تأثیر کاربرد کود هیپومیکاسید محلول پاشی برگی چای کمپوزت و چای کمپوزت بر شاخه‌های رشد (Carthamus tinctorius L.)

آزاده خرم قهفرخی ۱، اصغر رحمی ۲ و بنیامین ترابی ۳

گروه زراعت، دانشکده کشاورزی، دانشگاه ولی عصر (عج) رفسنجان. گروه زراعت، دانشگاه علوم کشاورزی و مهندسی گیاهان (تاریخ دریافت: ۱۴/۱۸/۱۳۹۴)

چکیده:
تجهیز و تحلیل رشد، روش کاربردی و با ارزش در بررسی کمی رشد، نمو و تولید گیاهان زراعی به‌شمار می‌روند. به‌منظور بررسی تأثیر کاربرد کود هیپومیکاسید در محلول پاشی برگی و محلول پاشی برگی کمپوزت بر شاخه‌های رشد گلرگن آزمایش به‌صورت فاکتوریل در قالب طرح بلوک کامل تصادفی در سه تکرار در مرحله تحقیقات دانشگاه ولی عصر (عج) رفسنجان در سال ۱۳۹۲ انجام شد. تیمارها شامل کاربرد خاکی هیپومیکاسید (۱۰۰۰ و ۱۵۰۰ کیلوگرم در هکتار) به عنوان عامل اول و محلول پاشی (آب مخلوط به عنوان شاهد، و چای کمپوزت ۱۰/۵ و ۱/۵۰۰) به عنوان عامل دوم و رشد محصول (۰/۷۵ و ۰/۳۳ کیلوگرم به هر هکتار) به عنوان عامل سوم بودند. نتایج نشان داد که تیماراهای محلول پاشی و محلول پاشی چای کمپوزت باعث افزایش شاخه‌های رشد بزرگ، سرعت رشد محصول، ماده خشک کل و سرعت ترشی خالص و سرعت رشد نسبی شد. در مجموع کاربرد کود زیست‌هیپومیکاسید به میزان ۱۵۰۰ کیلوگرم در هکتار و محلول پاشی چای کمپوزت مناسب‌ترین تیمار برای افزایش شاخه‌های رشد و عملکرد گلرگن در راستای نیل به کشاورزی پایدار بود.

کلمات کلیدی: سطح بزرگ، شاخه‌های فیزیولوژیک رشد، عملکرد گلرگن، دانه، ماده خشک

مقدمه:
از آنجا که به‌خشن از روغن مصرفی کشور از خارج وارد می‌شود، کشت اندازه‌های روغنی و مدریت صحیح آنها در جهت افزایش عملکرد، از همین‌جنتیک برخوردار است (اسفنازده زارع و زارع، ۱۳۸۲). گلرگن با نام علمی Carthamus tinctorius (Asteraceae) است که با توجه به سازگاری بالا و نیاز آبی کم مورد توجه است (اسفنازده زارع و زارع، ۱۳۸۲). این گیاه بعد از

rahimiasg@gmail.com
مواد معیدی توسط گیاه مرتبط است و مصرف مداوم آن
میتواند باعث افزایش رشد گیاه و غلظت مواد معیدی در
بافت‌های گیاهی شود (Pant et al., 2009). دلیل عمل‌های استفاده
از چائی کم‌سول، انتقال نهاد میکرویی، مواد ارگانیک و
ترکیبات شیمیایی محلول به حاکی و گیاه است. که باعث
افزایش رشد گیاه می‌شود (فرمحمدوی و نامزا، ۱۳۸۵).
ورم‌هاش به عوامل غذایی و میکروبیت، مجموعه‌ای از مواد
نشری و فضول‌های شیمیایی محلول به حاکی و گیاه است. که باعث
افزایش رشد گیاه می‌شود (فرمحمدوی و نامزا، ۱۳۸۵).
(Phasaeolus vulgaris) تحقیق بررسیگری دیگری از (Phasaeolus vulgaris)
و (Phaseolus vulgaris) چربی و شیمیایی است که متوجه می‌گردد و
ساختار چربی کربن و تفسیر نمودار عامل‌های گیاه نسبت به
شرايط محیطی که گیاه طول دوره رشد خود با آن مقایسه
می‌گردد. باین عوامل شاتنیت به تغییرات عمیقی در (پلوگ) و (کوچک)
است برای توجه و تفسیر عکس عمل‌های گیاه نسبت به
شواست‌های تئوری به ادامه‌های مختلف و ابزار آن‌ها از
طریق اندازه‌گیری ماده چکش ثبت و نمایش شده در طول دوره رشد
گیاه به‌دلیل می‌آید (Ali et al., 2002). این روش بر می‌باید
اندازه‌گیری نرمی و وزن چکش بر گیاه شکرید و یا
پوشش‌های گیاهی استوار است (سرمدمیا و کوچکی، ۱۳۸۲).
همکاران، ۱۳۹۲). کودهای شیمیایی با عوامل نیک از عوامل
تأثیرگذار روی عملکرد گیاهان را مطرح می‌کنند و لیل
استفاده زاینده‌برمانگی هنگامی که با عملکرد مثيری
نامناسب مثل سوزاندن بی‌تاپات گیاهی همراه باشد، ماده آلی
خاک را به‌دست می‌دهد (پیرانپرده پرشته و همکاران
۱۳۸۹). همچنین کاربرد ریز جو کودهای شیمیایی در دما مدت
با تغییر خصوصیات فیزیک شیمیایی خاک، کاهش
تفویظ‌دری، افزایش وزن مخصوص ظاهری و در نهایت باعث
کاهش رشد و عملکرد گیاه می‌شود (متفاوت و همکاران
۱۳۸۲). یکی از راه‌های افزایش ماده آلی خاک استفاده از
کودهای آلی از قبل هم‌کارهای آلی. هم‌کارهای آلی
اصلی ترین بخش مواد هم‌کارهای آلی خاک (هوموس) را تشکیل می‌دهد. هم‌کارهای آلی ترکیب لپریمی
آلی طبیعی است که در نتیجه پوسیده می‌شود. خاک، پیت
لیگن و هر ماده آلی آیز که باعث افزایش عملکرد و
کیفیت محصول می‌شود (قربایی و همکاران، ۱۳۸۹). در
مطالعه‌ای (Gulser and Ayas ۲۰۰۵) گزارش کردند که هم‌کار
اسبی از طریق افزایش دمای خاک سبب افزایش
رشد، ارتقاء و به دنبال آن عملکرد پیوسته‌ی می‌شود.
هم‌کارهای آلی باعث افزایش جذب عناصر غذایی، تفویظ‌دری
سیلول و سرعت بخشنده فرآیند تنفس در پی‌ها به گیاه
علی می‌شود. هم‌کارهای آلی به باریک از گونه‌های گیاهی
پوشی‌نگر آن می‌شود (شهاب‌نامگر و همکاری، ۱۳۸۲).
(Triticum aestivum) است. در مطالعات کاربرد سطحی هم‌کارهای آلی
به اختلاف معناداری در وزن ساقه و ارتفاع بوده در گیاه کند
(Bulent Asik et al., ۲۰۰۹) (Triticum aestivum) است. در مطالعات کاربرد سطحی هم‌کارهای آلی
به اختلاف معناداری در وزن ساقه و ارتفاع بوده در گیاه کند
(Ayas et al., ۲۰۰۵) گزارش کردند که هم‌کار
اسبی از طریق افزایش دمای خاک سبب افزایش
رشد، ارتقاء و به دنبال آن عملکرد پیوسته‌ی می‌شود.
هم‌کارهای آلی باعث افزایش جذب عناصر غذایی، تفویظ‌دری
سیلول و سرعت بخشنده فرآیند تنفس در پی‌ها به گیاه
علی می‌شود. هم‌کارهای آلی به باریک از گونه‌های گیاهی
پوشی‌نگر آن می‌شود (شهاب‌نامگر و همکاری، ۱۳۸۲).
(Triticum aestivum) است. در مطالعات کاربرد سطحی هم‌کارهای آلی
به اختلاف معناداری در وزن ساقه و ارتفاع بوده در گیاه کند
(Bulent Asik et al., ۲۰۰۹) (Triticum aestivum) است. در مطالعات کاربرد سطحی هم‌کارهای آلی
به اختلاف معناداری در وزن ساقه و ارتفاع بوده در گیاه کند
(Bulent Asik et al., ۲۰۰۹) (Triticum aestivum) است. در مطالعات کاربرد سطحی هم‌کارهای آلی
به اختلاف معناداری در وزن ساقه و ارتفاع بوده در گیاه کند

Downloaded from jispp.iut.ac.ir at 11:16 IRDT on Thursday September 12th 2019
مواد و روش‌ها:

این آزمایش در سال 1392 در مزرعه تحقیقاتی دانشگاه ولی عصر (عج) رفسنجان با صورت فاکتوریال در قالب طرح پلک کامل تصادفی در سه تکرار اجرا شد. شهروستان رفسنجان با عرض جغرافیایی ۳۰ درجه با ارتفاع ۱۵۰۰ متر از سطح دریا، دارای آب و هوای گرم و خشک می‌باشد. عامل‌های آزمایش شامل کاربرد گرفت‌ها (صرف ۵۰۰ و ۱۵۰۰ کیلوگرم در هکتار) به عنوان عامل اول و عامل دوم شامل صورت محصول پاشی آب مفروض به عنوان شاهد و روش‌ها با نسبت زیستی ۱:۱، ۱:۲ و چای کمپوست بود. عملیات آماده سازی زمین شامل شخم‌داری، دیسکوک، کرچک‌کردن و اضافه کردن کود Zn و هیموکادسید بود. فاصله بین ریفزها ۵۰ سانتی‌متر و تراکم ۴۰ بونه در متر مربع در نظر گرفته شد. رقم گالری مورد استفاده در این آزمایش کل‌آب‌کش‌کن بود و کشت در اواخر اسفند ۱۳۹۲ در صورت گرفت. اولین آباییه با لاف‌الافصل پس از کشت و آب‌برداری‌های بعدی به هفت روز پیکر انجام گرفت. برای تهیه محلول‌های کمپوست ترکیب ورمیکامپس، اسد هیموکادسید محروم، عصاره جلبک دربایی و ملاس چغندرقند به مدت ۲۴ ساعت در ۸۰ لیتر آرار گرفته و به خویش مخ و بیابی‌ها وارد شده و در نهایت چای کمپوست هوازی آماده گردید و با شاخص عظمت محلول پاشی گردید (Bess, 2000).

برای تهیه ورمی‌واش چای ۱:۱۰ و ۱:۲۰ و ۱:۳۰ کیلوگرم ورمیکامپس در پارچه نازک ریخته شده بر روی تخته و به ترتیب در ۱۰ و ۲۰ لیتر آب به
جدول 1- ویژگی‌های فیزیکی و شیمیایی خاک

<table>
<thead>
<tr>
<th>فناوری آب</th>
<th>پیشرفت</th>
<th>% ماهیان</th>
<th>حس</th>
<th>% نیترژن</th>
<th>مس</th>
<th>%</th>
<th>فناوری آب 1</th>
<th>پیشرفت</th>
<th>% ماهیان</th>
<th>حس</th>
<th>% نیترژن</th>
<th>مس</th>
<th>%</th>
<th>فناوری آب 2</th>
<th>پیشرفت</th>
<th>% ماهیان</th>
<th>حس</th>
<th>% نیترژن</th>
<th>مس</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>حساسیت</td>
<td></td>
</tr>
<tr>
<td>طرد</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2- ویژگی‌های شیمیایی چاپی کمپوست و روش‌ها در برآورد ویژگی‌های شیمیایی خاک

<table>
<thead>
<tr>
<th>pH</th>
<th>الماس</th>
<th>% ماهیان</th>
<th>حس</th>
<th>% نیترژن</th>
<th>مس</th>
<th>%</th>
<th>فناوری آب 1</th>
<th>پیشرفت</th>
<th>% ماهیان</th>
<th>حس</th>
<th>% نیترژن</th>
<th>مس</th>
<th>%</th>
<th>فناوری آب 2</th>
<th>پیشرفت</th>
<th>% ماهیان</th>
<th>حس</th>
<th>% نیترژن</th>
<th>مس</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

نتایج و بحث:

نتایج این تحقیق حاکی از این بود که استفاده از کود‌های هیموکاسپید و محلول‌پاش موجب افزایش نظیر شاخص سطح پرگ و سرعت رشد محصول و سرعت چسب نخخازن در 1145 درجه روز رشد و همچنین حداکثر وزن خشک کل در 1847 درجه روز رشد و حداکثر سرعت رشد نسبی در 277 درجه روز رشد در بیماری‌های مختلف آناتومی واریانس و مقایسه میانگین قرار گرفت. پس از جمع آوری داده‌های تجربیهای آماری با استفاده از نرم‌افزار SAS انجام گرفت و میانگین‌ها با استفاده از آزمون دانکن در سطح احتمال بنج درصد مقایسه شدند.
جدول ۳- تأثیر حاصل از تجزیه واریانس (ماژور (مربعات)) تأثیر تیمارهای آزمایشی بر شاخص‌های رشد و عملکرد دانه

<table>
<thead>
<tr>
<th>پایکوب</th>
<th>دارای اعتبار</th>
<th>درجه</th>
<th>حداکثر سرعت</th>
<th>حداکثر ماده</th>
<th>عضوای تغییرات آزادی</th>
<th>سطح بگ</th>
<th>رشد محصول</th>
<th>خشک کل</th>
<th>سرعت جذب</th>
<th>نسبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بلوک</td>
<td>۲</td>
<td>۵۰۷۶۹۲۸**<sup>a</sup></td>
<td>۴/۱۲**<sup>a</sup></td>
<td>۴۰/۷۹۵<sup>b</sup></td>
<td>۵۰/۵۶۹<sup>b</sup></td>
<td>۲۴/۶۲۲<sup>b</sup></td>
<td>۴۸/۷۹۵<sup>b</sup></td>
<td>۲۴/۶۲۲<sup>b</sup></td>
<td>۴۸/۷۹۵<sup>b</sup></td>
<td>۲۴/۶۲۲<sup>b</sup></td>
</tr>
<tr>
<td>۱۹۹۴۰۳<sup>b</sup></td>
<td>۳/۳۲<sup>b</sup></td>
<td>۹۴/۷۹۵<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>۱۱۲۸۸۳۵<sup>b</sup></td>
<td>۲/۲۲<sup>b</sup></td>
<td>۳۸/۷۹۵<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td>۲۰/۶۲۸<sup>b</sup></td>
<td></td>
</tr>
</tbody>
</table>

* و ** به ترتیب عدم وجود اختلاف معنی‌دار، معنی‌دار در سطح استاندارد پنج درصد و یک درصد.

جدول ۴- مقایسه میانگین‌های مربوط به اثرات اصلی هیپرکاسپید و محلول‌پاش بر حداکثر مقادیر شاخص‌های رشد و عملکرد دانه

<table>
<thead>
<tr>
<th>حداکثر سرعت</th>
<th>حداکثر ماده</th>
<th>سطح بگ</th>
<th>رشد محصول</th>
<th>خشک کل</th>
<th>سرعت جذب</th>
<th>نسبی</th>
<th>سطح هیپرکاسپید</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۹۹<sup>b</sup></td>
<td>۱۱/۲۹<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
<td>۱۲/۹۴<sup>a</sup></td>
<td>۶۷<sup>d</sup></td>
<td>۱۵/۸۱<sup>c</sup></td>
<td>۱/۲۴<sup>d</sup></td>
<td>۰/۹۱<sup>b</sup></td>
</tr>
<tr>
<td>۱۱/۳۲<sup>a</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
</tr>
<tr>
<td>۱۱/۲۹<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
<td>۱۰/۶۲<sup>b</sup></td>
</tr>
</tbody>
</table>

(کلمه در هکتناه
(کلمه بر متر مربع بر کُر مرو (کلمه بر روز (روز))

آب مقطر
ورم ورک
ورم راک
چاپ کیمیوست

در ستون میانگین-های که دارای حاصلات یک طرف مشترک هستند بر اساس آزمون اثبات در سطح استاندارد پنج درصد اختلاف معنی‌دار ندارد.

نیکبک (Nikbakht et al., 2008) می‌توان ریشه به اندازه‌هایی می‌شد که گفت که هیپرکاسپید و چرب بگ و افزایش اقتصادی و بیولوژیکی می‌گردد. افزودن کم‌هیپرکاسپید به چربی و به‌درمانی و باعث خارج‌کردن یک خاص را تحت تاثیر قرار می‌دهد. باعث افزایش سطح نیترات در سطح خارج‌کردن می‌شود و با توجه به نقش مثبت نیترات در افزایش رشد روتاتری با توجه به این نکته که هیپرکاسپید و چرب بگ و افزایش اضافات نیترات از...
شکل 1- روند تغییرات شاخص سطح برق گلرنگ تحت تیمارهای مختلف هیومنیکاسید و محلولپاشی، H1، H2، H3، H4 به ترتیب می‌باشد.

استخراج شده به روش‌های مختلف باعث افزایش معناداری سطح برق گیاه شلغم نسبت به تیمار شاهد شد. در حالی که بیشترین سطح برق در تیمار چای کمپوسیتوس واحدهی نشده بود.

تیمارهای آزمایش شامل چای کمپوسیتوس واحدهی شده، چای کمپوسیتوس واحدهی شده با جمعیت میکروی، چای کمپوسیتوس واحدهی شده و شاهد بودند (Pant et al., 2009). که با توجه به اینکه در این آزمایش نیز محلولپاشی چای کمپوسیتوس واحدهی شده بود به شکل نشان داد که تیمارهای مشابه شده یا کمپوسیتوس واحدهی نشده مشابه هم‌کاران (2009) بر روزی شلغم مطابقت داشت.

سرعت رشد محسول (CGR) نتایج به دست آمده از تجزیه واریانس مربوط به سرعت رشد محسول در زمان دریافت حدود 145 درجه روز رشد نشان داد که اثر تیمارهای مربوط به ارتس اصلی هیومنیکاسید و محلولپاشی به کود هیومنیکاسید صفر، 500، 1000 و 1500 کیلوگرم در هکتار می‌باشد.

استخراج شده به روش‌های مختلف باعث افزایش معنادار

سطح برق گیاه شلغم نسبت به تیمار شاهد شد. در حالی که بیشترین سطح برق در تیمار چای کمپوسیتوس واحدهی نشده بود.

تیمارهای آزمایش شامل چای کمپوسیتوس واحدهی شده، چای کمپوسیتوس واحدهی شده با جمعیت میکروی، چای کمپوسیتوس واحدهی شده و شاهد بودند (Pant et al., 2009). که با توجه به اینکه در این آزمایش نیز محلولپاشی چای کمپوسیتوس واحدهی شده بود به شکل نشان داد که تیمارهای مشابه شده یا کمپوسیتوس واحدهی نشده مشابه هم‌کاران (2009) بر روزی شلغم مطابقت داشت.

سرعت رشد محسول (CGR) نتایج به دست آمده از تجزیه واریانس مربوط به سرعت رشد محسول در زمان دریافت حدود 145 درجه روز رشد نشان داد که اثر تیمارهای مربوط به ارتس اصلی هیومنیکاسید و محلولپاشی به کود هیومنیکاسید صفر، 500، 1000 و 1500 کیلوگرم در هکتار می‌باشد.
شکل ۲- رونده تغییرات سرعت رشد گل‌گیمی تحت تیمارهای مختلف هیوپکاسید و محلول‌پاشی، H۱، H۲، H۳، H۴ به ترتیب مربوط به کود هیوپکاسید صفر، ۵۰۰۰، ۱۰۰۰۰ و ۱۵۰۰۰ کیلوگرم در هکتار می‌باشد.

بر حذافک سرعت رشد محصول در سطح یک درصد معنی‌دار بود (جدول ۳) در این آزمایش با افزایش سطح کودی میزان سرعت رشد محصول افزایش یافت، به‌طوری که پیش‌ترین سرعت رشد محصول از تیمار ۱۵۰۰ کیلوگرم هیوپکاسید بهدست آمد که اختلاف معنی‌داری با تیمار ۱۰۰۰۰ کیلوگرم در هکتار هیوپکاسید نداشت و کمترین آن از تیمار شاهد به‌دست آمد. همچنین در ریزمارهای محلول‌پاشی پیش‌ترین سرعت رشد محصول از محلول‌پاشی چایکمپوست به‌دست آمد که اختلاف معنی‌داری با سایر تیمارها داشت (جدول ۴). همانطور که در شکل (۲) مشاهده می‌شود سرعت رشد محصول در این‌تیمار قبلی به‌دلیل کاهش نیروی پوشش گیاهی و کم‌بودن سطح در میانکندی‌ها به چاپ‌گرها کم است و در اواضع دوره رشد با رشد سریع گیاه و افزایش سطح پوست، جذب تابی و سرعت رشد محصول افزایش
روند کنده داشته و این روند در همه تیمارها مشاهده می‌شود. همان‌طور که مشاهده می‌شود افزایش کاربرد هیموکاسید روند تجییم ماده خشک نیز در گیاهان بیشتر می‌شود و تیمار 1500 کیلوگرم در هکتار هیموکاسید بالاتر از سایر تیمارها قرار گرفت است. علت افزایش تجییم ماده خشک با افزایش کاربرد هیموکاسید، تأثیر دیده به شکل هیموکاسید در افزایش رشد رویشی و در نتیجه بالا رفتن وزن خشک گیاه است. همچنین محلول‌پذیری چای کمیستات در همه سطوح کودی، بیشترین میزان ماده خشک کل را با خود اختصاص داد. در مطالعات تجییم ماده خشک در اولیه دوره رشد 45 روز (60 روزگی) رشد باعث افزایش 85 درصدی این صفت نسبت به شاهد نهادگر در و 120 روز پس از کاشت به بالاترین میزان خود (61/11 درصد) رسید (زمینی و همکاران 1391). (Azam and Kauser 1985) طی آزمایش‌های روش اگندام در رایانه 50 درصد افزایش در طول رشد و 22 درصد افزایش در ماده خشک را به همراه داشت. احتمالاً در این آزمایش افزایش آزمایش و Kauser بیشتر در وزن خشک نسبت به آزمایش (1985) بر روی کنده به دلیل کاربرد سطح بالای هیموکاسید مصرفی و با وکنش بیشتر گیاه کننگ نسبت به کاربرد این کود بوده است. در مطالعات در گیاه گارزیان مصرف چای کمیستات باعث افزایش ارتفاع بونه و وزن نر و خشک هکماهی و هندی (El-Din and Hendawy 2010) که با نتایج مطالعات داشت. می‌توان گفت وجود میکوراکتیسم‌ها، عناصر ریز غذایی و درشت معنی‌دار موجب چای کمیستات وجود افزایش وزن خشک گل‌نگ شده است. در مطالعات افزایش طول ساقه، طول ریشه، سطح بدن و وزن خشک در گیاه موز به دلیل وجود عناصر میکرو، آسیس هیموکاسید و اسید ولیک موجود در چای کمیست کارگر شد (2012) (Aremu et al., 2012).

سرعت جذب خالص (NAR) نتایج حاصل از تجربه واریانس نشان داد که اثرات اصلی هیموکاسید و محلول‌پذیری بر حداکثر سرعت جذب خالص در 1145 درجه روز رشد در غذاشی به باروری و تولید زیاد را در گیاهان افزایش می‌دهد که این امر توانایی افزایش سرعت رشد محسوس مؤثری یافته است. (سیروزی و همکاران 1388.) در مطالعات روش زمین 25-50 روز پس از کاشت، کاربرد هیموکاسید سرعت رشد گیاه را به میزان 4/24 درصد نسبت به شاهد افزایش داد (شاهسینی و همکاران 1391). همان‌طور که مشاهده شد در این آزمایش سرعت رشد محسوس با کاربرد هیموکاسید افزایش یافت و کاربرد هیموکاسید موجب افزایش 17 درصدی سرعت رشد محسوس نسبت به تیمار شاهد شد که با نتایج شاهسینی و همکاران (1991) بر روی زمین مغذی طاقنی داشت. (TDM) وزن خشک بونه در حالن سطح یکی از متغیرهای مهم در تحقیقات بزرگ‌پیوسته است. زیرا باید توان تولید گیاه در طول فصل رشد است. نتایج به دست آمده از تجزیه واریانس بر مبنای خشک کل در زمان دریافت حذف 1847 درجه رشد نشان داد که اثر تیمارهای مربوط به اثرات اصلی هیموکاسید و محلول‌پذیری بر حداکثر ماده خشک کل در سطح یک درصد مغذی بود (جدول 3). با افزایش سطح کودی میزان وزن خشک گل‌نگ افزایش یافت، به طوری که کاربرد 1500 کیلوگرم در هکتار هیموکاسید موجب افزایش 45 درصدی وزن خشک کل نسبت به تیمار شاهد در گل‌نگ شد. توجه به جدول (4) نشان می‌دهد که کاربرد 1500 کیلوگرم در هکتار هیموکاسید به دست آمده اختلاف معنی‌داری را با سطح هیموکاسید بدست آمده در مقایسه با شاهد به دست آمده. همچنین در تیمارهای محلول‌پذیری بیشترین وزن خشک کل از تیمار چای کمیستات و کمترین میزان آن از تیمار شاهد به دست آمده و محلول‌پذیری چای کمیستات موجب افزایش 29 درصدی وزن خشک کل در مقایسه با شاهد شد (جدول 4). نشان می‌دهد که روند افزایش ماده خشک در تیمارهای مختلف این روند معقولی بیش از می‌کند به طوری که دیده می‌شود در ابتدا فصل رشد بدلیل پایین بودن دما و کم بودن سطح فتوستاتیک. تجییم ماده خشک
شکل ۳- روند تغییرات ماده خشک کل گلفیک تحت تیمارهای مختلف هیموکاسید و محلول‌پاشی، H۱، H۲، H۳، H۴ به ترتیب مربوط به کود هیموکاسید صفر، ۵۰۰۰ و ۱۰۰۰۰ کیلوگرم در هکتار می‌باشد.

زمان به سرعت کاهش می‌یابد. در ابتدا فصل رشد چون رشد گلفیک به صورت رژت است به علت هیپوئیا برگ‌ها، شدت فتوستن در برگ‌ها و میزان چربی خالص به سرعت کمی افزایش پیدا می‌کند، اما با افزایش رشد، برگ‌ها از هم بیاوردند و در معرض تشعشع خورشیدی قرار می‌گیرند و در نتیجه میزان فتوستن در آنها بالا می‌رود. در نهایت، با وجود سطح برگ کم چون ماده خشک در آنها نسبت به واحد سطح برگ بیشتر می‌شود، نابرابر میزان چربی خالص نیز افزایش بیابد می‌کند، اما در طول بهبود افزایش رشد بیشتر می‌شود و برگ‌ها سپس، شدت فتوستن و نسبت ماده خشک توده‌ی به سطح برگ کاهش می‌یابد و به دنبال آن میزان چربی خالص نیز کم می‌شود و نمودار آن روند نزولی پیدا می‌کند. در مطالعه‌های روی ارقام گلفیک مشاهده شد، روند سرعت چربی خالص در ابتدا فصل رشد

سطح یک درصد معنی‌دار بود اما نه متقابل هیموکاسید

در محلول‌پاشی تأثیر معنی‌داری بر این صفت نداشت (جدول ۳). با افزایش صرف هیموکاسید سرعت چربی خالص افزایش یافت به طوری که صرف ۱۵۰۰ کیلوگرم در هکنار هیموکاسید موجب افزایش ۳۰ درصدی سرعت چربی خالص نسبت به شاهد شد، با توجه به جدول (۴) بالاترین میزان سرعت چربی خالص از تیمار ۱۵۰۰ کیلوگرم در هکنار هیموکاسید به دست آمد که با سایر صروف هیموکاسید اختلاف معنی‌داری داشت و کمترین میزان سرعت چربی خالص از تیمار شاهد به دست آمد. همچنین در تیمارهای محلول‌پاشی بیشترین سرعت چربی خالص از محلول‌پاشی چای کم‌بیست و ۳/۳ درصد از تیمار شاهد به دست آمد (جدول ۴). همانطور که در شکل ۴ مشاهده می‌شود تا درجه روز رشد سرعت چربی خالص انفاض می‌یابد اما اما یک طفره
شکل ۴- روند تغییرات سرعت فتوسترز خالص گلرگ تحت تیمارهای مختلف هیومیکاسید و محلولپاشی، H1، H2، H3 و H4 به ترتیب

مربوط به کود هیومیکاسید صفر، ۵۰۰۰ و ۱۵۰۰ کیلوگرم در هکتار می‌باشد.

می‌تواند به دلیل کشنده‌ی و بی‌سرعت بیشتر پوشش گیاهی باشد.

سرعت رشد نسبی (RGR)؛ روند تغییرات سرعت رشد نسبی در همه تیمارها تقریباً شیب‌های ممکن هم‌بود. جذب‌کن سرعت رشد نسبی در ابتدا به رشد یا درصد ۷۷ درجه روز رشد حاصل شد و پس از آن، کاهش یافت. با توجه به جدول تجزیه واریانس اثر اصلی هیومیکاسید و محلولپاشی بر حداکثر سرعت رشد نسبی در زمان دریافت ۷۷ درجه روز رشد به ترتیب در سطح پنجم درصد و یک درصد معنی‌دار بود اما اثر متقابل هیومیکاسید در محلولپاشی تأثیر معنی‌داری بر این صفت نداشت (جدول ۳). پیش‌ترین میزان سرعت رشد نسبی از تیمار ۱۵۰۰ کیلوگرم در هکتار هیومیکاسید به‌دست آمد که اختلاف معنی‌داری با بی‌ساز سطح هیومیکاسید نداشت و کاهش میزان آن از تیمار شاهد به‌دست آمد. همچنین در
کود هیومیکاسید صفر، ۵۰۰، ۱۰۰۰ و ۱۵۰۰ کیلگرم در هر میلیپلاست.

شکل ۵- روند تغییرات سرعت رشد نسبی گلریزگی تحت تیمارهای مختلف هیومیکاسید و محلول‌پاشی H1، H2، H3 و H4 به ترتیب مربوط به

Tیمارهای محلول‌پاشی یک‌تراپی جهد نسبی از تیمار محلول‌پاشی چای ظرفیت و کمترین آن از تیمار شاهد به‌دست آمد (جدول ۴). تغییرات سرعت رشد نسبی بر مبنای درجه روز رشد در ترکیبات تیمار مختلف نشان می‌دهد که در تمام ترکیبات تیماری سرعت رشد گیاه با افزایش سن گیاه کاهش یافته است. تغییرات سرعت رشد نسبی (شکل ۵) نشان می‌دهد که در تمام ترکیبات تیماری سرعت رشد نسبی با افزایش سن گیاه کاهش می‌یابد. به‌نظر می‌رسد که در تیمار ۱۵۰۰ کیلگرم در هر هیومیکاسید رقابت بر سر آب و مورد غذا بر روی کمونتی از فصل رشد بوده است و در نتیجه میزان افروش خاص و سرعت رشد نسبی افراشی بیشتری نسبت به سایر سطوح کودی داشته است. در تیمارهای محلول‌پاشی، محلول‌پاشی چای هیومیکاسید بیشترین مقدار سرعت رشد نسبی را در هم زمانها و هم سطوح کودی داشت.

عمکارکرد دانه: نتایج تجربه واقعی داشت که عمکارکرد
اثر کاربرد هیموگلکاسید و محلول‌پاش‌های چای کمپوست به‌علاوه بودن شاخه سطح برگ و در بهبود شکل گیاه نسبت داد. با استفاده از سطح برگ نور بیشتر توسط گیاه دریافت می‌کند و می‌توان به‌عنوان فتوستیت بیشتر، سرعت رشد محلول و تجمیع ماده شکل برگ و سرعت رشد محلول منتظر به افزایش حمایت‌کننده از مصرف چای کمپوست به‌علاوه افزایش عملکرد دانه‌ای در بخش چیپ و دانه‌های دیگر منجر به افزایش عملکرد دانه‌ای شدید که با مصرف 5000 کیلوگرم در هکتار هیموگلکاسید موجب افزایش ۳۵ درصدی عملکرد طیف داشت. مهجین عملکرد دانه‌ای بر روی گیاه چای قهوه مصرف 1500 گرم اسید هیموگلکسید در هزار لیتر آب تأثیر می‌دارد بر عملکرد دانه داشت (جبیدری و خلیلی، 1393). ورمی‌وایس به عنوان عصاره ورمی‌کمپوست حاوی عنصر غذایی و میکروگلکاسید‌های مفید برای رشد گیاهان است و محلول‌پاش به آن موجب افزایش عملکرد می‌شود (رحمت‌پور و همکاران، 1392). در مطالعه‌ی ۱۳۹۸ تعداد چاه کمپوست و ورمی‌وایس را به آزادسازی آهسته عنصر می‌بایست.

منابع:

اینجلی، پ. و زارعیان بیگدا آبادی، غ (1382) اثر تراکم بوته بر عملکرد، اجزای عملکرد و برخی ویژگی‌های ظاهری در گل‌برگ ازین‌کوه. مجله علوم آب و خاک ۷: 140-142.
امینی، ف. و علی‌محمد، ک. (1378) روابط بین عملکرد دانه و اجزای آن در زنگنه‌های گل‌برگ، علوم و فنون کشاورزی و منابع طبیعی 12: 530-535.
پیرس، نونه، ه. امام، ی. و جمالی، رامین، ف (1369) مقایسه اثر چاه‌های زنبوری با چاه‌های شیمیایی بر رشد و عملکرد و درصد پیرس. روزنامه امکان‌ها، ۱۳۶۹: ۴۹.
روغن افتابگردن (Helianthus annuus) در سطوح مختلف نشان‌دهنده نشانه‌های شناسی جهانی و تستانی ۱-۲. ۴۹-۵۰.
جهان، م.، مرادی، ه.، و علی‌محمد، ک. (1371) اثر هیدروژن سوپر جاذب رطوبت در خاک و محلول‌پاش‌های اسید هیموگلکسید بر برخی ویژگی‌های اگروکشاورزی‌های لوبیا (Phaseolus vulgaris L) در شرایط مشابه. مجله کشاورزی شناخته‌خانه ۱: ۹۶-۱۰۰.
جهری، م. و خلیلی، س. (1397) تأثیر اسید هیموگلکسید و کود فسفر بر عملکرد دانه و گل، رنگدانه‌های فتوستیتی و مقادیر عنصر معادن در گیاه چای ۴۵: ۱۹۹-۱۹۱.
تأثیر کاربرد کود هیموکاسیس بر گیاه چای-کمپوست و...

رحمتی‌پور، س. ،علی‌نژاد، ح. ع. و میر سید حسینی، ح. (1982) تأثیر بی‌بی‌آ و روش‌ها بر شاخص‌های رشد و عملکرد گندم و جذب ویتامین‌ها در طول زمان. مجله تحقیقات آب و خاک ایران، 43: 211-222.

سرخه‌سنگی، غ. و کوچکی‌خانی، غ. (1372) فیزیولوژی گیاهان زراعی. انتشارات جهاد دانشگاهی مشهد.

شاکی، ن.، غلامی، ن. و اسحاقی، ح. (1391) تأثیر هرستی‌میکروبیایی و کاربرد اسید هیموکس بر کارایی مصرف آب و شاخص‌های فیزیولوژیک رشد در سبزی و سبزیجات. دو فصلنامه علمی-پژوهشی خواص بوم. 39-65.

شاخص‌های زیست‌محیطی، م. و چنگالی، ا. (1372) تأثیر غلظت و زمان مختلف کاربرد اسید هیموکس بر وزن‌های کمی و کیفی کل برده. علم و فنون کشتی‌های مناسبه. شنبه رقم. 19 (149). 150-157.

فرمحمدی، س. و نامازی، م. (1387) استفاده از کمپوست و اثر آن بر محیط زیست پایدار. اولین همایش تخصصی مهندسی محیط زیست، نمایشگاه، تهران، ایران.

قرانی، س. خزه‌ای، ح. و کافی، م. و بینایی، اول، م. (1389) اثر کاربرد اسید هیموکس در آب آبیاری بر عملکرد و اجرا عملکرد کشتی، م. لطفی‌نیازی، ف. و قاسمی‌پور، م. (1386) تجزیه و تحلیل رشد ارگان گندم با آرامش‌های مختلف کشتی در شرایط دیم. مجله علوم کشاورزی و منابع طبیعی. 10: 98-106.

کوچکی‌خانی، غ. و بینایی، اول. و غ. (1373) فیزیولوژی عملکرد گیاهان زراعی. انتشارات جهاد دانشگاهی مشهد.

متنبی، ا. پرداختی، ا. و بهمنیار، م. و عباسیان، ا. (1378) مطالعه تأثیر کمپوست، ورمی‌کمپوست، لجن فاضلاب و کود شیمیایی بر خصوصیات مورفولوژیکی، عملکرد پروتئین و دانه ارзам مختلف سویا، مجموعه مقالات دومین همایش ملی کشاورزی بوم. نمایشگاه، گرگان، ایران.

نعمتی‌فرشی، ح. عزیزی، م. مهدی‌پور، س. و کریمی‌پور، س. (1392) بررسی اثر محلول‌پاشی با غلظت‌های مختلف عصاره ورمی‌کمپوست (ورمی‌وای) بر صفات مورفولوژیکی، درصد و عملکرد اساس کیاه داری بذری مجع. تشریح علوم آموزشی. 27: 411-417.

پیاسار، ط. خوشنال، ح. و شهیواری، م. (1392) پهن‌بندی بارندگی کاهش ارقام گل‌برک به‌هارد در استان اصفهان. مجله جغرافیا و برنامه‌ریزی محیطی. 24: 170-171.

Effect of humic acid fertilizer application and foliar spraying of compost tea and vermiwash on growth indices of safflower (*Carthamus tinctorius* L.)

Azadeh Khoram Ghahfarokhi¹, Asghar Rahimi¹* and Benjamin Torabi²

¹Department of Agronomy, Agriculture College, Vali-e-Asr University of Rafsanjan,
²Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources
(Received: 25 June 2015, Accepted: 4 January 2016)

Abstract:

Growth analysis is a valuable and practical method on quantitative growth, development and crop production evaluation. In order to study the effects of granular humic acid and foliar application of compost tea and vermiwash on growth indices of safflower (*Carthamus tinctorius*), an experiment was conducted as a factorial based on randomized complete block design with three replications in agricultural research farm at Vali-e-Asr University of Rafsanjan in 2014. Treatments included soil application of humic acid (0, 500, 1000 and 1500 kg.ha⁻¹) and foliar spraying of vermiwash 1:10, vermiwash 1:20, compost tea and distilled water as control. The highest values for LAI were (1.96), CGR (26.85 gr.m⁻².day⁻¹), TDW (1232 gr.m⁻²), NAR (12.94 gr.m⁻².day⁻¹) and RGR (0.13 gr.gr⁻¹.day⁻¹) obtained by using 1500 kg.ha⁻¹ humic acid and the lowest of them (1.29, 15.81 gr.m⁻².day⁻¹, 671 gr.m⁻², 8.98 gr.m⁻².day⁻¹ and 0.108 gr.gr⁻¹.day⁻¹) observed in control. It was also concluded that compost tea foliar application increased LAI, CGR, TDW, NAR and RGR. Totally, humic acid application (1500 kg.ha⁻¹) in soil along with compost tea foliar application was the best treatment for getting higher growth indices and seed yield of safflower in order to achieve sustainable agriculture.

Keywords: Dry matter, Leaf area, Physiological growth indices, Seed yield.

*corresponding author, Email: rahimiasg@gmail.com