واکنش‌های رشد و فتوستزی داودویی به محلول‌پاشی سیلیкат‌سایی سدیم و کلسیم

هدی حاجی پور و زهیه جیارزاده

گروه علمی بافتی، دانشگاه شماروزی، دانشگاه ارومیه، ارومیه

(تاریخ دریافت: 31/03/1394، تاریخ پذیرش نهایی: 14/11/1394)

چکیده:

سیلیکون یک عنصر شیمیایی است که اثرات مثبت زیادی بر زیست‌های کمی و کوچک نسبی از گونه‌های کمی از جمله گیاهان زمین دارد. هدف از این پژوهش بررسی تأثیر محلول پاشی سیلیکون بر ویژگی‌های رشد و فتوستژی داودویی بود. این پژوهش به صورت فاکتوری در قالب طرح کلی اصلی صادقی‌یی با دو فاکتور نوع سیلیکون به صورت (سیلیکون سدیم و کلسیم) و غلظت سیلیکات در 5 سطح (0، 50، 100، 150 و 200 میلی گرم در لیتر) در میان شاخه کوکوپیت - یرز/7 (V/V) با 2 تکرار و 2 مشاهده انجام شد. شاخص‌های نظر سطح برگ، تعداد برگ، وزن برگ، وزن برگ عضلانه، رنگ برگ، و رنگ برگ عضلانه نشان داد سیلیکات سدیم و کلسیم به بهترین کاشت داشت بود. افزایش سایر شاخص‌های اندام، گیاهی نشان داد شاخص شانه سطح برگ، تعداد برگ، وزن برگ و وزن برگ عضلانه افزایش یافت.

در این شاخه‌ها ممکن است به دلیل اثر بر سیستم متابولیسم و فتوستژی گیاه نظر اثر غلظت آزم افزایش افتاد و میزان داشته باشد. نتایج نشان داد سیلیکات بیشترین افزایش را در هنگام افزایش غلظت سیلیکات به همراه افزایش رنگ برگ و رنگ برگ عضلانه داشت.

کلمات کلیدی: داودویی، کوکوپیت - یرز، سیلیکون، سطح برگ

مقدمه:

داودویی دارویی (Dendranthema ×grandiflorum) یک گیاهان از خانواده گیاهان Astersceae می‌باشد. سندرم نمونه‌گیری در کاربرد این گیاه در زراعت دارویی به عنوان یکی از بهترین مکانی‌ها در نظر گرفته می‌شود (Barbosa, 2003). سندرم گیاهانی که در مهار کردن بیماری‌های گیاهی مهم هستند (Asteraceae) می‌باشد (Janislampi, 2012). سیلیکون به‌عنوان یک عنصر شیمیایی اسید که کاربرد آن به طور گسترده در کشاورزی مورد مطالعه قرار می‌گیرد. خاک به‌طور متوسط شامل 31 درصد سیلیکون به شکل سیلیکات (SiO2) است (Hodson et al., 2005).

نویسندگان مسئول نشانی پست الکترونیکی:
z.jabbarzadeh@urmia.ac.ir

*نویسنده مسئول، نشانی پست الکترونیکی:
Chl b = 18.61 A
Chl a = 11.75 A

Chl b = 18.61 A
Chl a = 11.75 A

Chl b = 18.61 A
Chl a = 11.75 A

Chl b = 18.61 A
Chl a = 11.75 A
کشف کوکیوپت- پرلیت در تیمار ۱۵۰ میلی‌گرم در لیتر سیلیکات کلسیم بسته‌ای می‌باشد. در هر دو تیمار سیلیکات کلسیم و سیدم، سیلیکات غلظت سیلیکات تا ۱۵۰ میلی‌گرم در لیتر سطح پرک افزایش یافت، ولی در ۲۰۰ میلی‌گرم در لیتر سیلیکات، مقادیر کاهش در سطح پرک نسبت به تیمارهای سیلیکات مشاهده شد که این کاهش در غلظت سیلیکات ۲۰۰ میلی‌گرم در لیتر سیلیکات کلسیم می‌باشد. بود سیلیکات در منابع دیواره سلولی و در گسترش و پرک شدن سلول نشان داد (Romero- Aranda et al., 2006). همچنین با افزایش کشیدگی سلول‌های پرک و افزایش انتقال آب به سلول‌های پرک، زیمت را برای گسترش سطح پرک فراهم می‌کند. بنابراین افزایش کارایی موقعیت آب و بهبود محیط رطوبت نسب پرک باعث افزایش محور توروزسانس و افزایش اندازه پرک می‌شود (فاطمی و همکاران ۱۳۸۷). نتایج این بررسی در افزایش سطح پرک با Weerahewa پایه‌های و همکاران (۲۰۰۹) در رژیم ایرانی‌های مطالبتی داشت.

شکل ۱- اثرات مختلف نوع و غلظت سیلیکات بر سطح پرک (a) و تعداد پرک (b) در محیط کشت کوکیوپت- پرلیت.

اهرام‌های رشد و نمونه‌گیری در دارویی به محلول‌های سیلیکات‌های معدنی.
در لیتر مقدار جزئی کاهش وزن برگ دیده شد. در محدوده کشت کوکوپیت-پرایت بین تیمارهای سیلیکات کلسیم و سدیم، بیشترین میزان وزن خشک برگ کلسیم دارودی مورد بررسی در تیمار 150 میلی گرم در لیتر سیلیکات سدیم با (2/0 گرم) بود که افزایش حدود 40 درصدی نسبت به شاهده (0/10 گرم) مشاهده شد. برتری سیلیکات سدیم نسبت به سیلیکات کلسیم در افزایش وزن برگ و خشک برگ را می‌توان به حالت شیب سیلیکات سدیم نسبت به سیلیکات کلسیم در بافت‌های گیاهی نسبت داد (شکل 2a). سیلیکون با افزایش میزان کارایی توانست، افزایش در کسب توانایی جذب مواد غذایی، تولید اجزای خاص برگی می‌کند (Vasanthi et al., 2012). در لیتر مقدار جزئی کاهش وزن برگ دیده شد. در محدوده کشت کوکوپیت-پرایت بین تیمارهای سیلیکات کلسیم و سدیم، بیشترین میزان وزن خشک برگ کلسیم دارودی مورد بررسی در تیمار 150 میلی گرم در لیتر سیلیکات سدیم با (2/0 گرم) بود که افزایش حدود 40 درصدی نسبت به شاهده (0/10 گرم) مشاهده شد. برتری سیلیکات سدیم نسبت به سیلیکات کلسیم در افزایش وزن برگ و خشک برگ را می‌توان به حالت شیب سیلیکات سدیم نسبت به سیلیکات کلسیم در بافت‌های گیاهی نسبت داد (شکل 2a). سیلیکون با افزایش میزان کارایی توانست، افزایش در کسب توانایی جذب مواد غذایی، تولید اجزای خاص برگی می‌کند (Vasanthi et al., 2012). در لیتر مقدار جزئی کاهش وزن برگ دیده شد. در محدوده کشت کوکوپیت-پرایت بین تیمارهای سیلیکات کلسیم و سدیم، بیشترین میزان وزن خشک برگ کلسیم دارودی مورد بررسی در تیمار 150 میلی گرم در لیتر سیلیکات سدیم با (2/0 گرم) بود که افزایش حدود 40 درصدی نسبت به شاهده (0/10 گرم) مشاهده شد. برتری سیلیکات سدیم نسبت به سیلیکات کلسیم در افزایش وزن برگ و خشک برگ را می‌توان به حالت شیب سیلیکات سدیم نسبت به سیلیکات کلسیم در بافت‌های گیاهی نسبت داد (شکل 2a). سیلیکون با افزایش میزان کارایی توانست، افزایش در کسب توانایی جذب مواد غذایی، تولید اجزای خاص برگی می‌کند (Vasanthi et al., 2012).
کاروکردنی از این طریق باعث افزایش وزن‌برداری و خشک‌گردگی می‌شود. علاوه بر این، سیلیکون با روسپ در بات‌های ایمدیمی برگی (Ma and Takahashi, 2002) باعث افزایش ضخامت برگ و به دنبال افزایش وزن‌برداری و خشک‌گردگی می‌شود. سیلیکون با افزایش سطح تک‌سئویستیک در افزایش وزن‌برداری و خشک‌گردگی بهره‌برداری می‌کند. سیلیکون با نبودجه نیتروژن (سیلیکون باعث افزایش NH₃) افزایش تیک‌پیکری گره و تپیت N N۰ در گیاهان تیپ کنند این نیتروژن می‌شود (Dakora, 2005) و آسیپیلاتورهای هری‌پوش‌های وزن‌برداری این (Anser et al., 2012) در این یوزه‌ها افزایش وزن نیتروژن در بر گردیده‌ها آمیزه را افزایش می‌دهند. به منظور افزایش وزن تک‌سئویستیک برگ داوودی در اثر کاربرد سیلیکات با تأثیر زنجیره‌های و همکاران (1999) در بیت گرانس خُل و اردن (Zoya grass (Carvalho-Zano) و همکاران (2012) در دوگاه طبقه‌دار دارد.

شاخص کاروکردنی: مقایسه میاکینس‌های مربوط به اثرات متقابل نوع و غلظت سیلیکات (شکل b) نشان می‌دهد که کاربرد سیلیکون باعث افزایش شاخص کاروکردنی می‌شود. به طوری که پیشرفت‌های افزایش کاروکردنی با کاهش می‌شود. این افزایش اندازه گیری شده در این بیان‌های سیلیکون نسبت به سیلیکون کنترل می‌باشد. گزارش کردن کاربرد 1 میلی‌متر سیلیکون باعث افزایش شاخص کاروکردنی دانه مشابه برنج را افزایش می‌دهد (Savvas et al., 2002). در نتیجه باعث افزایش کاروکردنی می‌شود. سیلیکون با یوزه‌های اتوسیستم 2 باعث افزایش شاخص کاروکردنی می‌شود (Watanabe et al., 2002). نتایج پژوهش‌های حاضر، نتایج پژوهش (Savvas و همکاران (2009) که گزارش کردن کاربرد 1 میلی‌متر سیلیکون باعث افزایش شاخص کاروکردنی در آهار می‌شود را تایید می‌کند. مشابه این نتایج، در پژوهش دیگری (Sivanesan و همکاران (2013) گزارش کردن کاربرد Si باعث افزایش شاخص کاروکردنی در Daurودی شده است.
شکل 4- اثر غلظت سیلیکات بر میزان کلروفیل (a) و کلروفیل (b) داروئی در محیط کشت کورکوپیت- پرلیت. حروف غیر مشابه نشان دهنده وجود اختلاف معنادار در آزمون دانک در سطح 1% است.

شکل 5- اثرات مقایسه نوع و غلظت سیلیکات بر فتوسنتز خالص (a)، بر هدایت روزنه ای (b) و بر دی اکسید کربن تبادلی (c) در محیط کشت کورکوپیت- پرلیت. حروف غیر مشابه نشان دهنده وجود اختلاف معنادار در آزمون دانک در سطح 1% است.

تعریف: نمودار مقایسه میانگین‌ها (شکل 5). هاکی از آن است که غلظت‌های 100 و 150 میلی گرم در لیتر سیلیکات کلسیم و 50 و 100 میلی گرم در لیتر سیلیکات سدیم نسبت به شاهد معنادار نبودند. فقط غلظت 100 میلی گرم در لیتر سیلیکات سدیم نسبت به شاهد با تاکین بود. محیط تیمار سیلیکات سدیم از طریق یمی‌های غشایی باشد.
نتایج گیری کلی:

نتایج این بررسی نشان داد که تیم‌های 100 و 150 میلی گرم در لیتر سیلیکات، بیشتر اثر را در بهبود شاخص‌های مورد بررسی داشت. همچنین برای اثربخش‌ترین شاخص‌های ازدواجه‌گری، شدیدتر سیلیکات محدود می‌شود به سیلیکات کلسیم برترا داشته و این می‌تواند به دلیل حلال‌یابی بیشتر سیلیکات محدود نسبت به سیلیکات کلسیم و در نتیجه حاوی‌گری پتاسیم با سدیم در غشاء سلولی و احتمالاً جذب بیشتر سیلیکات محدود از طریق یمپ‌های غشا‌پاش. در نتیجه می‌توان با مدول جریان‌پذیری و مولوژیکی را بهبود بخشید. سیلیکون یک عصاره ضروری است که برای رشد کیفی نقص مهمی بازی می‌کند. بهبود فاکتور های کم و کیفی به وسیله طبیعتی سیلیکون است یا طور غیر مستقیم ناشی از اثرات محافظت سیلیکون در برابر تشک‌های زیستی و غیر زیستی است. به نظر می‌رسد که متقید و غیر مستقیم در سوخته و ساز سلولی دارد. تاکنون می‌دانست شیل‌سیلیکون باید شاخص‌های فتوسنتزی گیاه به دلیل رسوب آن در لایه ایپیدم سوله‌ها برگای افزایش استفاده برگ‌ها و نیز افزایش غلت کارکل در واحد سطح برگ می‌باشد که این اثر اثری بر شاخص‌های ایجاد و تغییرات در ارگانها می‌باشد. به‌دنبال آن، آب به دنبال تغییرات فتوسنتزی و عملکرد بهبود می‌دهد. همچنین این نتایج نشان داد که اثر افزایش هدایت هیدرالیتی روزنامه می‌باشد.

مراجع:


