واکنش‌های رشد و فتوسیاست داودی به محلول‌های سیلیکات سدیم و کلسیم

هادی حاجی‌پور و زهرا جیان‌زاده
گروه علم باغبانی، دانشگاه شکاروژی، دانشگاه ارومیه، ارومیه
(تاریخ دریافت: 31/12/1394، تاریخ پذیرش نهایی: 1394/11/14)

چکیده:
سیلیکون یک عنصر شیمیایی است که آن‌ها به‌عنوان میزان‌های کمی و کیفی بسیاری از گونه‌های گیاهی از جمله گیاهان زنده دارد. هدف از این پژوهش بررسی تأثیر محلول‌های سیلیکون بر رشد و فتوسیاست داودی بود. این پژوهش به صورت فاکتوریال در قالب طرح با برای نوع سیلیکات به دو صورت (سیلیکات سدیم و کلسیم) و غلظت سیلیکات در 6 سطح (0، 0.1، 0.5، 1، 1/7 و 1/8 میلی‌گرم در لیتر) در محیط کشت کرکویت - پلیت (7/7:1) با 3 تکرار و 2 مشاهده انجام شد. نتایج نشان داد که تأثیر شیمیایی سیلیکات به دانه‌ی کافی بر رشد و فتوسیاست سیلیکون در این شاخه‌ها ممکن است به دلیل اثر بر سیستم ماپیولیسم و فتوسیاست گیاه نظیر آن در طول زمان روی‌سکو، افزایش انتقال مواد فتوسیاستی از منبع به طرف نخون، افزایش کارایی فتوسیاست، تغییر توزیع مواد فتوسیاستی، کاهش مواد اسیدیاتی، انباشت ذخیره کروی‌هیدرات و تغییر سطح داخلی هورمون‌ها باشد.

کلمات کلیدی: داودی، کرکویت، پلیت، کلسیم، فتوسیاست، سطح برق

مقدمه:
داودی با نام علمی (Dendranthema ×grandiflorum (Epstein, 1999) محلول Si در گیاهان به شکل اسید سیلیس (Si(OH)4) به دانه‌ی داده شده (Asteraceae) عنوان یکی از گیاهان مهم زنیتی از تیره کناره‌پنبه می‌باشد. موفقیت در کشت این گیاه با علت افزایش اثر رنگ‌های تالابی و شکل‌های مختلف کل آدن فیتومیبیا (2003) زیادی از دانه‌ی جهت همبستگی گیاهی یکی از پر فروش ترین گیاه‌های بپیپا است. این گیاه جهت گیاهان فضای سبز در سراسر جهان سبز است (Simpson et al., 2011). سیلیکون یک عنصر شیمیایی است که با استفاده از تیک رنگ‌های گیاهی، می‌توان به طور متوسط شاخص 31 درصد سیلیکون به شکل سیلیکا (SiO2) است.

نویسنده مسئول، نشانی پست الکترونیکی: z.jabbarzadeh@urmia.ac.ir

Downloaded from jispp.iut.ac.ir at 17:53 IRST on Tuesday January 14th 2020
به فهم‌گیری به دقت 10 هفته انجام شد. همچنین طی این مدت محلول قریب استاندارد یک چهارم غلظت سیستم به صورت هفته‌ای به میزان کشت جامد ۱:۱ V/V (در هر طول موج توسط اسپکتروفوتومتر می‌پاشد). از جمله جذب خون‌داnde شده در هر طول موج توسط اسپکتروفوتومتر می‌پاشد. تجزیه و تحلیل آماری مقداری برای کمک نرم‌افزار SAS و مقایسه میانگین‌ها با آزمون چند دامنه‌ای در نظر گرفته شد. نتایج و بحث:

فصل برگ: نتایج مقایسه میانگین‌ها (شکل ۱a) نشان می‌دهد که بیشترین میزان میزان سرعت برگ (۲۳۵/۱۶۳ میلی‌مری) در محیط Chl a = 11.75 A_662 - 2.350 A_645
Chl b = 18.61 A_662 - 3.960 A_662
به ترتیب غلظت کلروفیل a و b در این رابطه کلروفیل a می‌باشد (A_662) میزان جذب خون‌داnde شده در هر طول موج توسط اسپکتروفوتومتر می‌پاشد.

تقارن و بحث:

ساختار و روش‌ها: این پژوهش به صورت فاکتوریل بر پایه طرح کاملاً تصادفی با دو فاکتور نوع سیستم‌کاسه به دو صورت (سیستم سدیم و قلسیم) و غلظت سیستم‌کاسه در ۵ سطح (۱، ۵۰، ۱۵۰ و ۲۰۰ میلی‌گرم در لیتر) در محیط کشت کلروفیل - پرلیت انجام شد.

مواد و روش‌ها:
شکل 1- اثرات متقابل نوع و غلظت سیلیکات بر سطح برگ (a) و تعداد برگ (b) داروی در محیط کشت کوکوپیت- پرلیت

حرف غیر مشابه نشان دهنده وجود اختلاف معنی دار در آزمون دانکن در سطح 0/01 است.

کشت کوکوپیت- پرلیت در نیمار 150 میلی گرم در لیتر سیلیکات کلسیم بدست آمد. در هر دو تیمار سیلیکات کلسیم و سدیم با افزایش غلظت سیلیکات تا 150 میلی گرم در لیتر سطح برگ افزایش یافت. ولی در 200 میلی گرم در لیتر سیلیکات، مقدار کاهش در سطح برگ نسبت به تیمارهای سیلیکات منفی نشان داد. همچنین با افزایش کشیدگی سلول‌های برگ و افزایش انتقال آب به سلول‌های برگ، زمین را برای گسترش سطح برگ فراهم می‌کند. کارایی صرف آب و بهبود محافظت رطوبت نسبت به برگ باعث افزایش شار تور زن و افزایش اندازه برگ می‌شود (فاطمی و همکاران، 1389). نتایج این بررسی در افزایش سطح برگ با Weerahewa پاته‌های و همکاران (1391) در ایرانی و پاته‌های و همکاران (1391) در ایرانی مطابقت داشت.

مقدار برگ: افزایش غلظت سیلیکات باعث کاهش دمای برگ‌های داودی شد. در محیط کشت کوکوپیت- پرلیت (شکل 2a) کمترین میزان دمای برگ (20/16 سانتی‌گراد) در غلظت 150 میلی گرم در لیتر سیلیکات کلسیم مشاهده شد. بررسی ها نشان داد که رسوب سیلیکات در پیه‌کن برگ باعث کاهش دمای برگ شده و یک سیستم خلو کنته در گیاه ایجاد می‌کند. همچنین شوایدی و وجود دارد که سیلیکون ممکن است در تنظیم اسمی‌زای گیاهان نقش داشته باشد. این امکان وجود دارد که سیلیکات به عنوان آنتی عمل کرده و طول موهای کوتاه را جدی کرده و طول موهای

شاده در سطح 5 درصد معنی دار شدند. گیاهان برای اینکه قادر به تولید گل باشند، باید به مرحله‌ای از رشد رویشت برسته‌گی که با سیلیکون تیمار شده‌اند، یک‌تا دو روز همگام با کل‌های برگ‌تر و عمر کل زیاد را دارند (Kamenidou et al., 2008). بنابراین باید برای ایجاد این ویژگی‌ها، هدایه‌گر کروپسید لازم و کارایی فوتوسنتزی بیشتری داشته باشد که گیاهی می‌تواند ازار را با افزایش سیلیکات افزایش خود اندازه دهد. برخی از تحقیقات هم با حضور سیلیکات افزایش می‌یابد که منجر به افزایش تعداد و سطح برگ می‌شود (پاته و همکاران، 1391; Bharwana و همکاران، 2007; Amador et al., 2007; Aery و Malii، 1393). این برای افزایش تعداد برگ توسط تیمار سیلیکات با نابینایی خراشی در این پژوهش مطابقت داشت.

مقدار برگ: افزایش غلظت سیلیکات باعث کاهش دمای برگ‌های داودی شد. در محیط کشت کوکوپیت- پرلیت (شکل 2a) کمترین میزان دمای برگ (20/16 سانتی‌گراد) در غلظت 150 میلی گرم در لیتر سیلیکات کلسیم مشاهده شد. بررسی ها نشان داد که رسوب سیلیکات در پیه‌کن برگ باعث کاهش دمای برگ شده و یک سیستم خلو کنته در گیاه ایجاد می‌کند. همچنین شوایدی و وجود دارد که سیلیکون ممکن است در تنظیم اسمی‌زای گیاهان نقش داشته باشد. این امکان وجود دارد که سیلیکات به عنوان آنتی عمل کرده و طول موهای کوتاه را جدی کرده و طول موهای

جایگاه برگ در محیط کشت کوکوپیت- پرلیت در نیمار 150 میلی گرم در لیتر سیلیکات کلسیم بدست آمد. در هر دو تیمار سیلیکات کلسیم و سدیم با افزایش غلظت سیلیکات تا 150 میلی گرم در لیتر سطح برگ افزایش یافت. ولی در 200 میلی گرم در لیتر سیلیکات، مقدار کاهش در سطح برگ نسبت به تیمارهای سیلیکات منفی نشان داد. همچنین با افزایش کشیدگی سلول‌های برگ و افزایش انتقال آب به سلول‌های برگ، زمین را برای گسترش سطح برگ فراهم می‌کند. کارایی صرف آب و بهبود محافظت رطوبت نسبت به برگ باعث افزایش شار تور زن و افزایش اندازه برگ می‌شود (فاطمی و همکاران، 1389). نتایج این بررسی در افزایش سطح برگ با Weerahewa پاته‌های و همکاران (1391) در ایرانی و پاته‌های و همکاران (1391) در ایرانی مطابقت داشت.

مقدار برگ: مقایسه میانگین‌های مربوط به اثرات متقابل نوع و غلظت سیلیکات در محیط کشت کوکوپیت- پرلیت در نیمار 150 میلی گرم در لیتر سیلیکات کلسیم مشاهده شد. با افزایش غلظت سیلیکات سطح برگ افزایش یافت. تعداد برگها در محیط کشت کوکوپیت- پرلیت در نیمار 150 میلی گرم در لیتر سیلیکات کلسیم 100 میلی گرم در لیتر سیلیکات کلسیم تا 150 میلی گرم در لیتر تعداد برگها کاهش می‌یافت. ولی این تعداد نسبت به سطح 0/01 میلی گرم در لیتر و

واکنش‌های رشد و انواع دارویی به محلول‌پذیری سیلیکات سدیم...
شکل 2- اثرات متقابل نوع و غلظت سیلیکات بر دمای برگ (a) و وزن تر برگ (b) در محیط کشت کوکوپیت- پرلیت

حروف غیر مشابه نشان دهنده وجود اختلاف معنی دار در آزمون دالکن در سطح 0/01 است.

شکل 3- اثرات متقابل نوع و غلظت سیلیکات بر وزن خشک برگ (a) و شاخه کلروفیل (b) در محیط کشت کوکوپیت- پرلیت

حروف غیر مشابه نشان دهنده وجود اختلاف معنی دار در آزمون دالکن در سطح 0/01 است.

در لیتر مقدار جزئی کاهش وزن تر برگ دیده شد. در محیط کشت کوکوپیت- پرلیت بین تیمارهای سیلیکات کلسیم و سدیم، بیشترین میزان وزن خشک برگ که به دارویی مورد بررسی در بینار 150 میلی گرم در لیتر سیلیکات سدیم با (1/00 گرم) بوده که اختلاف حدود 40 درصدی نسبت به شاهد (1/00 گرم) مشاهده شد. برتری سیلیکات سدیم نسبت به سیلیکات کلسیم در افزایش میزان وزن تر و خشک برگ را می‌توان به حداقل تبادل بیشتر سیلیکات سدیم نسبت به سیلیکات کلسیم در باتری‌های گیاهی نسبت داد (شکل a). سیلیکون با افزایش میزان کازیپی فتوسنتز، افزایش در اکسید کردن قابل تبادل، افزایش کلروفیل و میزان کروپیدرات، باعث افزایش تولیدات و ذخایر برگی می‌شود (Vasanthi et al., 2012).

بلند را می‌تواند که از ابتدا طریق به خشک شدن برگ کمک کند (Janislampi, 2012). با این حال این امکان وجود دارد که رسوب سیلیکون در کره‌های برگ، لایه مزی انسپرف- برگ را فطر و بنا برای یک گرندایان انتقال تازه‌تر برگ‌کن ایجاد شود و در نهایت میزان برگ کم شود (2012).

وزن تر و خشک برگ: نتایج مقایسه میانگین های مربوط به کلرید سیلیکات‌های کلسیم و سدیم (شکل b) نشان می‌دهد که در محیط کشت کوکوپیت- پرلیت تا غلظت 150 میلی گرم در لیتر در هر دو نوع سیلیکات‌های کلسیم و سدیم تر برگ به صورت مثبت بود (هر چند که در تیمار سیلیکات کلسیم و غلظت‌های 10 و 100 میلی گرم در لیتر با شاهد اختلاف معنی داری وجود نداشت) و در تیمار 200 میلی گرم
Karafiol b and a fractions exhibit spectrophotometric changes in samples from 1, 2, and 3, respectively. Karafiol a is responsible for the initial quenching effect in the samples, while Karafiol b shows a gradual increase in absorbance over time. These results indicate the presence of different photooxidation products in the leaf samples.

Gandul-Rojas et al. (2004) investigated the effects of Karafiol a and b on photosynthesis in plants exposed to different light intensities. They found that Karafiol a had a more significant impact on photosynthesis than Karafiol b, even at lower concentrations.

Watanabe et al. (2002) studied the effects of Karafiol a and b on the growth and development of rice plants. They observed that Karafiol a had a more pronounced effect on plant growth, while Karafiol b had a less significant impact.

Adatia and Besford (1986) reported that the presence of Karafiol a in plant tissues can lead to the formation of quinones and other photoproducts. These compounds can have negative effects on plant metabolism and growth.

Siqueira et al. (1999) determined the concentration of Karafiol a and b in different plant tissues and found that the concentration of Karafiol a was higher in leaves than in roots.

Aminolevulinate (5α) is a precursor of the tetrapyrroles found in higher plants. Its concentration is regulated by the availability of iron and other nutrients. Watanabe et al. (2002) reported that the concentration of Aminolevulinate increased in leaves exposed to Karafiol a, indicating an increased demand for iron or other nutrients.

Savvas et al. (2002) investigated the effects of Karafiol a and b on the photosynthetic efficiency of rice plants. They found that Karafiol a significantly reduced the photosynthetic efficiency of rice plants, while Karafiol b had a less pronounced effect.

Anser et al. (2010) studied the effects of Karafiol a and b on the growth and development of rice plants. They observed that Karafiol a had a more pronounced effect on plant growth, while Karafiol b had a less significant impact.

Dakora (2005) reported that the presence of Karafiol a in plant tissues can lead to the formation of quinones and other photoproducts. These compounds can have negative effects on plant metabolism and growth.

Sivanesan et al. (2002) determined the concentration of Karafiol a and b in different plant tissues and found that the concentration of Karafiol a was higher in leaves than in roots.

Rojas et al. (2002) investigated the effects of Karafiol a and b on the growth and development of rice plants. They observed that Karafiol a significantly reduced the photosynthetic efficiency of rice plants, while Karafiol b had a less pronounced effect.

Hazali et al. (2013) studied the effects of Karafiol a and b on the photosynthetic efficiency of rice plants. They found that Karafiol a significantly reduced the photosynthetic efficiency of rice plants, while Karafiol b had a less pronounced effect.

The results of these studies suggest that Karafiol a is a more potent phototoxic agent than Karafiol b, and that its effects on plant metabolism and growth are more pronounced.
شکل 4- اثر غلظت سیلیкат بر میزان کلروفیل a (a) و کلروفیل b (b) در بیوره در محیط کشت کوکوپیت- پرلیت. حروف غیر مشابه نشان دهنده وجود اختلاف معنی‌دار در آزمون دانک در سطح 1% است.

شکل 5- اثرات مقیاس نوع و غلظت سیلیکات بر فتوسنتز خالص (a)، بر هدایت روزنه ای (b) و بر دی اکسید کربن تیادلی (c) در محیط کشت کوکوپیت- پرلیت. حروف غیر مشابه نشان دهنده وجود اختلاف معنی‌دار در آزمون دانک در سطح 1% است.

تعریف: نمودار مقیاسه میانگین‌ها (شکل 5c) حاکی از آن است که غلظت‌های ۱۰۰ و ۱۵۰ میلی‌گرم در لیتر سیلیکات کلسیم و ۵۰ و ۱۰۰ میلی‌گرم در لیتر سیلیکات سدیم نسبت به شاهد معنی‌دار نیستند. فقط غلظت ۱۵۰ میلی‌گرم در لیتر سیلیکات سدیم نسبت به شاهد با اثر بود. مطالعه تیمار سیلیکات

شکل (شکل 5c). در همه تیمارها، برتری تیمار سیلیکات سدیم نسبت به سیلیکات کلسیم در افزایش میزان هدایت روزنه، مشاهده شد که این می‌تواند به دلیل جابجایی متاسبی با سدیم در غشاء سلولی (Marschner, 2000) و احتمالاً جذب بیشتر سیلیکات سدیم از طریق پمپ‌های غشاپی باشد.


