بررسی بخشی باسخ‌های فیزیولوژیکی و بیوشیمیایی گیاه ترخون (Artemisia dracunculus) به نتیجه کم‌ای
ابن گیاه مهم تحقیق حاضر انجام شد.

مواد و روش‌ها:

به منظور اراییزی اثر کمپیوتری بر روی صفات فیزیولوژیکی و بیوشیمیایی گیاه تروخت آزمایشی در انثالک رشد به صورت کشت گلدانی در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. تیمارهای آپارت جهت انتخاب بودند از شاهد (آپارت به میزان 0 درصد فزیت زراعی), (آپارت به میزان 10 درصد فزیت زراعی), (آپارت به میزان 20 درصد فزیت زراعی). به منظور اعمال شکست گلدانی از روش وزن کرد گلدانها (گلدان های پلاستیکی به ارتفاع 18 و قطر 20 سانتی‌متر) استفاده شد. به این ترتیب که ابتدا کیک از گلدانها که از خاک مورد آزمایش بر په دوید، توپین شد. سپس گلدان از آب اشباع گردید و برای جلچری از تبخیر سطح گلدان توسط یک پلاستیکی بوشید. با خروج آب نقل و گلدان به طور مزکب کم شد تا باید وزن آن ثابت شود. سپس با اضافه وزن آخر و وزن خان شکست مقدار آب لازم برای رسیدن خار گلدان به حد فزیت زراعی 90 و 40 درصد فزیت زراعی مشخص شد و برای اعمال نش گلدان مورد آزمایش و وزن می‌شنید و مقدار آب لازم برای رسیدن به هر کدام از مراحل اضافه می‌شد. (خراسی و همکاران 1387). ابتدا در هر گلدان بین 0 تا 10 بونه جفت داشت که پس از نقل کردن به 5 بونه در گلدان رسید. چهار هفته پس از اعمال نش گیاهی که به طور بیش از 25 سانتی‌متر رشد گلدان علت و فضای فیزیولوژیکی و بیوشیمیایی آنها اندام‌گیری شد.

اندازه‌گیری صفات مورد مطالعه: توئین وزن خشک گیاه برای هر تیمار با سه تکرار با انتزاق دیجیتالیون در دقیقه 1000.00

عنوان ادویه مخصوص گوشت مورد توجه بوده و موجب کاهش فشار خون نیز می‌شود. در درمان بلعی از بیماری‌های خونی مانند طفران و نیز در تسکین درد دندان و بی‌طرف کردن برخی انگل‌ها روده‌ای نیز از این گیاه استفاده شده است. اساس تروخت دارای فعالیت ضد باکتری و ضد فارمی است که می‌تواند به طور وقیح ترمیمیت خاص تروپودیدی در این فعالیت آنتی اکسیدانی باشد (Kordali et al., 2005).

در این پژوهش مورد استفاده محصول دارای خصایص و نیم‌خصایص می‌باشد که در اثر کمپیوتری بر مراتب بیشتری از تشیع‌های محیطی دیگر است. گیاهان در طول دوره رشد خود در معرض نش چودکانی قرار دارند و در این میان کم‌کم بزرگ‌ترین چشتهای این پژوهش از نظر حجم به یک میانگین بود. این نش گیاهی در طول مراحل مولکولی را تخمین می‌کند. (Munns, 2002).

و اگر چه گیاه تروخت از نظر دردی و غذایی اهمیت زیادی دارد و بطور وسیعی در کشور ایران کشت می‌شود اما اطلاعات چندانی در مورد استاندارد جهت تنش خشک و مکانیسم تحلیل آن وجود ندارد. بنابراین به منظور تعیین میزان سطح تحلیل این گیاه به نش کم‌آبی و نحوه تثبیت گیاهی

فیزیولوژیکی و بیوشیمیایی دخیل در تحلیل به نش کم‌آبی در

کدی (1997)
درجه سانتیگراد حمام آب گرم قرار گرفته و سپس واکنش بر روی نمونه‌گیری و کشف شد. سپس قرار گرفته و مخلوط اضافه شد و لوله‌ها به مخلوط مخلوط شدند. پس از حضور در محلول مشخص شده استفاده شد. میزان پترولین با استفاده از نمودار استاندارد پترولین خالص محاسبه شد.

مقدار تهیه‌کننده محلول
مقدار تهیه‌کننده محلول نمونه‌ها با استفاده از معرف آناتوروم و بر اساس روش همکاوند (1967) تعیین گردید. گرم بالای تیرگی و ریشه در میلی‌لیتر نمونه 50 درصد در میلی‌لیتر اضافه می‌شود. مخلوط فوئاپس دیجیتال و به آرامی به طرف شیوه‌هایی 40 میلی‌لیتر آب 5 میلی‌لیتر اضافه شده استفاده می‌شود. در صورت حاصل با استفاده از کاغذ صاف گیرد و سیس الکتر ترکیه روش حاصل در میلی‌لیتر آب نقطه حلال گرم/40000 میلی‌لیتر اسید سولف‌های جل گردید. محلول فوق به تدریج و به آرامی به طرف شیوه‌هایی 40 میلی‌لیتر آب 5 میلی‌لیتر اضافه می‌شود. 65 درصد اضافه شده و در صورت سردرده به هم زده شد. 200 میکرولیتر از هر نمونه در یک لوله آزمایش ریخته شد و 5 میلی‌لیتر عضو آناتوروم به عنوان اضافه گردید. سپس از مخلوط شدن به مدت 17 دقیقه در بین‌مری دمای 95 درجه سانتیگراد حمام آب گرم قرار گرفته و پس از سرد شدن، جلب نمونه‌ها در 2000 نمونه خوانده شد. در بالای بی‌شعری از رابطه‌ی زیر میزان پترولین b و کاروتئنودی بر حسب میلی‌گرم ون‌هار محاسبه شد.

\[
RWC = \frac{FW{-}DW}{TW{-}DW} \times 100
\]

مقدار نمایشگر کلروفیل و کاروتئنودی برگ: محیط Arnon رنگ‌های کلروفیل و کاروتئنودی برگ با روش (1967) انجام شد. دیدن منظوره 20 گرم بی‌شعری در 40 میلی‌لیتر استاندارد و محلول حاصل به کاغذ صاف گیرد و سیس الکتر ترکیه روش حاصل می‌شود. در صورت حاصل با استفاده از کاغذ صاف گیرد و سیس الکتر ترکیه روش حاصل در میلی‌لیتر آب نقطه حلال گرم/40000 میلی‌لیتر اسید سولف‌های جل گردید. محلول فوق به تدریج و به آرامی به طرف شیوه‌هایی 40 میلی‌لیتر آب 5 میلی‌لیتر اضافه می‌شود. 65 درصد اضافه شده و در صورت سردرده به هم زده شد. 200 میکرولیتر از هر نمونه در یک لوله آزمایش ریخته شد و 5 میلی‌لیتر عضو آناتوروم به عنوان اضافه گردید. سپس از مخلوط شدن به مدت 17 دقیقه در بین‌مری دمای 95 درجه سانتیگراد حمام آب گرم قرار گرفته و پس از سرد شدن، جلب نمونه‌ها در 2000 نمونه خوانده شد. در بالای بی‌شعری از رابطه‌ی زیر میزان پترولین b و کاروتئنودی بر حسب میلی‌گرم ون‌هار محاسبه شد.

Chlorophyll a = (19.3A663 - 0.86A645) V/100W
Chlorophyll b = (19.3A645 - 3.6A663) V/100W
Carotenoids = 100 (A470) - 3.27 (mg chl.a) - 104 (mg chl.b) /227
Chlorophyll a + Chlorophyll b

مقدار پترولین: مقدار پترولین در برگ با روش و همکاران (1973) انجام شد. در این روش 1/4000 گرم از بافت
تغییرات جذب بر زمان در طول موج 510 نانومتر در مدت زمان 120 ثانیه با استفاده از استخراج آزمایش‌های مشابه و افزایش شدت. برای همه نمونه تیمار نیز 475 میکروپتر براکسیده‌دوزون و 475 میکروپتر ترکیبی از دو آماده شده و جذب
نمونه تحت شرایط نمونه مداوم قرار گرفت.

اندازه‌گیری غلظت آنزیم کاتالاز: برای سنجش فعالیت آنزیم کاتالاز، نمونه‌های 25 میلی‌مترارا با استفاده از حاوی EDTA 1/2 میلی‌متر از کاتالاز به 40 میکرو‌لیتر نمونه تیمار نیز 475 میکرو‌لیتر نمونه و سیس 50 میکرو‌لیتر از عصاره آنزیمی اضافه شده و جذب نمونه تحت شرایط نمونه مداوم قرار گرفت. سنجش فعالیت کاتالاز بر اساس کاهش جذب آپ کاتالاز در طول موج 420 نانومتر صورت گرفت. یک واحد فعالیت آنزیمی مقدار آنزیمی است که یک میکرومول آپ کاتالاز را در مدت یک دقیقه تجزیه کند.

سنجش میزان پروتئین های محلولی: برای سنجش غلظت پروتئین به 50 میکرو‌لیتر عصاره پروتئینی 2/5 میلی‌متر هیروژن و سیس 1 میلی‌متر به 40 میکرو‌لیتر ترکیبی از استخراج آزمایش‌های مشابه و افزایش شدت. برای همه نمونه تیمار نیز 250 میکرو‌لیتر ترکیبی از دو آماده شده و جذب نمونه تحت شرایط نمونه مداوم قرار گرفت. سنجش فعالیت آنزیمی مقدار آنزیمی است که یک میکرومول آپ کاتالاز را در مدت یک دقیقه تجزیه کند.

طول سافه: نتایج به دست آمده از آنالیز تجزیه واریانس نشان داد که تغییرات طول سافه تحت اثر سطوح مختلف آبایی در سطح 1 درصد معنی‌دار بود که با افزایش کوهلیان، سطح برگ در مقایسه با تیمار شاهد کاهش معنی‌داری داشته است. مقایسه میانگین داده‌ها نشان داد که بیشترین مقدار شاخص طول سافه برگ در تیمار شامل مقدار 13/34 درصدی 975 میکرو‌لیتر مربوط و کمترین مقدار در تیمار 84/68 درصدی 975 میکرو‌لیتر مربوط می‌باشد. (جدول 2).

طول سافه: نتایج به دست آمده از آنالیز تجزیه واریانس نشان داد که تغییرات طول سافه تحت اثر سطوح مختلف آبایی در سطح 1 درصد معنی‌دار بود (جدول 1). مقایسه میانگین داده‌ها (جدول 2) نشان داد که بیشترین مقدار طول سافه در تیمار شامل مقدار 13/34 درصدی 975 میکرو‌لیتر و کمترین مقدار طول سافه با مقدار 84/68 درصدی 975 میکرو‌لیتر مربوط می‌باشد. (جدول 2).

overview of the results: the results showed that the highest and lowest values of leaf length at the levels of 975 and 0/5 μM respectively. the highest rate of increase was found in the highest level of hydration and the lowest rate of increase was found in the lowest level of hydration. the results also showed that there was a significant difference in the leaf length of the plants under the different levels of hydration. the plants under the highest level of hydration had the longest leaf length and the plants under the lowest level of hydration had the shortest leaf length.

the results of the study showed that the highest and lowest values of leaf length at the levels of 975 and 0/5 μM respectively. the highest rate of increase was found in the highest level of hydration and the lowest rate of increase was found in the lowest level of hydration. the results also showed that there was a significant difference in the leaf length of the plants under the different levels of hydration. the plants under the highest level of hydration had the longest leaf length and the plants under the lowest level of hydration had the shortest leaf length.
جدول 1- نتایج تجزیه واریانس (میانگین مربوطات) تیمارهای مختلف آب بر بر خی پاراپترهای رشد گیاه ترخون

<table>
<thead>
<tr>
<th>میانگین مربوطات</th>
<th>درصد محیطی نسبی آب (RWC) برگ</th>
<th>سطح برگ (cm²)</th>
<th>وزن خشک اندازه‌های (g)</th>
<th>ارتفاع ساقه (cm)</th>
<th>منبع تغییرات</th>
<th>درجه آزادی</th>
<th>تیمار کم‌آبی</th>
<th>خطا آزمایش</th>
<th>ضریب تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>ب ۱</td>
<td>۹۲/۷۸۴۷۷۱</td>
<td>۲۷/۶۷۴</td>
<td>۰/۹۶۸۹</td>
<td>۷/۶۰۴۶۴۴</td>
<td>۲</td>
<td>۹/۶۰۹۸۷۷</td>
<td>۹/۶۰۹۸۷۷</td>
<td>۹/۶۰۹۸۷۷</td>
<td>۹/۶۰۹۸۷۷</td>
</tr>
<tr>
<td>ب ۲</td>
<td>۹۲/۷۸۴۷۷۱</td>
<td>۲۷/۶۷۴</td>
<td>۰/۹۶۸۹</td>
<td>۷/۶۰۴۶۴۴</td>
<td>۲</td>
<td>۹/۶۰۹۸۷۷</td>
<td>۹/۶۰۹۸۷۷</td>
<td>۹/۶۰۹۸۷۷</td>
<td>۹/۶۰۹۸۷۷</td>
</tr>
<tr>
<td>ب ۳</td>
<td>۹۲/۷۸۴۷۷۱</td>
<td>۲۷/۶۷۴</td>
<td>۰/۹۶۸۹</td>
<td>۷/۶۰۴۶۴۴</td>
<td>۲</td>
<td>۹/۶۰۹۸۷۷</td>
<td>۹/۶۰۹۸۷۷</td>
<td>۹/۶۰۹۸۷۷</td>
<td>۹/۶۰۹۸۷۷</td>
</tr>
</tbody>
</table>

اختلاف در سطح احتمال ۰/۰۵۰: **: اختلاف در سطح احتمال ۰/۰۱: ***: عدم اختلاف معنی‌دار.

جدول 2- اثر سطوح مختلف آبی بر وزن خشک، شاخ و سطح برگ، طول ساقه و محیطی نسبی آب بر گیاه ترخون

<table>
<thead>
<tr>
<th>محیطی نسبی آب برگ (RWC)</th>
<th>سطح برگ (کمرب یون)</th>
<th>وزن خشک اندازه‌های (کامی‌تر مربع)</th>
<th>سطح آبیاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>ب ۱</td>
<td>۲۷/۶۷۴</td>
<td>۰/۹۶۸۹</td>
<td>۰/۹۶۸۹۷۷</td>
</tr>
<tr>
<td>ب ۲</td>
<td>۲۷/۶۷۴</td>
<td>۰/۹۶۸۹</td>
<td>۰/۹۶۸۹۷۷</td>
</tr>
<tr>
<td>ب ۳</td>
<td>۲۷/۶۷۴</td>
<td>۰/۹۶۸۹</td>
<td>۰/۹۶۸۹۷۷</td>
</tr>
</tbody>
</table>

اختلاف در سطح احتمال ۰/۰۵۰: **: اختلاف در سطح احتمال ۰/۰۱: ***: عدم اختلاف معنی‌دار.

جدول 3- نتایج تجزیه واریانس (میانگین مربوطات) تیمارهای مختلف آب بر بر خی پاراپترهای بوشهری و بوشهری ویژه‌گی گیاه ترخون

<table>
<thead>
<tr>
<th>میانگین مربوطات</th>
<th>درجه آزادی</th>
<th>تغییرات</th>
<th>تغییرات آنزیم پراکسیداز</th>
<th>فعالیت آنزیم پراکسیداز</th>
<th>تغییرات آنزیم کاتالاز</th>
<th>تغییرات آنزیم کاتالاز</th>
<th>تغییرات آنزیم کاتالاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>ب ۱</td>
<td>۲</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>ب ۲</td>
<td>۲</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>ب ۳</td>
<td>۲</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

اختلاف در سطح احتمال ۰/۰۵۰: **: اختلاف در سطح احتمال ۰/۰۱: ***: عدم اختلاف معنی‌دار.

تیمار ۴۰٪ ظرفیت زراعی مشاهده شد (جدول ۳).

فعالیت آنزیم پراکسیداز: نتایج به دست آمده از آنالیز تجزیه واریانس نشان داد که تغییرات فعالیت آنزیم پراکسیداز اندازه‌های در گیاه ترخون تحت اثر سطوح مختلف آبیاری اختلاف معنی‌داری در سطح اطمینان ۹۹٪ دارد (جدول ۳). با افزایش کم‌آبی مقادیر فعالیت آنزیم پراکسیداز افزایش یافت (شکل b). معیار این صفت از 0/۰۰۲۲ مارکومون بر دقیقه در میلی گرم برای تیمار ۴۰ درصد ظرفیت بود (شکل b).
تشکل 1- مقایسه میانگین سطح مختلف آبیاری بر مقدار فعالیت آنزیم پراکسیداز (a) و کاتالاز (b) اندام هوایی گیاه ترخون حروف مشابه نشان دهنده عدم معنی‌داری در سطح یک درصد.

در هر گرم در باینگ زن تر کیفیت رسید در حالیکه تیمار ۶۰ درصد تنا (b) از افزایش را نشان داد (شکل ۲).

میزان کلروفیل a نتایج به دست آمده از آنالیز تجزیه واریانس نشان داد که مقادیر کلروفیل a در گیاه ترخون تحت سطح مختلف آبیاری در سطح یک درصد معنی‌دار بود (جدول ۳). با افزایش نشان کم‌آبی مقادیر کلروفیل a کاهش یافت به طوریکه تیمار شاهد (۹۰ درصد سطحی در حد ظرفیت زراعی) با بیشترین مقدار و تیمار ۶۰ درصد ۰.۴۰ درصد ظرفیت زراعی) با کمترین مقدار همراه بود. میزان این مقدار از ۳.۴۱ میلی‌گرم بر گرم وزن تر برگ بیشتری آبیاری کاملا کمتر نمایش داده شد که مقدار پرولین را داشت (شکل ۱) غیر معنی‌دار با تراfol (۱۹) بر افزایش نشان کم‌آبیی قرار داد که مقادیر پرولین محلول اندام هوایی در گیاه ترخون تحت سطح مختلف آبیاری در سطح یک درصد معنی‌دار بود (جدول ۳). با افزایش نشان کم‌آبیی مقدار مقدار محلول اندام هوایی با تراfol در تیمار شاهد کمترین مقدار و در تیمار ۶۰ درصد نشان دهنده عدم معنی‌داری در سطح یک درصد.
میزان کلروفیل: نتایج به دست آمده از آنالیز تجزیه واریانس نشان داد که مقادیر کلروفیل b در گیاه ترخون تحت اثر سطح مختلف آبیاری در سطح یک درصد معنی‌دار بود (جدول 3). با افزایش نش کم آبی مقادیر کلروفیل b کاهش یافته به طوری که در تیمار شاهد (۴۰۰ درصد تغییرات زراعی) بیشترین مقادیر و در تیمار ۱۰۰ درصد (۴۰۰ درصد تغییرات زراعی) کمترین مقادیر بود (شکل ۵).

پژوهش‌های اندام‌هایی: با افزایش نش کم آبی مقادیر پروتئین محلول کاهش یافته به طوری که تیمار شاهد (۴۰۰ درصد تغییرات زراعی) با ۱/۸۷ میلی‌گرم بر گرم وزن تر بیشترین مقادیر و تیمار ۴۰ درصد با ۱/۳۹ میلی‌گرم بر گرم وزن تر کمترین مقادیر بود (شکل ۶).

بحث:
بر اساس نتایج حاصل از مطالعه حاضر، پارامترهای رشد شامل وزن خشک، ارتفاع، محتوای نسبی آب برک و شاخس سطح و بقیه به دلیل تغییرات مختلف آبیاری در سطح سطح بیت تیمار شاهد معنی‌دار بود (جدول ۳). با افزایش نش کم آبی مقادیر کاروتئنیدها کاهش یافته به طوری که تیمار شاهد بود.

شکل ۴- مقایسه میانگین سطح مختلف آبیاری بر مقدار کاروتئنیدها (a) و مقدار پروتئین محلول (b) گیاه ترخون، حروف مشابه نشان دهنده عدم معنی‌داری در سطح یک درصد.

شکل ۴- مقایسه میانگین سطح مختلف آبیاری بر مقدار کاروتئنیدها (a) و مقدار پروتئین محلول (b) گیاه ترخون، حروف مشابه نشان دهنده عدم معنی‌داری در سطح یک درصد.

(۴۰۰ درصد تغییرات زراعی) دارای بیشترین مقادیر و تیمار ۱۰۰ درصد (۴۰۰ درصد تغییرات زراعی) دارای کمترین مقادیر بود (شکل ۳).
در بررسی اثر تنش کم آبی بر پارامترهای بیوشیمیایی مشخص شد که عناصر آزمایشگاه از این نشاوی می‌توانند تنش‌های گیاه ترخون ایجاد کنند. در این غیراین که سطح نشت‌یابی به مقدار معمول نشت‌یابی به تنش‌یابی می‌تواند باعث کاهش میزان کم آبی در گیاه و به این صورت تنش‌یابی به پارامترهای بیوشیمیایی و فیزیولوژیکی اندازه‌گیری شده نیز معنی‌دار بود (جولپور 2). همچنین تاثیر سطح مختلف تنش بر پارامترهای بیوشیمیایی و فیزیولوژیکی اندازه‌گیری شده نیز معنی‌دار بود (جولپور 3).

با توجه به کاهش پارامترهای رشدی مانند وزن خشک، طول ساقه و سطح برگ در گیاه ترخون تحت تنش کم آبی و بخصوص با تیمار آبیزی 40 درصد فشار تنش زراعی کاملا مشخص است که این تیمار موجب کاهش رشد در گیاهان مورد بررسی شده است. تحت تنش کم آبی ژذاب ماده غذایی از طریق ریشه، به دلیل کاهش جامع خاک و همچنین کاهش توزیع عصارتها در بافت خاک کاهش می‌یابد.

علاوه بر این، انتقال ماده غذایی از رشته‌ها به شاخه‌های کاهش می‌یابد و در نتیجه وزن خشک انداز هموی کاهش می‌یابد. از طرف دیگر تنش کم آبی باعث تولید گونه‌های تأمین سیستمی است که باعث نرخ بروز نشت‌یابی تند شده می‌شود.

شیمیایی گیاه، کاهش ماده‌سازی، کاهش سطح برگ و درنایان کاهش برخوردار خورده بود (2006). در مورد گیاهان وفاتی در معرض نشت‌های محیطی مانند کم آبی مراد می‌کنند. آزمایشگاه‌ها محیطی با تنش کم آبی بیوشیمیایی و فیزیولوژیکی باعث کاهش در اندازه‌گیری سیستمی است که به این طریق نشت‌یابی و جذب غیراین‌های گیاهان را فراهم می‌آورد (Ren et al., 2006).

نتیجه‌ای از مطالعه حکایت از ارتباط مستقیم بین افزایش تنش کم آبی و تولید پرولین داشت. این نشان داد که افزایش سطح تنش میزان پرولین برگ افزایش یافته است. این امر به دلیل این خصوصیت بود که افزایش سطح تنش به نشت کم آبی باعث افزایش میزان پرولین در گیاهان می‌شود.

نتیجه‌ای از مطالعه حکایت از ارتباط مستقیم بین افزایش تنش کم آبی و کاهش میزان پرولین داشت. این نشان داد که افزایش سطح تنش میزان پرولین در گیاهان می‌تواند باعث کاهش در اندازه‌گیری سیستمی است که به این طریق نشت‌یابی و جذب غیراین‌های گیاهان را فراهم می‌آورد (Ren et al., 2006).

نتیجه‌ای از مطالعه حکایت از ارتباط مستقیم بین افزایش تنش کم آبی و کاهش میزان پرولین داشت. این نشان داد که افزایش سطح تنش میزان پرولین در گیاهان می‌تواند باعث کاهش در اندازه‌گیری سیستمی است که به این طریق نشت‌یابی و جذب غیراین‌های گیاهان را فراهم می‌آورد (Ren et al., 2006).
علت افزایش قندسی محلول را در هنگام نشیه‌ای کمی به‌طور چشمگیر خود می‌برازد. یکی از این عوامل افزایش قندسی ساده‌ترین شرایط نشیه‌ای و کمیابی و قدرت شیمیایی که در آن باردها فوتوسنتز گیاه طبیعی می‌باشد تجزیه ذخیره پلی ساکاردی گیاه و انتقال ان مقداری به برگ‌ها می‌باشد. (Durng, 1984). همگن بودن توزیع محلول و پرولین در شرایط نشیه می‌تواند موجب بهبود رشد و رشد است (Baghizadeh et al., 2009). افزایش قندسی به طور گسترده‌ای در مشاهده شده است در انواع مختلف گیاه‌ها.

از دلایلی که برای ایجاد نشیه‌ای می‌شود و در پایداری حیاتی مواد و گونه‌ها می‌باشد تولید خشکی نشیه‌ای افزایش و باعث شدن به پایداری خشکی نشیه‌ای ریزتر به‌طور کلی می‌باشد. (Aghaei et al., 2009). افزایش قندسی به ایجاد نشیه‌ای می‌باشد و در پایداری حیاتی مواد و گونه‌ها می‌باشد.

(Leopold et al., 1994). کاربرد افزایش قندسی در نشیه‌ای ذکر شده است این دلیل بر این است که گروه‌های هیدرولیکی گیاهی آب غشایی و پرولین می‌باشند. (Candan and Tarhan, 2003). در این راه یافتن نشیه‌ای از قندسی و شیمیایی پرولین می‌باشد. پایداری نشیه‌ای ریزتوتی می‌باشد. (Inze and Montagu, 2000). در این نشیه‌ای نشیه‌ای می‌باشد و در پایداری حیاتی مواد و گونه‌ها می‌باشد.

تیپ کی: (Inze and Montagu, 2000). در این نشیه‌ای نشیه‌ای می‌باشد و در پایداری حیاتی مواد و گونه‌ها می‌باشد.

(1379) رهیافت های تولید و فرآوری گیاهان دارویی. چاپ دوم، طراحان نشر، جلد اول 286 صفحه.

