**	**< 0.01
اثر گروه	4	1026**	1026**	1026**	**< 0.01
خطای آزمایش	18	1635	1635	1635	ns

** و *** به ترتیب غیر معنی دار و معنی دار در سطح احتمال 1% و 0.1%.

![نمودار]

شکل 1- اثر مقیاس اسید سالسیلیک و تنش خشکی بر محتوای کارفوئل. a: سطح مشاهده و b: عدم اختلاف معنی دار بر اساس آزمون LSD.

جدول 2- اثر سطح مختلف سالسیلیک بر صفات مورد بررسی

<table>
<thead>
<tr>
<th>فعالیت پلی فنول اکسیداز (unit/mg protein)</th>
<th>محصول کارفوئل b (mg/g FW)</th>
<th>محصول کارفوئل a (mg/g FW)</th>
<th>سطح</th>
<th>اسید سالسیلیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.73</td>
<td>0.77</td>
<td>50 میکرومولار</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0.71</td>
<td>0.72</td>
<td>100 میکرومولار</td>
<td></td>
</tr>
</tbody>
</table>

جدول 3- اثر سطح مختلف تنش خشکی بر صفات مورد بررسی

<table>
<thead>
<tr>
<th>فعالیت پلی فنول اکسیداز (unit/mg protein)</th>
<th>محصول کارفوئل b (mg/g FW)</th>
<th>محصول کارفوئل a (mg/g FW)</th>
<th>سطح</th>
<th>تنش خشکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.73</td>
<td>0.77</td>
<td>50 میکرومولار</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0.71</td>
<td>0.72</td>
<td>100 میکرومولار</td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف مشترک (a b c) بر اساس آزمون LSD و در سطح احتمال پنج درصد اختلاف معنی‌داری با یکدیگر ندارند.
شکل ۲- اثر مقیاس سالسیلیکسکی و تنش خشکی بر محیط کلروفیل کل. حروف مشابه یا یک طبقاتی عمد اختلاف معنادار بر اساس آزون در سطح احتمال پنج درصد می‌باشد.

شکل ۳- اثر مقیاس سالسیلیکسکی و تنش خشکی بر محیط پروتئین. حروف مشابه یا یک طبقاتی عمد اختلاف معنادار بر اساس آزون در سطح احتمال پنج درصد می‌باشد.

شکل ۴- اثر مقیاس سالسیلیکسکی و تنش خشکی بر فعالیت کاتالاز. حروف مشابه یا یک طبقاتی عمد اختلاف معنادار بر اساس آزون در سطح احتمال پنج درصد می‌باشد.

خشکی گیاه‌ها در سطح ۴ به ۴-بار به طور معناداری افزایش یافت. اثر مقیاس تنش خشکی در سالسیلیکسکی برای این صفت از لحاظ آماری معنادار نگردید (جدول ۱).

تأثیر ترکیب اثرات ساده و مقیاس مورد بررسی بر تولید ماده سطح تنش از ۲ به ۴ بار به طور معناداری افزایش یافت. به این ترتیب: سالسیلیکسکی در این ترکیب اثرات معناداری نداشت.
پاسخ: در این تحقیق محصولات کربنات در اثر افزایش شدید بوده، ایجاد شده با پلی اتیلن گلاکسیک، 2990 راست. یافته‌ها نیاز به تأثیر کربنات در افزایش افزایش گیاهان به صورتی تازه و همکاران، 1394 (بیکری و همکاران، 1393) و شویدی (ستایش مهر و گنجعلی، 1392) تولید شده است. در تحقیق شهربازی و همکاران (1392) گزارش شده است. در حالی که روند افزایش محصولات کربنات در اثر افزایش شدید گیاهان در گیاه‌های بهاری گزارش شده است (جعفرزاده و همکاران، 1393). مطالعات اخیر نشان می‌دهد که در شرایط نشان شد که در شرایط
طبق آسیب به مراکز واکنشی و غشا کاهش می‌یابد.

نتایج این تحقیق حاکی از کاهش معنی‌داری پروپتین كل در شرایط تشخیص بود. مطابق با نتایج این تحقیق کاهش پروپتین در گیاهان رازیانه (سالاریپور غربا و فرحخشت، ۱۳۸۳)، سیاه‌الهانی (کبیری و همکاران، ۱۳۸۳) و شیود (سبایی و گنجعلی، ۱۳۹۳) در شرایط تشخیص گزارش شده است.

تشخیص‌های غربی‌ایستی سنتز بی‌پروپتین را مهار و تولید برخی دیگر را تحریک می‌کند. مدل بندی‌های ظرفیتی که در جهت کاهش میزان کل پروپتین‌ها می‌باشد (Ercison and Alfinito، ۱۹۸۴) تولید شد. همچنین بر خلاف نتایج بدست آمده، کاهش در میزان کارولفیل نیز در گیاهان پیش تیمار شده Anandhi and (Pancheva et al، ۱۹۹۶) در این تحقیق معنی‌داری پروپتین‌ها بیان نشدن تشخیص به طور معنی‌داری نسبت به شاهد کاهش نداشت. مطابق با نتایج این تحقیق کاهش در معنی‌داری کاهش در میزان کارولفیل‌های گیاهان سیاه‌الهانی (کبیری و همکاران، ۱۳۸۳) و شیود (سبایی و گنجعلی، ۱۳۹۲) در اثر تشخیص گزارش شده است.

کاهش کارولفیل‌ها در شرایط تشخیص شدت کاهش نشکنیده از نمونه به اکسیژن پتکایی تولید شده شد. کاهش گزارش‌ها در شرایط تولید کاهش میزان کل پروپتین‌ها نسبت به کاهش معنی‌داری پروپتین‌ها می‌باشد (میانی و حداد، ۱۳۸۲). بر اساس پژوهش حاضر با شدت گرفتن میزان شدت، مقدار کل پروپتین‌های محلول بکر کاهش یافته که این روند با افزایش فعالیت کاتالاز همراه بود. بنابراین نتایج کاهش سبب آن تحقیق افزایش چشم‌گیر فعالیت کاتالاز با همراه کاهش معنی‌دار پروپتین در برگ را می‌توان به تخریب پروپتین‌ها می‌باشد. گزارش شده است. مجد و همکاران (۱۳۸۵) گزارش نمودند.

راه‌های فتوستاتیکی وجود دارد. افزایش غلظت سلیسیلیک از صفر به ۲۲۰ میکرومولار منجر به کاهش محیط کارولفیل و افزایش معنی‌داری کارولفین‌ها در کالوس کنگ فرنگی (نیوری و همکاران، ۱۳۹۲). مطابق با نتایج این تحقیق غلظت کارولفین در کیاه خردسال اثر بر غلظت باعث شد. پایین‌الاپس سلیسیلیک (۱۰۰ میکرومولار) به طور معنی‌داری افزایش یافته در حالی که غلظت به زیادی ایجاد یافته کرد (Fariuddin et al، ۲۰۰۳). آمده، کاهش در میزان کارولفیل نیز در گیاهان پیش تیمار شده Anandhi and (Pancheva et al، ۱۹۹۶).

(Ramanujam، ۱۹۹۷; Pancheva et al، ۱۹۹۶)

کاربرد این تحقیق سلیسیلیک ۵۰ میکرومولار نمایان می‌کند بر محیط کارولفین‌ها ناشست و افزایش غلظت سبب افزایش کاهش معنی‌دار پروپتین‌ها به ۲۰۰ میکرومولار به طور مشابه با محیط کارولفین منجر به کاهش معنی‌داری کارولفین‌ها است. محققان بیان داشته که غلظت‌های اکسیژن کاهش معنی‌داری سلیسیلیک سبب افزایش رشد گیاهان درونی می‌شود، در حالی که افزایش غلظت آن کاهش معنی‌دار کارولفین و اکسیژن یکبکایی محسوب می‌شود. حضور و افزایش تدریجی آنها با افزایش ظرفیت دفع آن‌ها کاهش دارد. بیان کاهش رادیکال‌های آزاد تولید شده در برگ شده و از این
پاکس فیبرولوژیکی گیاه داروی حسنت حنا (L. (Lowsonia inermis) که غلظت 1/5 میلی‌مولار اسید سالسیلیکی موجب کاهش معیار پرورش‌های محلول دانه نخود در رق ها 56. شد. آنها با بررسی اثر غلظت‌های 0.17 و 0.15 میلی‌مولار چنین نتیجه‌گیری کردند که کاربرد غلظت‌های 0.17 و 0.15 میلی‌مولار در مقایسه با شاهد تاثیر معناداری بر مقدار پرورش نداشتند در حالت که کاربرد بالاترین غلظت (1/5 میلی‌مولار) نتایج منفی بر پر رابط ترکیبات می‌کند (Rastgoo and Alemzadeh, 2011).

در این تحقیق فعالیت آنیزم (آتیک اکسیدان) و پلی‌نول اکسیداز در بافت به نش خشکی افزایش یافت. مطمئن یا تأثیر فعالیت افزایش در فعالیت آنیزم (آتیک اکسیدان) در شرایط نش خشکی در گیاهان سایه‌داران (احمدپور و دهکردی و یلچی، 2011) و گزارش شده است. این تحقیق نشان داد که گزینه‌ها به گونه‌ای مورد ارزیابی می‌باشند که در داخل افزایش فعالیت آنیزم (آتیک اکسیدان) می‌تواند معیار بررسی گیاه‌ها باشد. همچنین ارتباط این جریان‌ها با نش خشکی و تاثیر آن در مسیر کاهش نش خشکی و بهبود کیفیت گیاه‌ها مهم است. تحقیقات اخیر نشان می‌دهند که کاهش نش خشکی به وسیله آنیزم (آتیک اکسیدان) می‌تواند در محیط‌های خشک و مرطوب از نظر کاهش نش خشکی و بهبود کیفیت گیاه‌ها به کار گیرد.

در این تحقیق فعالیت آنیزم (آتیک اکسیدان) و پلی‌نول اکسیداز در بافت به نش خشکی افزایش یافت و دیگر انواع این تحقیق نشان داد که گزینه‌ها به گونه‌ای مورد ارزیابی می‌باشند که در داخل افزایش فعالیت آنیزم (آتیک اکسیدان) می‌تواند معیار بررسی گیاه‌ها باشد. همچنین ارتباط این جریان‌ها با نش خشکی و تاثیر آن در مسیر کاهش نش خشکی و بهبود کیفیت گیاه‌ها مهم است. تحقیقات اخیر نشان می‌دهند که کاهش نش خشکی به وسیله آنیزم (آتیک اکسیدان) می‌تواند در محیط‌های خشک و مرطوب از نظر کاهش نش خشکی و بهبود کیفیت گیاه‌ها به کار گیرد.
طرح دیگر با کاربرد این ماده فعالیت آنزیم روپیسکو افراش می‌باشد (Popova et al., 1997). رضایی‌چیانه و پیرزاد (1393) بیان نمودند احتمال استفاده از اسید سالسیلیک به‌عنوان گسترش سیستم ریشه‌ای، حفظ سلامت آن‌ها، جابجایی آب و مواد غذایی شده و از طریق افزایش فتوستات در برگ‌ها، در افزایش عامل‌کرد زیستی نشان داشتند.

نتیجه‌گیری کلی:
براساس نتایج بدست آمده کاهش میزان رنگ‌های فتوستازی و محصول پروتئین محلول و نیز افزایش فعالیت آنزیم‌های آنزیم‌کاهشگر ناشی از نشان‌رسانی که منجر به آسیب‌های اکسیدانیو و در نهایت کاهش ماده فتوستاتیلی می‌گردد. کاربرد اسید سالسیلیک منجر به بهبود وضعیت برقی شاخه‌های اندازه‌گیری شده در گیاهان حاوی نشان دهنده کاهش شد که حاکی از مکانیسم تأثیرگذاری آن در برای تنش خشکی می‌باشد.

فلسفه (شیرباری و همکاران، 1392) و انسون (محمدی البرزی و همکاران، 1394) مطابقی دارد. طیب‌الله کمیمی آب و به طبع آن کاهش فشار آرام درون سلول و نیز کاهش جذب عناصر غذایی به دلیل افزایش پتانسیل اسیدی خاک، منجر به کاهش آزادی سلول‌ها و رشد برگ‌ها می‌شود. بنابراین با کاهش سطح برگ، نیاز جلب نور خورشید و به دنبال آن فتوستاز گیاه کاهش یافته و این امر منجر به کاهش ماده فتوتولیدی می‌شود.

در این حیط نقد مقدار ماده فتوتولیدی به طور معنی‌داری تحت تأثیر اسید سالسیلیک قرار گرفت. گرداریان برای افزایش آنزیم‌کاهشگر ناشی از نشان‌رسانی که منجر به آسیب‌های اکسیدانیو و در نهایت کاهش ماده فتوستاتیلی می‌گردد، این زمینه‌ای ارائه می‌دهند که منجر به آسیب‌های اکسیدانیو و در نهایت کاهش ماده فتوستاتیلی می‌گردد. کاربرد این اسید سالسیلیک منجر به بهبود وضعیت ماده خشکی در اکثر گیاهان و از این رو می‌تواند به فتوستاز تاثیر گذاشته و از ملایم: احمدپوردهکردی، س. و بلچی‌ج. (1391) اثر پرپروینگ بذر بر آنزیم‌های آنتی‌اکسیدانی و پرپروینگان لیپیدهای غشای سلول Nigella سیاه‌هند (Nigella sativa L.) تحت تنش نوری و خشکی. نتایج گاهان رازعی: 33-28
امیدور، ن. دستوری، م. و جعفری ع. (1394) آزمایش‌های شامل اختلاف سلول‌های سالسیلیک بر پیشرفت مورفولوژیک و عملکرد اسید، شوری (Anethum graveolens L.) اکوژیولزی‌ی کاهشی 2-6 ـ 2-4
امینی، ر. و حداد، ر. (1394) نقش رنگ‌های فتوستازی و آنزیم‌های آنتی‌اکسیدان در مقابل نشان‌رسانی که منجر به آسیب‌های سلولی و مولکولی (مجله زیست‌شناسی ایران، 26: 251-262)
بیات، ح. مرادی، ح. آربی، ح. و سلاح وزی، ی. (1390) تاثیر اسید سالسیلیک بر فیزیولوژیکی دانه‌های خیار تحت تنش خشکی. مجله پژوهش‌های تولید گیاهی 18: 73-76
بیان، م. امینی، ف. و عباسی، م. (1394) تاثیر پف‌پر در اکسید سالسیلیک بر تغییر اسیدوسیل‌های آلفا و فعالیت آنتی‌اکسیدانی گیاهی در شرایط نشان‌رسانی شده. نتایج گاهان رازعی (Nitraria shoberi L.) قره‌داغی، ۱۳۹۲-۱۳۹۳ (مجله اکسیدزیولزی‌ی گیاهان رازعی، ۲۳: ۲۱۵-۲۲۰)
پورازی، ل. و عباسی، م. (1393) مطالعه اثر میدان مغناطیسی و اسید سالسیلیک بر گیاه پارتنژی (عنوانیان) تحت نشان‌رسانی B پائه‌های نوین در علوم زیستی ۱۳۹۲-۱۳۹۳۷امار، ۱۹ سال ۱۳۹۲.
پاساک (Lowsonia inermis L.)

تبریز، ا.، قاسم‌نژاد، ع. و علیزاده، م. (1392) تأثیر میله‌ها و اسید سالسیلیک بر صفات مولفولزیکی و رنگ‌دانه‌های درونی گل از (Calendula officinalis L.) در شرایط مختلف کشت. مجله پژوهش‌های گیاهی 27: 170-179.

چغذراده، ل.، امیدی، ج. و بستنی، ع. (1396) تأثیر نش خشکی و کود بنزینی بر جهش و وزن گیاههای پیش‌بینی زده. مجله پژوهش‌های گیاهی 27: 180-186.

دارویی، حیدری، ح. و رضایی، ح. (1393) تحقیقات گیاههای دارویی در معرض ایران. شماره 21: 262-266.

(Rosalba ternifolia Benth).

رضایی‌چانه، ع. و پژرزاد، ع. (1393) اثر اسید سالسیلیک بر عملکرد، اجرای عملکرد و اساس سیاه‌دانه در (Nigella sativa L.) در شرایط مختلف کم آبی. نشریه پژوهش‌های زراعت ایران: 241-247.

زمین‌بخش، ا. (1391) اثر نش خشکی بر رشد و یکپارچگی فیتوآمی از گیاه کشارفوکسی (Curcuma longa L.) و فیتولوزیکی (Zingiber officinale R.) در (Mentha piperita L.). نشریه علمی و فناوری کشاورزی 16: 737-788.

شناوی‌مهد، ن. و همکاری، ع. (1392) بررسی اثربخشی گیاههای دارویی بر رشد و خصوصیات پیوسلوزیکی گیاه شوید. (Anethum graveolens L.)

سوناری‌زاده، ح. و فیض‌افکن، ع. (1393) اثر نش خشکی بر تجمیع ماده خشک، غلظت عناصر غلیظ و تعداد محلول در گیاههای (Salvia macrocephalum Boiss.) خشک بوم 4: 9-5.

شکاری، ف.، بلوک، ر.، صابری، ح. و فیض‌افکن، ع. (1391) تأثیر براین‌یاب گیاهی سالسیلیک روی خصوصیات رشدی گیاههای کاپوسین (Borago officinalis L.). مجله دانش نوین کشاورزی 6: 43-47.

شهباء، س. و عمیدی، م. و ایزدری، س. و انصاری، ح. (1391) اثر رنگ‌های مختلف آبی و بی‌رنگ‌های مختلف بر بیماری‌های ویروسی UV-C و UV-B بر گیاه‌های سالسیلیک مایل به رنگ‌های رنگ‌های (Melissa officinalis L.) (Frieda) و کارکرد کیفی 2: 14-15.

عباسی‌پور، ج. و ثاری، ح. (1392) بررسی تأثیر بر ابعاد گیاهی فیتوآمی و ترقی‌ها در گیاه دارویی در شرایط مختلف (Dracocephalum moldavica Benth) در شرایط مختلف کشت. مجله پژوهش‌های گیاهی 27: 983-989.

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1394) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

عباسی‌پور، ج. و فیض‌افکن، ع. و فیض‌افکن، ع. (1393) اثر نش خشکی بر خصوصیات پیوسلوزیکی و پیوسلوزیکی گیاه خشکی (Nigella sativa L.)

