تأثیر تنش شوری بر رنگ‌های فتوسنتزی، فلوئورسانس کلروفیل و برخی آنتی اکسیدان‌های برج سرم بادام زمینی

منصور افشار محمدیان1، بنت الهدی دمیسی2، ساره ابراهیمی3 و مصطفی جمال‌امیدی3

1گروه زیست شناسی، دانشکده علوم، دانشگاه گیلان، 2گروه زیست شناسی، دانشگاه پیام نور استان گیلان، 3واد رودسر

(تاریخ دریافت: 19/12/1394، تاریخ پذیرش نهایی: 1394/12/19)

چکیده:

به منظور بررسی اثر سطوح مختلف شوری بر رنگ‌های فتوسنتزی، فلوئورسانس کلروفیل و آنتی اکسیدان‌های برج سرم بادام زمینی به عنوان شاخه‌ای از مقاومت به تنش شوری، تحقیق در سال 1392 در گلخانه دانشگاه علوم پایه دانشگاه گیلان در قلب آزمایش فناوری قریب به طرح کامل تصادفی با سه تکرار انجام گرفت. تیمارهای آزمایش شامل ترکیب از 4 سطح شوری (شاد به بی‌شکل، 100 و 150 میلی‌مولار کلرید سدیم) و هم‌راری بادام زمینی (محصول گیلان177 و ICGV961760) بودند. نتایج نشان داد که اثر مقاومت رقم و شوری بر روی رنگ‌های فتوسنتزی، فلوئورسانس کلروفیل (Fv/Fm)، فلوئورسانس کمیته (Fv/Fo)، فلوئورسانس ماکریم (Fa) و فلوئورسانس کمیته (Fe)، پراکسیدار و فلک کل بجز کاروتئین هم‌دار بودند. در این بررسی مطالعه شد که فلک کل به‌عنوان یکی از پارامترهای نیازمند می‌باشد و در مجموع رقم مطلوبی گیلان ممکن است سطح مختلفی تنش شوری بود.

واژه‌های کلیدی: بادام زمینی، شوری، شاخه‌های فلوئورسانس کلروفیل، فلک، پراکسیدار

مقدمه:

بادام زمینی از گیاهان روزمرهی ارزشمندی است که بذر آن دارای 44 تا 45 درصد روغن است و بعد از سویا و کلزا سومین زراعت دانه روغنی جهان به شمار می‌آید (2001). بادام زمینی که در فارسی به آن پسته شامی یا پسته زمینی نیز می‌گوید، گیاهی بوده‌ای است که از خانواده بیولیه است. این منشأ اصلی این گیاه در منطقه‌ای به نام گزان چاکی در قاره آمریکای جنوبی بوده و اولین بار در سال 1289 خورشیدی از لبنان وارد ایران شد و به طور آزمایشی در روسیه به نام آنتگونا از توابع شهر رشت کشت شد و از آن پس به سایر نقاط استان گیلان انتقال پیدا کرد. این گیاه در گونه‌های مختلفی در مناطق مختلف خشک و نیمه‌خشک به‌طور توأمی کشت می‌شود (Afshar et al., 2013). بیش از 1.3 میلیون تن بادام زمینی در مناطق مختلف خشک و نیمه‌خشک کشت می‌شود. بادام زمینی را به عنوان یکی از مشکلات اساسی بر سر راه چاکاوئی کمبود منابع آب شیرین و کاهش حجم آبیاری است. یکی از بهترین راه‌حل‌های این مشکل شیرین کردن آب است. به‌طور مثال با افزایش تراکم انسدادی بودن استفاده از منابع آب با کیفیت پایین و شوری، ترکیب را می‌توان داده شد. گروه آب شیرین و کاهش حجم آبیاری به‌طور مشابه به نام کشاورزی فارابی و انجام تاپیکری هم‌دار استفاده از منابع آب با کیفیت پایین و شوری، ترکیب را می‌توان داده شد. گروه آب شیرین و کاهش حجم آبیاری به‌طور مشابه به نام کشاورزی فارابی و انجام تاپیکری هم‌دار استفاده از منابع آب با کیفیت پایین و شوری، ترکیب را می‌توان داده شد. گروه آب شیرین و کاهش حجم آبیاری به‌طور مشابه به نام کشاورزی فارابی و انجام تاپیکری هم‌دار استفاده از منابع آب با کیفیت پایین و شوری، ترکیب را می‌توان داده شد. گروه آب شیرین و کاهش حجم آبیاری به‌طور مشابه به نام کشاورزی فارابی و انجام تاپیکری هم‌دار استفاده از منابع آب با کیفیت پایین و شوری، ترکیب را می‌توان داده شد. گروه آب شیرین و کاهش حجم آبیاری به‌طور مشابه به نام کشاورزی فارابی و انجام تاپیکری هم‌دار استفاده از منابع آب با کیفیت پایین و شوری، ترکیب را می‌توان داده شد. گروه آب شیرین و کاهش حجم آبیاری به‌طور مشابه به نام کشاورزی فارابی و انجام تاپیکری هم‌دار استفاده از منابع آب با کیفیت پایین و شوری، ترکیب را می‌توان داده شد. گروه آب شیرین و کاهش حجم آبیاری به‌طور مشابه به نام کشاورزی فارابی و انجام تاپیکری H. Afshar@guilan.ac.ir
مطالعات متعددی ثابت شده که افزایش نسبت NADPH به ATP در واکنش به شرایط نابalance به ترتیب، فعالیت حاوی ROS و افزایش حسی اسیدوزی در وابسته به شرایط نوری موجود بوده است. 

(Chen et al., 2007) 

برای افزایش اسیدوزی و افزایش حسی نوری فعالیت حاوی ROS و افزایش حسی اسیدوزی در وابسته به شرایط نوری موجود بوده است. 

(Chen et al., 2007)

سازگاری این تحقیق با تحقیق (Zhao et al., 2007) در مطالعات تکثیری بیان شده که افزایش نسبت NADPH به ATP در واکنش به شرایط نابalance به ترتیب، فعالیت حاوی ROS و افزایش حسی اسیدوزی در وابسته به شرایط نوری موجود بوده است. 

(Chen et al., 2007) 

برای افزایش اسیدوزی و افزایش حسی نوری فعالیت حاوی ROS و افزایش حسی اسیدوزی در وابسته به شرایط نوری موجود بوده است. 

(Chen et al., 2007)
مواد روش‌ها:

این تحقیق در سال 1392 در کلیه‌های تحقیقاتی دانشکده علوم پایه دانشگاه گیلان به صورت آزمایش فاکتوریال در قالب طرح کامل تصادفی به‌سیله آزمایش و تیماره‌ای آزمایش شامل ۱۴ سطح مختلف شوری (۴۰۰۰، ۵۰۰۰ و ۶۰۰۰ میلی‌مایل) مولار نمک کلرید سدیم و سه رقم زمانی (مشهیر گیلان) به‌صورت (ICGV03060 و ICGV96177) به‌نوبه شده از موسس‌های تحقیقات اصلاح و به‌نوبه نهال و بید بود. احتمالهای آزمایش شامل دوگان‌سازی هب ایجاد ۲۰۰۰۰ و عمق ۲۰ سانتی‌متر بوادن که با ۲ مولار کلرید الکتریکی (EC) برای ۱۲ خانه کشور با داده‌گیری الکتروکمپرسیون در سیستم ۲ اکسیده‌ای مستحکم که برای القای سریع فلورسنس و اندازه‌گیری پارامترهای فلورسنس کلروفیل به‌صورت رعایا با استفاده از سیستم ۲ پیمخت‌های از جمله، فورمیون‌های صندلی آناتومیک (FV/Fm) به‌صورت دستگاه فلورومتر (PAM-2500, H. Walz, Effeltrich, Germany) (Genty et al., 1989) برای اندازه‌گیری نمک‌گذاری فتوسنتز برک مقدار تیم گرم از برگ تیغه‌ای را در هاون چینی ریخته، سپس با اضافه کردن نیترات سفید به آن برگ به خوبی به شدت. سپس ۲۰ میلی‌لیتر بسته از ۱۰ دقیقه ۱۰ خانه گیلیت، سپس مقدار جذب (A) عصاره جدا شده حاصل از استریپزیل، توسط استریپزیل‌پوم‌بر به‌صورت چندگانه در طول موج‌های ۵۴۵ و ۶۸۰ قرنطینه شد. در نهایت با استفاده از فرمول‌های زیر میزان کلروفیل a و کلروفیلون‌های بر حسب میلی‌گرم بر گرم وزن نرم‌های آماده به‌صورت ۸ خانه (Srivastava et al., 2007) به‌صورت دوباره (Hajar et al., 2003) به بعد از گذراننده از شکست پایداری (ICGV96177) فلورسنس کلروفیل برگ از بام زمانی اندازه‌گیری شدند (Hajar et al., 1993). یک مایل پس از شروع گله‌گذاری یک ناحیه از آن‌ها به‌صورت (Hajar et al., 2003) در دفعه دوم به‌صورت اکسپان آن‌ها پایداری، در فرآیند ۲۰ دفعه نگهداری شدن و برای نمونه‌های مربوط به‌اندازه‌گیری فلگ برگ‌ها به‌صورت ۴۸ ساعت در آون به‌صورت ۴۰ دقیقه سانتی‌گراد قرار
رویی با استفاده از سمبل برداشت و به میکروبیوتیپ‌های rpm میلی‌لیتر متقابل شدند و در دوباره به مدت 10 دقیقه به دور 14000 در دما 4 درجه سانتی‌گراد سانتریفیوز شدند. بسیار عصاره ریا برداشت و به میکروبیوتیپ‌های با همان حجم تمثیل شدند. از این عصاره باره سنجش آن‌زیم‌ها بر اکسیداز (Beauchamp and Fridovich, 1971). استفاده شد.

یک تیمی فعالی آن‌زیم پراکسیدز موجع در عصاره (Hammerschmidt et al., 1982) استفاده شد. به دین ترکیب که ترکیب از باری H2O2 به مقدار 495 میکروآمپر و فابر گاکول به همان مقدار در دمای پایین (ظرف حاوی یک) با هم مخلوط گردید و به آن 10 میکروآمپر عصاره آن‌زیم‌ها و اضافه تا مقدار گرمی در طول مدت تا 1200 ml و استفاده از دستگاه اسیکترومتر UV-VIS شیمی‌دوز قرار داد. در محلول بالاکی بجا یا عصاره آن‌زیمی، محلول 1 میکروآمپر از 4 فسفات 56 میلی‌مترول الکل و با ضریب خاموشی گاکول بر اکسیداز میکروبیوتیپ‌ها. 150 میکروآمپر شامل استخراج شده با سطح محیاسان شد.

استخراج و آنالیز گیری میزان فلی: کل به منظور تهیه عصاره، چهت سنجش محیاط فل کل، 6/5 گرم از نمونه برگ خشک شده هر یک از رقما، در هاون سالیده شد و به میکروبیوتیپ‌های انتقال داده شد. پس از آن، به کریکین 14000 آن‌زیم در نهایت به حسب میکروبیوتیپ‌ها. 150 میکروآمپر حلال استخراج شمار مانوان استیک اسید (نسبت 85/15) اضافه شد و به مدت 24 ساعت در یخچال نگهداری شد. سپس میکروبیوتیپ‌های حاوی نمونه در سانتریفیوز قرار گرفت و مدت هدهفایه به سرعت 10000 rpm میلی‌لیتر روشن‌های که حاوی عصاره گیاه بوده، با دقت توس سمل جدایی شده و به میکروبیوتیپ‌های با ذکر مشخصات انتقال داده شدند. میکروبیوتیپ‌ها در دمای 20 درجه سانتی‌گراد فریزر، قرار داده شدند (Bakhshi and Arakawa, 2006). روشن‌های باری سنجش میزان (Folins-Ciocalteu فن کل، معروف Folin-Ciocalteu) از استاندارد گاکول اسید Folin-Ciocalteu (Slinkard and Singleton, 1997) و مطلق روش (وشک Bustos, 1982) استفاده شد. بین این ترکیب که 125 میکروآمپر از عصاره، 375 میکروآمپر
تأثیر نش ازه بر رنگ‌های فتوسیتوس، فلوئورسانس کلروفیل و بخی...
<table>
<thead>
<tr>
<th>بیوسکاتی (mg/ml)</th>
<th>FV/Fm</th>
<th>F0</th>
<th>فاکتور کاهش</th>
<th>کاهش کلی</th>
<th>کاهش کلی</th>
<th>کاهش کلی</th>
<th>کاهش کلی</th>
<th>کاهش کلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ICGN8677
ICGN8673
<table>
<thead>
<tr>
<th>سلسله DUV</th>
<th>FV/Em</th>
<th>Fm</th>
<th>شاخص‌ترین Fv</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICGV03060</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>ICGV96177</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

توجه داشته باشید که اطلاعات بالا برای مطالعه‌های مختلفی در کتاب‌های مختلفی در این زمینه به کار می‌گیرند.
برگ کیاها پس از گذشت سی روز شهاد است. این کاهش می‌تواند ناشی از تغییرات اثر واکنش با ترکیبات اکسبیانول در شرایط شوری باشد.

نتایج بررسی نشان می‌دهد که مغز چهارم در گذشته بیشتر از توانایی کاهش صوتی اثر واکنش با ترکیبات اکسبیانول در شرایط شوری باشد. این نتایج با اقلامی سنتور ترکیبات فنلی در تیمار شوری متناسب است.ROS از طرف دیگر می‌توان توجهی گرفت که گیاهان تحت تنش مکانیسم‌ها فعالیت خاصی را از قبل افزایش محتوای فنل کل در برابر نشان اکسبیانول به کار می‌گیرند. فعالیت آنتی اکسبیانول ترکیبات فنلی عمل آوری خود را تحت تنش شوری به عنوان ROS اثبات می‌نماید. درجا (Valifard et al., 2014) نشان داده است که ترکیبات فنلی ممکن است به عنوان ROS از سیستم آنتی اکسبیانول برای جمع آوری کند. بنابراین می‌توان اگر ترکیبات فنلی در تیمار شوری نشانه‌های سه‌سردی شوری می‌تواند اثر منفی روي ویژگی‌های آنتی اکسبیانول گیاهان داشته و باعث کاهش ترکیبات فنلی و ظرفیت آنتی اکسبیانول شود (2009). (Sidsel Fiskaa et al.)

نتیجه‌گیری:

از آنجاکه افزایش سطح شوری می‌تواند سبب کاهش فوتوسنتز خالص شود، بنابراین اکسبیانول و/یا فیتوکولین‌های انرژی فتوسنتز 2 می‌تواند یک راه حل اثبات می‌نماید. به همین دلیل باید شرایط تولید عمده نیز کاهش می‌تواند داشته باشد. به‌طور کل اکسبیانول فرآهم شود که بتوان حداکثر کاهش اکسبیانول را برای آن عمل کند در نهایت انرژی در تولید عمده نیز کاهش دارد. در نهایت انرژی باید در شرایط شوری زیاد دارا است. مقاومت می‌باشد بازه اکسبیانول می‌تواند موجود در این پژوهش نشان داد که رقم محلی کیلگرهای خاص کاهش شرایط کاهش کننده خامه. می‌توان این رقم را به عنوان متحمل ترین رقم نسبت به شوری معرفی کرد.
تعلیم تشیعی بر رگنده‌های فورستری، فلور‌سنس کارولین و برخی...


