تأثیر سایکوسل و تلقیح بذر با باکتری‌های محرک رشد بر عملکرد شاخه‌های فلورسانس کلروفیل و برخی صفات فیزیولوژیک گندم در شرایط محدودیت آبی

راضیه خلیل زاده، رنو سید شریفی و جلال جلیلیان

گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی، دانشگاه حکیم اردبیلی. گروه زراعت. دانشکده کشاورزی، دانشگاه اردبیلی

(تاریخ دریافت: 09/06/1394، تاریخ پذیرش نهایی: 12/12/1394)

چکیده:

به‌منظور بررسی تأثیر سایکوسل و باکتری‌های محرک رشد (PGPR) بر عملکرد، شاخه‌های فلورسانس کلروفیل و برخی صفات فیزیولوژیک گندم در شرایط محدودیت آبی، آزمایش بطور یک‌تایی با پاتونایه گل‌سرخی و شاخه‌های کامل شامل در مورد تکرار در منطقه شریعت آب کشاورزی اردبیلی در طول فصل زراعی 1394-1393 انجام شد. با کمک ظرفیت‌های مورد ارائه شامل محدودیت آب در مرحله شریعت دام (آبیاری کامل در تمام مراحل رشد گیاه، آبیاری تا 50 مرحله سبزه دم و آبیاری تا 50 مرحله چک‌فیلم زنی به ترتیب بر اساس کد 45 و 95 زادیکس) و تیمار دوم شامل تلقیح بذر با باکتری‌های محرک رشد در چهار سطح (عند تلقیح به عنوان شاهد، تلقیح با ازتوپاتکر کربوکمیک استرین 5، سودوموناس پرپتایا استرین 186 و کاربرد تأمین ارگیا) پروازی کننده در شرایط محدودیت آبی. حداکثر کارایی فتوشیمیایی فتوسیستم II (Fv/Fm)، محدودیت کلروفیل، محدودیت آب نسبی، برگ و عملکرد دانه به واسطه تلقیح بذر با باکتری‌های محرک رشد و محلول سیسیکس نسبت به شاهد افزایش یافت. در تمام تکریک‌های تیماری، شاخه‌های فلورسانس کلروفیل و برخی صفات با توجه روز بعد از سیز شدن افزایش سریعی یافت و ردود آبیاری در ۵۲/۹۸ و ۵۲/۹۸ درصد در شرایط آبیاری کامل، قطع آبیاری در مرحله خوش‌دشت و قطع آبیاری در مرحله چک‌فیلم زنی افزایش داد.

واژه‌های کلیدی: سایکوسل، کمبوس آب، کوه‌های زیستی، گندم

منطقه‌های عامل اصلی محدود کننده عملکرد به طور می‌آید که به طور مستقیم رشد، پایله و عملکرد گیاه را تحت تأثیر قرار می‌دهد (Chaves et al., 2009).

مقدمه:

رشد روزافزون جمعیت و تلاقی برای تأمین غذای این جمعیت در حال توزیع موجب شده است که تأثیر و کمک آب، موجب کاهش بیوموس و کاهش عملکرد گیاه

نویسنده مسئول، نشانی پست الکترونیکی: Raouf_sharifi@yahoo.com
(Vile et al., 2012) and others (Li et al., 2002) with a combination of FV and FM models. In another study, a soil model with FV and FM components (Moffatt et al., 2011) was used to evaluate the impact of soil properties on karst development. The results showed that the combination of FV and FM models can provide a more comprehensive understanding of karst development processes.

In summary, the application of FV and FM models is a promising approach for understanding karst development processes. Further research is needed to refine these models and improve their predictive capabilities.
با توجه به روند گسترش نشش خشکی و نقص کودهای زیستی و ساپکسول در تعیین اثرات نشش خشکی و به دلیل اهمیت زراعت گندم به عنوان یکی از مهم‌ترین غلات در مناطق خشک و نیمه خشک و کمی بررسی انگاج شده در خصوص ضرر کشک از این عوامل موجب گردید تا مطالعه حاصلی با هدف ارزیابی تأثیر ساپکسول و تلقیح بذر با باکتری‌های محیطی رشدی بر عملکرد، شاخص‌های فلوئورلاسکارفولی و برخی صفات فیزیولوژیک گندم در شرایط محیطی آب مورد بررسی قرار گرفد.

مواد و روش ها:

به منظور بررسی اثر ساپکسول و باکتری‌های محیطی رشد بر عملکرد، شاخص‌های فلوئورلاسکارفولی و برخی صفات فیزیولوژیک گندم در شرایط محیطی آبی، آزمایشی به صورت فاکتوریال در قالب طرح بای‌بای‌لوكه کامل تصادفی با سه تکرار در سال زراعی 1393 در مزرعه تحقیقاتی دانشگاه علم کشاورزی دانشگاه محقق اردبیلی با مختصات جغرافیایی 38 گرج و 15 دیقبه عرض شمالی و 48 گرج و 20 دیقبه طول شمالی از ارتفاع 30 متر از سطح دریا اجرا گردید. بافت خاک قلم‌ریس با pH 8/73 شوری 1/59 دسم ریمیس به سناریو و 7002 میلی گرم در کیلوگرم اجرا شد.

در این آزمایش فاکتوریالی مورد بررسی شامل محیطی آبی در سه مقطع (آبیاری) به شکل رشد آبیاری روست مرسوم زراعت، محیطی به عنوان سطح شاهد (آبیاری تا 50% مرحله سبب‌دنی دهی و آبیاری تا 50% مرحله چپک‌زنی)، نیز دوم شارش تلقیح بذر با باکتری‌های محیطی رشد در چهار سطح (عدم تلقیح با عنوان شاهد، تلقیح با ازتوانتیک کک‌سکسول، استرین، سودومونا پوپیتی استرین و کک‌سکسول در چهار سطح (عکس صرف، 400، 800 و 1200 میلی گرم در لیتر) بود. برای تلقیح بذر میزان هفت گرم مایه تلقیح که هر گرم آن حاوی 107 عدد باکتری زنده و فعال در هر گرم بود. استفاده تحقیرسنتر پروتئین‌های محلول و آزمایش‌ها را دارد و در تنبیه موجب فتوسنتز بیشتر در سطح بزرگ می‌شود. ساپکسول ممکن است رشد سلول را به دلیل کاهش در تناسب اسمرو سلول افرازی دهد (2004). آزمایش در محلول پاشی ساپکسول موجب افزایش عملکرد و افزایش عملکرد تا 50% در خرید در شرایط موردی کردن کودهای فیزیولوژیک شرایط نشش محیطی مانند خشکی نه تهی موجب افزایش تضمین گیاهان می‌شود بلکه میکروارگیسم‌های از دست رفته خاک را نیز جبران می‌کند.

ریزوپاترکی‌های محیطی رشد گیاه (PGPR) یک گروه ویژه‌ای از باکتری‌های محیطی هستند که به سبب برخی و رژه‌بندی را کلیولیز می‌کنند و به طور قابل ملاحظه‌ای رشد و عملکرد این باکتری‌ها به بهبود بهبودیکهای محیطی ممکن می‌باشد. برخی از مکانیسم‌های مربوط با اثر‌پذیری این باکتری‌ها به توانایی آنها در تولید ترکیبات مختلف (مثل فنیوتروزون، ویتامین‌ها، و سیتروفورف‌ها) تثبیت تدریجی و انحلال جفاف و می‌باشد. برای حفظ خشکی از ماکلین‌های خشن‌نَهش نیز ممکن است وجود مایه پیبان‌پاشان در سطوح دارویی مواد تولید کننده PGPR رشد گیاه ناشی از PGPR باشد (2006). این PGPR با به رشد گیاه‌های متص می‌شود و در گیاهان تحت ACC 1-Amino Cyclopropane-1-ACC تنش به عنوان منبع نیاز بی‌کاهش با PGPR (Carboxylase).

گیاه‌های کا:

عمل می‌کند (2014). (Glick, G.).
جدول 1- متوسط دما و بارندگی‌های ماهانه منطقه مورد آزمایش‌های چند طی فصل رشد در سال 1393

<table>
<thead>
<tr>
<th>میزان‌های بارندگی ماهانه (سال)</th>
<th>میزان‌های بارندگی حداکثر دما (C)</th>
<th>میزان‌های بارندگی حداکثر دما (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250/4</td>
<td>1583</td>
<td>27/4</td>
</tr>
<tr>
<td>24/5</td>
<td>17/8</td>
<td>24/0</td>
</tr>
<tr>
<td>17/2</td>
<td>19/4</td>
<td>20/5</td>
</tr>
<tr>
<td>12/8</td>
<td>18/8</td>
<td>25/0</td>
</tr>
<tr>
<td>0/8</td>
<td>26/4</td>
<td>27/4</td>
</tr>
</tbody>
</table>

توجه: فهرست دما و بارندگی‌های ماهانه وارد بورد شده، و حداکثر دما و حداکثر بارندگی ماهانه هر دو در محدوده 24-27 درجه سانتی‌گراد است. به علاوه دما و بارندگی ماهانه در حقیقت منطقه مورد آزمایش است و بهترین دما و بارندگی ماهانه می‌باشد. لذا بهترین دما و بارندگی ماهانه مورد آزمایش می‌باشد.

هر یک از مدل‌های آزمایشگر در شرایط مختلف از مدل‌های آزمایشگر استفاده می‌شود. همچنین بهترین دما و بارندگی ماهانه در شرایط مختلف از مدل‌های آزمایشگر استفاده می‌شود.

برای ارزیابی دما و بارندگی ماهانه و حداکثر دما و حداکثر بارندگی ماهانه، باید از بارندگی‌های درصد‌دار منطقه استفاده کرد. همچنین بهترین دما و بارندگی ماهانه در شرایط مختلف از مدل‌های آزمایشگر استفاده می‌شود.

برای ارزیابی دما و بارندگی ماهانه و حداکثر دما و حداکثر بارندگی ماهانه، باید از بارندگی‌های درصد‌دار منطقه استفاده کرد. همچنین بهترین دما و بارندگی ماهانه در شرایط مختلف از مدل‌های آزمایشگر استفاده می‌شود.

برای ارزیابی دما و بارندگی ماهانه و حداکثر دما و حداکثر بارندگی ماهانه، باید از بارندگی‌های درصد‌دار منطقه استفاده کرد. همچنین بهترین دما و بARW (% = $\frac{F_{v}}{F_{m}} \times 100$ و F_{v} و F_{m} مقدار محاسبه گردید (Kostopoulou et al., 2010).

برای اندازه‌گیری هدایت الکتریکی (EC) برگ پرچم در هیمن شرایط مربوط به اندازه‌گیری درصد‌دار منطقه‌ای نسبت آب، نمونه‌های برگ پرچم را از برش به روز می‌کنند و 5 میلی‌لیتر آب تکثیر شده به مدت 24 ساعت در دمای اتاق قرار می‌گیرند. سپس میزان هدایت الکتریکی توسط دستگاه Mi سایز 180 Bench Meter اندازه‌گیری شده است.
نپای و بحث:

فولوتان سحاقل (F₀): بررسی روی تغییرات فولوتان سحاقل (F₀) شامل در پاسخ به محول پاشی سایکوسل و تلقیح بذر با اکثریت های محرک رشد بر عملکرد، شاخش‌های...
تغییرات حداکثر کارایی فتوشیمایی II (Fv/Fm) در پاسخ به محولپاشی سایکلزول و تلفیق با باکتری‌های محوری رشد در شرایط قطع آب‌پذیر در مرحله خوش‌دهی و آب‌پذیری کامل از الگوی نسبتاً یکسانی برای تمام تیمارها تعبیه کرده (شکل 7) به نظر می‌رسد. محصولات آبی در این مرحله موجب افزایش میزان فلورسانس حداکثر (Fm) نشد. است و از آنجایی که محصولات آبی تأثیر افزایش بر میزان فلورسانس حداکثر نیز داشته است به تبع آن نتوانسته است موجب کاهش حداکثر تلفیق بذر در شرایط قطع آب‌پذیر در مرحله جمع‌دستی بود (شکل 2). همان‌طور که قبل ذکر شد تیمار محولپاشی میلی‌گرم در لیتر ساکپلزول و تلفیق تأمین بذر با ازتوکارک و سودوموناس به دلیل محصولات آب نسبی بالاتر (شکل 3) نیست به سایر تیمارها استفاده بهتری از رطوبت داشته و در دستگاه فتوسیستم II موجب جریان بیشتر الکترون از فتوسیستم I به فتوسیستم II می‌گردد (Prakash and Ramachandran, 2005).

حدودکثر کارایی فتوشیمایی فتوسیستم II (Fv/Fm): روند...
تأثیر سایکوسل و تلفیق بذر با یکی یا چند محرک رشد بر عملکرد، شاخص‌های... 253

پرده‌های پیلوزیک و محدودیت آب بر فلوراسان حداقل (Fv/Fm) گندم

شکل ۲- تأثیر سایکوسل، کودهای پیلوزیک و محدودیت آب بر فلوراسان حداقل (Fv/Fm) گندم

اندازه‌گیری بسیار معنی‌دار بود. کارایی فتوسنتز (Fv/Fm) در شرایط قطع آبیاری در مرحله چکمه‌زیتی به شدت روشن کاهش داشت، به‌طوری‌که در تمامی تیمارهای مورد آزمایش (۴۲ روز پس از سبز شدن) حداکثر میزان Fv/Fm برج‌پرچم در ترکیب تیماری محصول‌پذیری ۱۲۰۰ میلی‌گرم در لیتر سایکوسل، تلفیق بذر با ازتوبکر و سودوموناس در شرایط آبیاری کامل و حداقل آن در ترکیب تیماری عدم محصول‌پذیری و عدم کارایی فتوسنتزی فتوسیستم II گردد. در گیاه نوانسته است با استفاده از سایکوسل و با کاربرد باکتری، حداکثر تیمار ۷۴ روز پس از سبز شدن در شرایط Fv/Fm قطع آبیاری در مرحله خوش‌دهی، حداکثر کارایی فتوسنتزی فتوسیستم II ثابت نگه داشته و تفاوت بین علم قطع آبیاری در مرحله چکمه‌زیتی و آبیاری کامل به خصوص در سه مرحله آخر کارایی فتوسنتزی فتوسیستم II گردد و گیاه نوانسته است با استفاده از سایکوسل و با کاربرد باکتری، حداکثر تیمار ۷۴ روز پس از سبز شدن در شرایط Fv/Fm قطع آبیاری در مرحله خوش‌دهی، حداکثر کارایی فتوسنتزی فتوسیستم II ثابت نگه داشته و تفاوت بین علم قطع آبیاری در مرحله چکمه‌زیتی و آبیاری کامل به خصوص در سه مرحله آخر کارایی فتوسنتزی فتوسیستم II گردد و گیاه نوانسته است با استفاده از سایکوسل و با کاربرد باکتری، حداکثر تیمار ۷۴ روز پس از سبز شدن در شرایط Fv/Fm قطع آبیاری در مرحله خوش‌دهی، حداکثر کارایی فتوسنتزی فتوسیستم II ثابت نگه داشته و تفاوت بین علم قطع آبیاری در مرحله چکمه‌زیتی و آبیاری کامل به خصوص در سه مرحله آخر کارایی فتوسنتزی فتوسیستم II گردد و گیاه نوانسته است با استفاده از سایکوسل و با کاربرد باکتری، حداکثر تیمار ۷۴ روز پس از سبز شدن در شرایط Fv/Fm قطع آبیاری در مرحله خوش‌دهی، حداکثر کارایی فتوسنتزی فتوسیستم II ثابت نگه داشته و تفاوت بین علم قطع آبیاری در مرحله
شکل 3- تأثیر ساکوئول. کودهای پیلوژیک و محدودیت آبی‌پر درصد رطوبت نسبی (RWC) کند.

کاربرد باکتری در شرایط قطع آبی‌پر در مرحله چکمه‌زنی بود که از اختلاف ۴۴ درصدی با یکدیگر برخورد بوذن داد (شکل PSII). گزارش‌ها در مورد اثر محدودیت آبی بر عملکرد منافقت هستند، و مکان دقیق و مکانیسم‌هایی برای تحریب Sperdouli and Moustakas, هنوز روشن نشده است (PSII ۲۰۱۲ و همکاران (۲۰۰۹) در بررسی پارامترهای فلوورسنس کند در شرایط تنش خشکی‌پر فصل گزارش داشت که از بین پارامترهای فقیر فقط پارامتر Fv/Fm رابطه

مثبی با تحمел به تنش خشکی‌پر و از آن به عنوان یک معیار مکمل در انتخاب برای تحميل به تنش کیمیایی نام برده. به نظر می‌رسد در تیمارهای که کمتر است، دستگاه فتوسترنی در آنها با خشکی حساس‌تر است و تنها کم‌آبی با اختلال در انتقال الکترون در واکنش مربوط به تجزیه آب فتوسیستم II (واکنش هیل) به بروز این پدیده کمک کرده و کارایی کوانتمی فتوسترنی خالص، کاهش یافته است. در این بررسی شاید کاهش در فتوسترنی به غلت محدودیت آبی
شاخص‌های

موجب کاهش هدایت روزنه‌ای می‌شود (شکل ۴) و با کاهش هدایت روزنه‌ای، میزان فلورسانس کارویفل (Fm) کاهش یافته و در نتیجه کاهش یافته فتوسنتزی و محتوای کارویفل (شکل ۱ و ۷) افزایش می‌یابد (Yordanov et al., 2003). به طور کلی پژوهش‌های نسبت حساسیت در بکارگیری استخراج حساسیت بوده و ارتباط محسوس میزان کاهش در اثر محتوای فتوسنتزی II ۱۸۶۴ می‌باشد (Prakash and Ramachandran, 2005).

محتوای کارویفل: نتایج بررسی روند تغییرات محتوای کارویفل برگ پرچم در شرایط محیطی آبی در شکل ۱ و ۷ می‌باشد (Prakash and Ramachandran, 2005).

این میزان در اثر عامل‌های مختلف و با توجه به صورت و شکل و فضای محیطی آبی، می‌تواند تغییر بیابد.
نیتر سایکولس، تلفیق بند با ازتوکتر و سودوموناس در شرایط آبی ایونی کامل و حداقل محیطی آن در ترکیب تیماری خیل محلول باشی و عدم کاربرد باکتری در شرایط نازک آبی ایونی در مرحله چهار زنی بود که از اختلاف ۶ درصدی نسبت به یکدیگر برخورد بودند (شکل ۱). این در حالی است که بیشترین و کمترین میزان فلورسانس کاروفیل نیز (Fv/Fm) در همین تیمارها بدست آمد (شکل ۷). در این برسی به نظر می‌رسد علت کاهش Fv/Fm ناشی از وقوع آشفته‌گی در کاروپلاست باشد. کاهش شدید کاروفیل تقریباً در هر سه زمان نشان می‌دهد که این تغییرات در تمامی تیمارها روند نزولی نسبتاً مشابه داشت. به طوری که محیط‌های کاروفیل در مرحله اول نمونه برداری با بوده است و سپس تا انتهای فصل رشد بدلیل تغییرات شدید محلول محلول‌پذیری و معنی‌دار بیشترین و کمترین شده به محلول رسیدگی و فیزیولوژیکی و همچنین بیشترین میزان Fv/Fm. روند تغییرات عدد کاروفیل سنگ نوسان کمتری نشان داد. نتایج که در تمامی تیمارها مورد آزمایش (۷۶ روز پس از بیرون شدن) حداقل محیط‌های کاروفیل برج پرچم در ترکیب تیماری محلول‌پذیری ۱۲۰۰ میلی‌گرم در
شکل ۶ - تأثیر سایکوسول، کودهای بیولوژیک و محدودیت آب بر فلورسنس حداکثر (Fm) گندم

بر اساس تحقیقات پراکسیداسیون و تجزیه این رنگدانه‌ها توسط Fangmier, 2001 (با نظر مرسد افزایش در میزان کارفویل در شرایط قطع آب) در محلول یابی سایکوسول ناشی از کاهش هندایت روزنهای (شکل ۴) و کاهش سطح برش (شکل ۴) می‌باشد و کاهش سطح برش موجب افزایش غلظت کارفویل در واحد سطح برش می‌گردد. همچنین افزایش سطح غلظت کارفویل در برگ‌های گیاهان نیمار نهایی با سایکوسول تنش در گونه‌های گندم موهید همین موضوع است. زیرا فلورسنسی کارفویل به طور مستقیم به فعالیت کارفویل در مرکز واکنش فتوسنتز وابسته است. اکستینسیون این عوامل برای افزایش سیستم کارفویل استفاده شده و برای (Maxwell and Johnson, 2000) کاهش در میزان کارفویل در آزمایشات تولید رادیکال‌های آزاد اکسیژن در سلول است که این رادیکال‌ها موجب
میکر است به دلیل تأثیر کند کننده رشد ساikoسل در به
تأثیرات بودن بالاتر تبیغ و در نتیجه حفظ رنگدانه سبز و
جانوری از تجربه An باشد (Hosni, 1996). مشاهدات
و همکاران (2004) در استفاده از ساikoسل نشان
داد که افزایش محتوای کارفلیل در ارتفاع متحمل به خشکی به
دب سطح شریک کردن کمک کرد. همکاران (2011) و Memari
(2011) کارفلیل کمک کرد که کاربرد ساikoسل (500 میلی گرم بر هکتار)

محتوای کارفلیل ارقام‌یوندا افزایش داد. (Hewedy, 1999)
تأثیر سایکوسول و تلقیح بذر با یکی از پیده‌های محرک رشد بر عملکرد. شاخص‌های... 259

شکل 8- تأثیر سایکوسول، کودهای بیولوژیک و محدودیت آب بر هدایت الکتریکی (EC) بر گرم پرچم گندم

در اعمال سایکوسول و عدم کاربرد باکتری در شرایط قطره آب‌های در مرحله چکمه‌زنی به‌مست آمد (شکل 3). تیمار سایکوسول علاوه بر بهبود رشد روبیش موجب بهبود محتوای رطوبت نسبی و محتوای کارفوئل گرم می‌شود. مطالعه کاربرد ۱۲۰۰ میلی‌گرم در لیتر سایکوسول بر طور معنی‌داری میزان رطوبت نسبی را به ۵ درصد در شرایط قطره آب‌های در مرحله چکمه‌زنی افزایش داد. در حالیکه سایر تیمارهای Entz و Angadi سایکوسول اختلاف قابل‌توجهی نداشتند. (2002) گزارش کرده‌اند که در افتاگردان در شرایط RWC تعادل فشار می‌گذرد از جمله میزان‌های پژوهشی در تیمار PGPR با میزان پرولین و کارفوئل را افزایش داد.

روند تغییرات محتوای آب نسبی گرم پرچم در طول فصل رشد از الگوی نسبتاً یکسانی برای تمامی تیمارها تبعیت کرد. با قطره آب‌های در مرحله چکمه‌زنی میزان آب کاهش نسبت به قطره آب‌های در مرحله خوش‌دهی و آب‌های کامل به‌دست آمده با پذیرش در شرایط بود (شکل 3). بیشترین و کمترین میزان محتوای آب گرم پرچم در ۷ روی گرم در لیتر سایکوسول و تلقیح بذر با ازتواکتر و سودوموناس در شرایط عدم قطره آب‌های و تیمار...
هدایت الکتریکی (EC): بررسی روند تغییرات هدایت الکتریکی در یک هزار ساله‌ای در محور قطب‌های آبی در طول فصل رشد نشان داد که هدایت الکتریکی برگ بایستی از دو روش طبیعی و سایکولس و تلقیح بذر با باکتری نسبت به شاهد در اثر مراحل به خصوص در سه مرحله انتهایی کاهش یافته است. (شکل ۴). به طوری که ۷۴ روز از سیز شدن بیشترین هدایت الکتریکی مربوط به آبی شماره آبی سایکولس و عدم کاربرد باکتری در شرایط قطب آبی در مرحله حکمتیاری و گرمی آن از تیمار محلول‌پاشی ۲۰۰۰ میلی‌گرم در لیتر سایکولس و تلقیح بذر با اتوتکسک و سعودوماسه در شرایط آبی کاملاً به‌دست آمد (شکل ۴). دیلی افزایش هدایت الکتریکی در شرایط نشان داد که تولید واکسن و فعال کاتپیداکسی بایش و تغییر در آکسیژن موجب گردیده است. موجب ماً جث یافت گاه و تغییر در نفوذپذیری غشا (شکل ۶) و دیلی تیمارهای طبیعی و تیمارهای جدید در نتیجه آن شاگرد سلولهای پایه شده و باعث افزایش نشان دادند (Heidari, ۲۰۰۷). مقعر هدایت الکتریکی در تیمارهای نشان داد که در این میزان، موجب کاهش هدافیت و فعالیت بالاکومپوزیت باشد و تغییر در میزان جسمانی عضوی ای‌دی‌په ای و تغییر در دمای نیز ثابت شد (Glick, ۲۰۱۴; Belimov et al., ۲۰۰۹).

شاخه سطح برگ (LAI): تغییرات شاخه سطح برگ در با значение محور، بود و در طول فصل رشد (شکل ۵) برای تمامی تیمارهای روند نسبت مشابهی داشت و زمان رسیدن به حداکثر شاخه سطح برگ در تیمار فلز برگ در مرحله چکمزرنی بسیار کمتر از قطب آبی در مرحله خوش‌دهی و آبی کاملاً بود. به طوری که در ایندیاصل فصل رشد برگ این تیمارهای شامل به‌کمک و از بعدها و حداکثر ۶۵ روز پس از سپز شدن به سرعت گذشته‌ای و سپس در انتهای فصل رشد به دلیل زرد شدن و همچنین ریزی برگ‌ها روند نزولی

همین سمت‌های موجب کاهش پارکی غشا سلولی و نشان یونی می‌گردید (Poormosavi et al., ۲۰۰۷).
جدول 2- تجزیه واریانس (میانگین مربعات) عملکرد گند متأخر از محلول‌پاشی سایکوسل، باکتری‌ها محور کردن و محدودیت آبی

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>درجه</th>
<th>آزای</th>
<th>عملکرد دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011/88</td>
<td>2</td>
<td>2</td>
<td>Tکار</td>
</tr>
<tr>
<td>12432941/88</td>
<td>3</td>
<td>3</td>
<td>Pباکتری محور رشد (Cساکوسل)</td>
</tr>
<tr>
<td>42942687/64</td>
<td>6</td>
<td>6</td>
<td>Tکار</td>
</tr>
<tr>
<td>32842704/13</td>
<td>9</td>
<td>9</td>
<td>Pباکتری محور رشد (Cساکوسل)</td>
</tr>
<tr>
<td>22493329/16</td>
<td>18</td>
<td>18</td>
<td>Tکار</td>
</tr>
<tr>
<td>17873384/20</td>
<td>18</td>
<td>18</td>
<td>Pباکتری محور رشد×ساکوسل</td>
</tr>
<tr>
<td>95124/89</td>
<td>13/8</td>
<td>13/8</td>
<td>خطای آزمایشی</td>
</tr>
</tbody>
</table>

ضاپارنگ تغییرات

*0.05 و **0.01 به ترتیب غیر معنی دار، معنی دار در سطح احتمال 5 و 1 درصد.

مشاهده شد. بررسی روند تغییرات این شاخه نشان داد که کاربرد تأم‌ساکوسل و تلفیق بذر با بیشترین اثرات محور را بر شاخه سطح بذر این گیاه داشته است. در این گونه ترمیمی، عدم محلول‌پاشی سایکوسل و تلفیق بذر با ازوتیکر و سودوموناس دارای بیشتری مقدار LAI و ترمیمی تیمار محول‌پاشی ۱۲۰۰ میلی‌گرم در لیتر ساکوسل و عدم بیش‌تر ترمیمی بذر با باکتری‌های محور در دنیای کمترین مقدار در ۱۰ روز از شروع سبد در شرایط فشل آبی در مخلوط چکمه‌ی بودن (شکل 5)، به نظر مرس 抓 این کاهش در تغییر افزایش سن گیاه بی‌پرو روابطی یابد یا بر دندانها، کاهش محول‌کردن کلوپ، هدایت و انتقالی (شکل‌های ۱ و ۴ و عدم تونالی اینها در ساخت ماده فستورتی و در نهایت با بیش آنها همراه باشد. کاهش سطح بزرگ در اثر کاربرد سایکوسل ممکن است با دلیل مرتبط از سن‌تاریک ساختن محول‌پاشی آزمایشی ایجاد شده و همکاران Doshi و (2014) افزایش داده. دریافت گردیده با بیشترین اثرات محور و ترفند در نمود که با نتایج به‌دست آمده از سن طول شدن سلول درون بذر باشد، به مثابه و همکاران (2005) می‌تواند با توجه به نتایج Gopi نتایج مثبتی داشته باشد، که با نتایج به‌دست آمده از

افزایش کارایی فتوسترزی (شکل ۷) و در نتیجه صورت افزایش عملکرد (جدول ۲) در تمام سطوح نشان می‌شود. بررسی‌های Seyed Sharifi (2011) نشان داد که بیشترین اثرات محور را بر شاخه سطح بذر این گیاه داشته است. در این گونه ترمیمی، عدم محلول‌پاشی سایکوسل و تلفیق بذر با ازوتیکر و سودوموناس دارای بیشتری مقدار LAI و ترمیمی تیمار محول‌پاشی ۱۲۰۰ میلی‌گرم در لیتر ساکوسل و عدم بیش‌تر ترمیمی بذر با باکتری‌های محور در دنیای کمترین مقدار در ۱۰ روز از شروع سبد در شرایط فشل آبی در مخلوط چکمه‌ی بودن (شکل ۵)، به نظر مرس 抓 این کاهش در تغییر افزایش سن گیاه بی‌پرو روابطی یابد یا بر دندانها، کاهش محول‌کردن کلوپ، هدایت و انتقالی (شکل‌های ۱ و ۴ و عدم تونالی اینها در ساخت ماده فستورتی و در نهایت با بیش آنها همراه باشد. کاهش سطح بزرگ در اثر کاربرد سایکوسل ممکن است با دلیل مرتبط از سن‌تاریک ساختن محول‌پاشی آزمایشی ایجاد شده و همکاران Doshi و (2014) افزایش داده. دریافت گردیده با بیشترین اثرات محور و ترفند در نمود که با نتایج به‌دست آمده از سن طول شدن سلول درون بذر باشد، به مثابه و همکاران (2005) می‌تواند با توجه به نتایج Gopi نتایج مثبتی داشته باشد، که با نتایج به‌دست آمده از
جدول 3- مقایسه میانگین اثر مختلف سایکوسل با کرتی و حاره رشد و محدودیت آبی بر عملکرد گندم

<table>
<thead>
<tr>
<th>عملکرد دانه (کیلوگرم در هکتار)</th>
<th>ترکیب تیماری</th>
<th>عملکرد دانه (کیلوگرم در هکتار)</th>
<th>ترکیب تیماری</th>
</tr>
</thead>
</table>
| 2546/7
2546/7
2546/7 | I₁ x P₀ x C₀
I₂ x P₀ x C₁
I₃ x P₀ x C₂ | 2437/6
2437/6
2437/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₁
I₃ x P₀ x C₂ |
| 3287/1
3287/1
3287/1 | I₁ x P₁ x C₁
I₂ x P₁ x C₂
I₃ x P₁ x C₃ | 2937/6
2937/6
2937/6 | I₁ x P₁ x C₀
I₂ x P₁ x C₁
I₃ x P₁ x C₂ |
| 279/6
279/6
279/6 | I₁ x P₀ x C₂
I₂ x P₀ x C₃
I₃ x P₀ x C₄ | 2477/6
2477/6
2477/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₁
I₃ x P₀ x C₂ |
| 3234/6
3234/6
3234/6 | I₁ x P₂ x C₁
I₂ x P₂ x C₂
I₃ x P₂ x C₃ | 2946/6
2946/6
2946/6 | I₁ x P₀ x C₁
I₂ x P₀ x C₀
I₃ x P₀ x C₂ |
| 295/7
295/7
295/7 | I₁ x P₁ x C₀
I₂ x P₁ x C₁
I₃ x P₁ x C₂ | 2480/6
2480/6
2480/6 | I₁ x P₁ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₁ |
| 277/6
277/6
277/6 | I₁ x P₀ x C₁
I₂ x P₀ x C₂
I₃ x P₀ x C₃ | 207/6
207/6
207/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 376/7
376/7
376/7 | I₁ x P₂ x C₂
I₂ x P₂ x C₃
I₃ x P₂ x C₄ | 2787/6
2787/6
2787/6 | I₁ x P₁ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 382/7
382/7
382/7 | I₁ x P₀ x C₂
I₂ x P₀ x C₃
I₃ x P₀ x C₄ | 2721/6
2721/6
2721/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 217/5
217/5
217/5 | I₁ x P₂ x C₀
I₂ x P₂ x C₁
I₃ x P₂ x C₂ | 213/6
213/6
213/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 249/7
249/7
249/7 | I₁ x P₀ x C₁
I₂ x P₀ x C₂
I₃ x P₀ x C₃ | 1837/6
1837/6
1837/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 210/7
210/7
210/7 | I₁ x P₀ x C₀
I₂ x P₀ x C₁
I₃ x P₀ x C₂ | 157/6
157/6
157/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 313/7
313/7
313/7 | I₁ x P₀ x C₀
I₂ x P₀ x C₁
I₃ x P₀ x C₂ | 207/6
207/6
207/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 302/7
302/7
302/7 | I₁ x P₀ x C₀
I₂ x P₀ x C₁
I₃ x P₀ x C₂ | 1767/6
1767/6
1767/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 343/7
343/7
343/7 | I₁ x P₀ x C₀
I₂ x P₀ x C₁
I₃ x P₀ x C₂ | 201/6
201/6
201/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 162/7
162/7
162/7 | I₁ x P₀ x C₀
I₂ x P₀ x C₁
I₃ x P₀ x C₂ | 147/6
147/6
147/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 177/6
177/6
177/6 | I₁ x P₀ x C₁
I₂ x P₀ x C₂
I₃ x P₀ x C₃ | 146/6
146/6
146/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 146/6
146/6
146/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₁
I₃ x P₀ x C₂ | 176/6
176/6
176/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 279/6
279/6
279/6 | I₁ x P₀ x C₁
I₂ x P₀ x C₂
I₃ x P₀ x C₃ | 248/6
248/6
248/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 217/5
217/5
217/5 | I₁ x P₀ x C₀
I₂ x P₀ x C₁
I₃ x P₀ x C₂ | 213/6
213/6
213/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |
| 233/1
233/1
233/1 | I₁ x P₀ x C₀
I₂ x P₀ x C₁
I₃ x P₀ x C₂ | 201/6
201/6
201/6 | I₁ x P₀ x C₀
I₂ x P₀ x C₀
I₃ x P₀ x C₀ |

میانگین‌های با حروف مشابه در هر ستون اختلاف آماری معنی‌داری با احتمال 0.05 دارند. I₁، I₂ و I₃ آبیاری کامل، آبیاری تا مرحله خوش‌دهی و آبیاری تا مرحله خوش‌دهی و آبیاری تا مرحله تازه‌گذاری هستند. P₀، P₁ و P₂ یک میلی‌گرم در لیتر سایکوسل و P₃ یک میلی‌گرم در لیتر سایکوسل را به ترتیب 0.01، 0.05 و 0.1 میلی‌گرم در لیتر سایکوسل می‌دارند. P₄ یک میلی‌گرم در لیتر سایکوسل می‌باشد. P₅، P₆، P₇ و P₈ به ترتیب 0.01، 0.05، 0.1 و 0.2 میلی‌گرم در لیتر سایکوسل می‌باشد. P₉ به ترتیب 0.01، 0.05 و 0.1 میلی‌گرم در لیتر سایکوسل می‌باشد.
جدول 4. مقایسه میانگین اثر متقابل سایکول، باکتری‌های محیط رشد بر عملکرد و شاخص برداشت گندم

<table>
<thead>
<tr>
<th>عملکرد دانه (کیلوگرم در هکتار)</th>
<th>ترکیب تیماری</th>
<th>عملکرد دانه (کیلوگرم در هکتار)</th>
<th>ترکیب تیماری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۳۰۰/۴ cde</td>
<td>(P_2 + C_0)</td>
<td>۲۳۹۲/۴ e</td>
<td>(P_0 + C_0)</td>
</tr>
<tr>
<td>۲۷۸۳/۴ abc</td>
<td>(P_1 + C_0)</td>
<td>۲۳۶۳/۴ e</td>
<td>(P_0 + C_1)</td>
</tr>
<tr>
<td>۲۵۰۴/۴ ebc</td>
<td>(P_3 + C_0)</td>
<td>۲۷۱۳/۴ e</td>
<td>(P_1 + C_0)</td>
</tr>
<tr>
<td>۲۳۸۳/۴ cde</td>
<td>(P_3 + C_0)</td>
<td>۲۷۵۴/۴ e</td>
<td>(P_0 + C_1)</td>
</tr>
</tbody>
</table>

منابع: گروه‌های بررسی‌کننده، شاکلان (۲۰۰۲)، سآمواد (۱۹۸۷)، سایکولن (۲۰۰۳) و سیریون (۲۰۰۵).
بیشتر به آب و مواد غذایی (Rudresha et al., 2005) عملکرد گیاه را افزایش می‌دهند.

توجه‌گیری:
به طور کلی تحقیق بذر با پاکتربی‌های محکم رشد به خصوص سودوموناس و ازتوباکر که در محلول پاشی ۱۲۰۰ میلی‌گرم در لیتر سایکوسول با افزایش شاخص‌های فلورسنس کلروفیل، محیط‌های کلروفیل، هدایت روشنایی و کاهش شاخص سطح بزرگ در طول فصل رشد، موجب افزایش عملکرد دانه گندم در شرایط محیطی آب‌گیرد. بیشتر عملکرد دانه به ترتیب تیمار تلفیق بذر با ازتوباکر و سودوموناس بالاترین سطح مانع:

کوچکی، ع. (۱۳۸۳) به زراعی و به‌نوازی در زراعت دیم. انتشارات جهاد دانشگاهی مشهد.

ژمالیان، م. ویژ، ق. و فتوحی، ف. جیرانی، ر. ایوبیان، عا. پایین‌پای ویژ، ع. پایین‌پای، ع. پایین‌пай، ع. پайина

