اثر تنش خشکی و محلول پاشی اسید هیومیک بر برشی از شاخص‌های
فیزیولوژیکی لوبیا لیما (Phaseolus lunatus L.)

نام: تایدان اسپ. SKU
اسکالر: یک پست الکترونیکی
تاریخ دریافت: ۱۴۰۰/۰۸/۲۷، تاریخ پذیرش نهایی: ۱۳۹۹/۰۸/۲۷

چکیده:
به منظور بررسی اثر سطوح مختلف آبیاری و محلول‌پاشی اسید هیومیک بر برشی از صفات فیزیولوژیکی لوبیا لیما از آزمایشی به صورت کرت‌های خرد شده در قالب طرح بلورکار کامل تصادفی در سه تکرار در مزرعه تحقیقاتی دانشگاه شهید بهشتی در سال ۱۳۹۳ اجرای کارکرد فاکتور اصلی شکل چهار سطح تنش خشکی (۰، ۵۰، ۱۰۰ و ۱۱۰ میلی‌متر بی‌بخاری از شکل تیغ کلاس A) و فاکتور فرعی شامل محلول‌پاشی چهار سطح اسید هیومیک (صفر، ۱ و ۲ لیتر در هکتار) بود. در این آزمایش صفات کلروفیل A، کلروفیل B، کارتوئیدها، پایداری شادی، میزان نسبی آب بر گراولین و فندهای محلول بررسی قرار گرفتند. نتایج نشان داد تنش خشکی به گونه‌ای کاهش معنی‌داری در کلیه صفات مورد بررسی گردید. امید اسید هیومیک باعث افزایش معنی‌داری این صفات گردید. اثر مقابل تنش خشکی و محلول‌پاشی اسید هیومیک بر میزان کارتوئیدها و میزان پروپن فندهای معنی‌دار بود و در سایر صفات تفاوت معنی‌دار ایجاد نگرفت. محلول‌پاشی اسید هیومیک با افزایش غلظت اسپرمولیت‌هایی از جمله فندهای محلول و پروپن و در تبیه کمک به حفظ فضای اسپرمولیت‌هایی در تحلل تنش خشکی به‌کامنه کمک کرد.

کلمات کلیدی: پایداری شادی، پروپن، آبیاری، لوبیا، میزان نسبی آب بر گراولین

مقدمه:
لوبیا یکی از گیاهانی است که در برابر تغییرات آب و هوای است (ریشه‌ی ۱۸ و ۱۹). خشکسالی یک نگاهی نیز در تولید خشکسالی و پژوهش‌های فیزیولوژیکی و بیوشیمیایی در گیاهان می‌رود که نشان دهنده یک مدل فیزیولوژیکی برای تغییرات آب و هوا است. در این تحقیق، بررسی و عملکرد لوبیا تحت تنش خشکی و پروپن با تأکید بر آب‌پذیری و سرمایه‌های پست‌بوده و به‌فصل رشد کیت نیاز دارد (باتری و همکاران، ۱۳۸۰) شد. از این رو، بررسی تأثیر انواع مختلف اکسپرسیون‌های غلظت اسپرمولیت‌هایی از جمله فندهای محلول و پروپن در تحلل تنش خشکی به‌کامنه کمک کرد.

بحث:
 ولم لوبیا، یکی از اکسپرسیون‌های غلظت اسپرمولیت‌هایی از جمله فندهای محلول و پروپن در تحلل تنش خشکی به‌کامنه کمک کرد.

در پایان:
در این تحقیق، بررسی و عملکرد لوبیا تحت تنش خشکی و پروپن با تأکید بر آب‌پذیری و سرمایه‌های پست‌بوده و به‌فصل رشد کیت نیاز دارد (باتری و همکاران، ۱۳۸۰) شد. از این رو، بررسی تأثیر انواع مختلف اکسپرسیون‌های غلظت اسپرمولیت‌هایی از جمله فندهای محلول و پروپن در تحلل تنش خشکی به‌کامنه کمک کرد.

Tadayyon.Sku@gmail.com
نویسندگان مسئول، نشانی پست الکترونیکی:
سایر فاکتورهایی که باعث کاهش پتانسیل آب شرب سلولی می‌شوند تحت تأثیر مواردی می‌گردد. این گروه شامل: غلظت اسماک‌های هیآسک سلولی و اندازه سلول برای افزایش مقاومت دیواره سلولی، از مهم‌ترین مکانیسم‌ها برای قرار از ذخیره‌گذاری را از آن‌ها بررسی می‌شود.

این شرایط ممکن است به‌آنها که کاهش قابل توجهی در کوریل ۱ و کوارتینویش و تمام قبلاً تغییر در خصوصیات دیواره و اندازه سلول برای افزایش مقاومت دیواره سلولی، از مهم‌ترین مکانیسم‌ها برای قرار از ذخیره‌گذاری را از آن‌ها بررسی می‌شود.

آذری، ۲۰۰۰.

نادری و همکاران (۲۰۰۳) نشان دادند که در حالت گریز، تغییرات مقاومت دیواره سلولی و اندازه سلول برای افزایش مقاومت دیواره سلولی، از مهم‌ترین مکانیسم‌ها برای قرار از ذخیره‌گذاری را از آن‌ها بررسی می‌شود.

یکی از اصلی این فاکتورها که مصطاق‌هایی مصرف می‌کنند و باعث کاهش پتانسیل سلولی می‌شود، نشان‌دهنده نمایه گرافیت است.

نادری و همکاران (۲۰۰۰) نشان دادند که در حالت گریز، تغییرات مقاومت دیواره سلولی و اندازه سلول برای افزایش مقاومت دیواره سلولی، از مهم‌ترین مکانیسم‌ها برای قرار از ذخیره‌گذاری را از آن‌ها بررسی می‌شود.

یکی از اصلی این فاکتورها که مصطاق‌هایی مصرف می‌کنند و باعث کاهش پتانسیل سلولی می‌شود، نشان‌دهنده نمایه گرافیت است.

نادری و همکاران (۲۰۰۰) نشان دادند که در حالت گریز، تغییرات مقاومت دیواره سلولی و اندازه سلول برای افزایش مقاومت دیواره سلولی، از مهم‌ترین مکانیسم‌ها برای قرار از ذخیره‌گذاری را از آن‌ها بررسی می‌شود.

یکی از اصلی این فاکتورها که مصطاق‌هایی مصرف می‌کنند و باعث کاهش پتانسیل سلولی می‌شود، نشان‌دهنده نمایه گرافیت است.
که در آنها، N حجم محلول صاف شده (محلول فوقانی حاصل از سانترفیوز) (میلی لیتر)، A: چسب نور (نالنومتر) و W: وزن تن نمونه (گرم) می‌باشد.

از (Membrane Stability Index) شاخص پایداری غشاء (میلی لیتر) از روش و همکاران (1996) بیدن صورت اندازه‌گیری شد که از هر واحد آزمایشی دو قطره برگ جوان توصیه یافته (دارای سطح تقریبی 2 cm^2) توسط پاتج مخلوط وسیع جدا و داخل دو سری لوله‌های آزمایشی حاوی ۱۰ میلی لیتر آب دربار تعطیل شده گرفت. در ادامه بکر از لوله‌ها در دمای 0°C به مدت ۱۰ دقیقه و سری دوم نیز به مدت نیم ساعت در دمای 10°C در دستگاه بنیادی فرآور گرفته شد. پس از سرد شدن، هدایت الکتریکی نمونه فرآورده و به ترتیب (۱۰۷) و EC(40) (ارب) در نهایت شاخص پایداری غشاء با توجه به فرمول زیر محاسبه می‌گردد.

$$\text{MSI} = \frac{1}{(1-\text{EC}(\text{10}))}$$

از (Relative Water Content) محتوای نسبی آب بر گیاه (1981) Turner روش اندازه‌گیری شد، از پیش‌بینی از هر نمونه تعداد ۲۵ دیسک به قطر ۷ میلی‌متر، توسط پاتج معمولی بهره و نوزین (WF) شد. سپس نمونه‌ها به مدت ۲۴ ساعت در آب مقطع به حالت غوطه‌وری تگه‌داری و پس از طی این زمان مجدد توزین (Ws) شدند. در نهایت ۲۲ ساعت در مقدار نیز در دامنه آن با دمای 0°C فرآور گرفته و سپس به روش زیر محاسبه شد:

$$\text{RWC} = \frac{(\text{WF}-\text{Wd})}{(\text{Ws}-\text{Wd})}$$

از (ب) روش و همکاران (1983) تخمین زده شد، در این روش، 0.5 گرم از برگ در 5 میلی‌لیتر استیک سولفاسیسیک (۳%) سایه‌ده و صاف شد. در ادامه 2 میلی‌لیتر از عصاره صاف شده به 2 میلی‌لیتر استیک نی‌هیدرین و 2 میلی‌لیتر استیک مخلوط نمونه و 30 دقیقه در دمای 100 درجه سانتی‌گراد قرار گرفته، پس از سرد شدن لوله‌های آزمایشی به هر کدام 6 میلی‌لیتر تولید حاصل اضافه نمونه و لوله‌ها به خوبی نکان داده شدند. پس از آن نگهداری نهایت لوله‌ها از لایه فوقانی به حاصل تولید و پرولین است برای اندازه‌گیری عمود برهم زدن تنظیح شد و به سیستم فارور پشتیبانی بطور 2، 8 و 20 ساعت ایجاد گردید.

در ادامه بطور همان‌گونه، سانتی‌متر از محل داغ 10 و در طرف پشتیبانی به فاصله روز ریفی 20 و عمل 5 سانتی‌متر (فلاح ۱۳۸۸) در واحدهای آزمایشی به ابعاد 24×10 سانتی‌متر به صورت هیزم کاری کرد. پس از ریفی لیما از شرکت نکن بند پارس شهر خمین تهیه گردید. در طول دوره رشد گیاه آب‌زایی، کوده‌های و کنترل علف‌هایی هر سه ماه تر، میزان این اصول اصولاً مورد استفاده دارای فعالیت نام‌های‌های رستاریه این با ناخالصی هیزم برای اولین شاخص استفاده یافت که بر اساس نسبی (K2O)، اسید بسیار نسبی ۲۳٪ اسید فولیک و ۲۲٪ اسید پاتاسیم (KCl) از شرکت آرام سیر آبیه به تهیه شد. غلظت‌های مورد نظر (۴.۱ و ۴.۱ در هکتار) قبل از آغاز گل‌دهی در دو نتیج به فاصله دو هفته اعتبار گردید. صفات مورد استفاده گیری شامل:

کلروفیل a و b کاروتئنوئیدها با روش $\text{Chlorophill a} = (19.3 \times \text{A663} - 0.86 \times \text{A645}) \times 104 \text{mg chl. a}$

$\text{Chlorophyll b} = (19.3 \times \text{A645} - 3.6 \times \text{A663}) \times 104 \text{mg chl. b}$

$\text{Carotenoids} = 104(\text{A470}) - 3.27(\text{mg chl. a}) - 104(\text{mg chl. b})/227$
توسط محققان مختلف مورد بررسی قرار گرفته است. به عنوان مثال Agastian و همکاران (2008) و Medranو و Flexas (2004) (Santos) نشان داده شد که کاهش میزان کارولفیل a تحت تنش خشکی در لوبیا اذان داشته باشد. در نهایت مقادر پروپنین و جذب نهی نشان دهنده استفاده است که از منحنی استفاده بر حسب میزان غرب می‌باشد.\n
تغییر محلول: بدن منظور روش ۱۳۹۶ Sheligl (۱۹۸۶) نشان داد که از تغییر میزان اکسیژن و جذب نهی هم‌زمان با استفاده از آنانول ۸۰٪ و حذف روابط آن توسط محلول ۵٪ سولفات روز و ۴/۷ میلی‌لیتر از محلول هیدروکسید باریم ۱٪، به پیش‌آمدها در این‌جا نشان داده شده که با استفاده از میلی‌لیتر اسید سولفوریک ۹۸٪ اضافه شده برای رسیدن محلول میزان جذب در طول موج ۴۸۵ تا ۶۸۰ ترکت قرار داشته. از گلولک خاص برای تهیه محلول استاندارد و از آب برای شاهد استفاده شده.

برای آنالیز ژنها از نرم‌افزار ۹ می‌باشد و مقایسه SAS version با میانگین اثرات متقابل از نرم‌افزار Mstate به‌همراه SAS استفاده شده. مقایسه میانگین عوامل آزمایشی با استفاده از آزمون حداکثر اختلاف معنی‌داری (LSD) (در سطح استاندارد) درصد ارزیابی شده. رسم نمودارها نیز با Excel انجام شده.

نتایج و بحث:

کارولفیل a با توجه به نتایج آنالیز واریانس در جدول ۱، تنش خشکی تاثیر معنی‌داری در سطح استاندارد ۱٪ بر میزان کارولفیل داشته است. با افزایش تنش میزان کارولفیل a به ترتیب ۴۸/۶ و ۱۱۰ میلی‌متر مخازن مشاهده شد که با کاهش کارولفیل a در این ترکت می‌باشد. در نهایت میزان کارولفیل a در سطح اکسیژن و جذب نهی نشان داده شده که با استفاده از میلی‌لیتر اسید سولفوریک ۹۸٪ اضافه شده برای رسیدن محلول میزان جذب در طول موج ۴۸۵ تا ۶۸۰ ترکت قرار داشته.

کارولفیل a با توجه به نتایج آنالیز واریانس در جدول ۱، تنش خشکی تاثیر معنی‌داری در سطح استاندارد ۱٪ بر میزان کارولفیل داشته است. با افزایش تنش میزان کارولفیل a به ترتیب ۴۸/۶ و ۱۱۰ میلی‌متر مخازن مشاهده شد که با کاهش کارولفیل a در این ترکت می‌باشد. در نهایت میزان کارولفیل a در سطح اکسیژن و جذب نهی نشان داده شده که با استفاده از میلی‌لیتر اسید سولفوریک ۹۸٪ اضافه شده برای رسیدن محلول میزان جذب در طول موج ۴۸۵ تا ۶۸۰ ترکت قرار داشته.
جدول ۱- نتایج آنالیز واریانس (میانگین مربعات) صفات کارفولیف A کارفولیف B، کارفولیف a، کارفولیف b، پرون و قندهای محلول در تیمارهای مختلف تنش خشک و سطح اسید هیومیک در روده‌ی لیما

<table>
<thead>
<tr>
<th>تنش خشک</th>
<th>پرون</th>
<th>کارفولیف a</th>
<th>کارفولیف b</th>
<th>درجه آزادی [تصویر]</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>بلوک</td>
<td>0/5</td>
<td>0/07</td>
<td>0/08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>تنش خشک</td>
<td>11/77**</td>
<td>4/57**</td>
<td>0/49**</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>خطای اصلی</td>
<td>0/04</td>
<td>0/44</td>
<td>0/39</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>اسید هیومیک</td>
<td>0/65**</td>
<td>0/45**</td>
<td>0/45**</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>بلوک × اسید هیومیک</td>
<td>0/01</td>
<td>0/03</td>
<td>0/05</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>تنش خشک × اسید هیومیک</td>
<td>0/76**</td>
<td>0/45**</td>
<td>0/45**</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>خطای فرعی</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲- نتایج مقایسه میانگین‌های اثرات ساده تنش خشک و اسید هیومیک بر کارفولیف a کارفولیف b، پایداری غشاء، میزان نسبی آب پرگ و قندهای محلول

<table>
<thead>
<tr>
<th>قندهای محلول</th>
<th>پایداری غشاء (% براپ)</th>
<th>کارفولیف a (mg/gr FW)</th>
<th>کارفولیف b (mg/gr FW)</th>
<th>سطح</th>
<th>مرحله‌‌طلبی اسید</th>
<th>هیومیک (لیتر در هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پرون</td>
<td>24/94 ی</td>
<td>50/49 ی</td>
<td>21/09 ی</td>
<td>100 ی</td>
<td>0/5</td>
<td>1 ی</td>
</tr>
<tr>
<td>کارفولیف a</td>
<td>0/35 ی</td>
<td>0/35 ی</td>
<td>0/35 ی</td>
<td>0/35 ی</td>
<td>0/35 ی</td>
<td>0/35 ی</td>
</tr>
<tr>
<td>کارفولیف b</td>
<td>0/35 ی</td>
<td>0/35 ی</td>
<td>0/35 ی</td>
<td>0/35 ی</td>
<td>0/35 ی</td>
<td>0/35 ی</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حداکثر یک حرف مشترک در هر ستون در هر تیمار نتایج معنی‌داری در سطح احتمال ۵ درصد تدارکه‌دیده (LSD).

تعیین همکنگی بین آمارهای جدول ۱، اعداد معنی‌دار ۱۵ درصدی نسبت به هماهنگی داشتند. همچنین بین آمارهای جدول ۱، اعداد معنی‌دار واگرا در اختلاف با سطح در دو همانند با توجه به کوچک شدن اندازه سلولها (پدیده‌ی بی‌سیبیدگی) و میزان نسبی آب پرگ در سطح است توانسته که با تیرگی و همکاران (۱۳۹۱) از مورد در روش‌های مختلف مطالعاتی در دارد. کارفولیف b نتایج تجزیه واریانس (جدول ۱) حاکی از آن است که اثرات مختلف فاکتورهای آزمایشی تاثیر معنی‌داری بر میزان کارفولیف b نداشت. اما عامل تنش خشک و کربوند اسید هیومیک بر میزان کارفولیف b تأثیر معنی‌دار در سطح ۱ درصد داشت. به طوری که سطح مختلف خشکی، کاهشی به

ظرافیت گل‌زایی توسط گیاه را با کاربرد اسید هیومیک گزارش کرد. نتایج آزمایش عدم معنی‌داری اثرات مختلف هیومیک و تنش خشک بر میزان کارفولیف a نشان داده که با تناوب رسا و همکاران (۱۳۹۱) در مورد نتایج فرگان مطالعاتی دارد.
بیان کنند نقص حفاظی آنها در شرايط خشکی باشد و با پیشرفت نتش دلایل از جمله پری تسریع شده و تخریب آنها عوامل وحشی محارب اکسیژن. (Chalker-Scott, 2002) یکی از صدمات اکسیدانی مهیج که در شرايط نتش ایجاد می شود. تخریب مولکول کاروتئین است که به دنبال این تخریب گیاه رنگ بالا نشان دهنده ظرفیت عاملی که پیشگیری از خسارت و کاهش رشد نش دهنگر یادکاری پذیری اکسیژن تولید شده قسمت آتی اکسیدانی در سطح طبقهبندی این نش دهنگر (Inze و Montagù, 2000) گزارش شد. مطالعات مختلف افرازیون میزان کاروتئینها در شرايط نتش خشکی را نشان می دهد. طبق گزارش عمادی و همکاران (1391) نتش خشکی در لیپا چینی باعث افرازیون میزان کاروتئینها گردید. در مقابل کاهش محتوا کاروتئینها با افرازیون نتش و همکاران (2007) گزارش شد. نش خشکی بر کاهش میزان کاروتئینها ارقام نیرو افرازیون معنی داری داشت (رضوانزاد و همکاران، 1392). بنابراین به نظر می رسد که تاثیر نتش خشکی بر میزان کاروتئینها در گیاهان مختلف یکسان نباشد. بی ترددی گونه گیاهی که بتواند کاروتئیندی پیشتاری داشته آفرود عیف و همکاران (1392). (Agastian و همکاران، 2000) که اکسیژن کاروتئینها و کل رنگدانه تحت نتش خشکی را با توجه به کمبود آلی و عدم به دلیل آسیب به کاروتئینهای اکسیژن فعال توجه می کند. (عده نیز میزان کاروتئین در شرايط نش خشکی را به افرازیون رادیکالهای آزاد نسبت می دهد که باعث پراکسیداسیو ان و در نتیجه تجزیه کاروتئین می شود. (Flexas و Medrano, 2008) مقایسه مانگنیس ای اس طرح محلولپاشی اسید هیموک (جدول 1) نشان می دهد که سطح افرازیون اسید هیموک به ترتیب باعث آسیب، دندان کاروتئین در 1395 درصدی کاروتئین 5 نسبت به نیاز شاهد بدون اسید هیموک گردید. این افرازیون در نتیجه پایین تنش باربرتر بود. این تناقض بین صورت توجه پدر است که نیاز اساسی اکسیژن از اجزای مهم افرازیون است. نش مهیج افرازیون است و نقص مهمی در فعالیت فتوسنتز دارد و اسید هیموک نیر سبب افرازیون محتوای نیتروژن می گردد. از نتایج مطالعه می توان (Ayas و Gulser, 2005) به استفاده از اسید هیموک اشن اکسیژن که به همراه کاروتئینهای a و b در نیروفرمیگر کاروتئینهای a و b (رسیلی و همکاران، 1391) هنگام سیری برگی اسید فولیک (پیش رژیم کل اسید هیموک) روی برگ که نیر در فتوسنتز میاورد (Xudan, 1986).}

کارترکش: نتایج تجزیه واریانس (جدول 1) نشان می دهد. محتوای کاروتئینها به طور معنی داری (P < 0.001) تحت تأثیر سطح مختلف نتش خشکی و اسید هیموک قرار گرفت. ضمناً اثر مقایسه عوامل آزمایشی نتش خشکی و اسید هیموک در سطح 5 درصد معنی دار شد (شکل 1). لذا کاربرد اسید هیموک منجر به تغییرات میزان کاروتئین در نتش خشکی
این تنش خشکی و محصول پاییز اسید هیومیک بر بخشی از شاخ‌های...

شکل 1- اثرات مقابل سطح مختلف اسید هیومیک و تنش خشکی بر میزان کاروتئنها. میانگین‌های دارای حذف مشترک در هر ستون در هر تیمار، دارای معنی‌داری در سطح احتمال 5 درصد ندانه (LSD).

پژوهش باشد در تشخیص اکسیدان‌هایی با تشکیل آب دفع موفقیت
وحوادث داشته و در مقایسه تنش آب بر درمانی بستری از خود
نشان می‌دهد. (Foyer et al., 1998). با توجه به اینکه نهایت
تش خشکی در گیاه، نقش پیروی برگ و جذبیت رنگ‌های متعاقبی
فتوسنتزی را در بی‌درد و از آنجایی که کاهش کارآیی استفاده
از کربن سبب کاهش سنتز کاروتئنها در گیاهان می‌شود.

(OLiviera-Neto et al., 2009)، اسید هیومیک در افزایش میزان
کاروتئنها به‌طور قابل‌توجه، چرا که ۵۰٪ از وزن مولکولی اسید
هیومیک را کویک تقلیل می‌دهد. به اساس نظر Nardi (2001)، اسید هیومیک از طریق اثرات مثبت فیزیولوژیکی از
جمله افزایش مولکولی در مصرف سولفیا و همچنین با درد
میزان کاروتئن‌ها در برگ‌ها مانندگاری برگ برگ‌ها می‌شود.
و همکاران (2009) در لوله‌ای افزایش میزان
کاروتئنها در حضور اسید هیومیک را گزارش کردند.

پژوهش: با توجه به نتایج جدول آنانژ رایاناس، تیمارهای
تشخیصی و اسید هیومیک اثر معنی‌داری (۰/۰۰۵) بر
غلط پرولین برگ داشته‌اند (جدول ۱). ضمناً مطالعه جدول ۱
ابتکار مقابل عوامل منجر نیز در سطح ۵٪ معنی‌دار شد.
مقاومیت بیشتر، اثرات مقاومت نشان همکاری نشان می‌دهد.
کاربرد اسید هیومیک باعث افزایش میزان پرولین در شرایط
تش خشکی گردد (شکل ۲). مطلق این شکل بیشترین میزان

![Graph](Downloaded from jispp.iut.ac.ir at 16:18 IST on Friday December 21st 2018)
شکل 2- اثرات متقابل سطح مختلف اسید هیو میک و نش خشکی بر میزان پرولین. منابع‌های دارای حداکثر یک حرف مشترک در هر ستون در هر تیم، نمودار معنی‌داری در سطح احتمال 5 درصد ندارند (LSD).

در میزان اکسید شدن پرولین سبب افزایش تجمیع آن شد که در کاهش اثرات تنش نش دارد (کافی و همکاران، 1388). پرولین به عنوان یک ماده محلول سپس تنظیم فشار اأسمری کاهش هدایت آب سول. حفظ آماس سولول، کاهش اثر کندگی بیون را روی فعالیت آنزیم، جلوگیری از تجزیه پرتنینهای مختلف (احتمالاً از طریق کنترل pH سولول).

ازفایش پایداری برخی آنزیمهای سیتوپلسمی و میتوکندریایی باید از شکل طبیعی پرولین‌ها و در نتیجه حفاظت سامانه‌های غشایی می‌شود (کافی و همکاران، 1388). Kuznetsov و Shevyakova (1999) نیز اعتقاد دارند که پرولین به عنوان یک ماده محلول سبب تنظیم اسمری و کاهش از دست دادن آب از سولول تا کاهش آماس می‌شود. بنابراین افزایش غلظت آن تحت تنش ممکن است نشان دهنده نقش احتمالی این اسید آمین در تنظیم اسمری باشد.

تندای محیط: نش خشکی تاثیر معنی‌داری در سطح احتمال 1/ بر تجمیع قندهای محلول دارد (جدول 1). با افزایش شدت نش خشکی تجمیع قندهای محلول افزایش یافته (جدول 2). بیشترین غلظت قند محلول در تیم‌های شدید (110 میلیمتر بیکر) حاصل شد که با 77 و 27 درصد افزایش نسبت به تیم‌های آبیاری به ترتیب پس از 50 و 70.
اثنی پایانی این مقاله، اسد همیکی و سامیه سلیم، از سوی از شاخص‌های...
پایداری غشاء در کاربرد ۶ لیتر در هکتار مشاهده شد که نسبت به سطح‌گیری‌های تردید هیپنیک به ترتیب ۷/۵ و ۸/۹ درصد افزایش نشان داد. به علاوه تیمار شاهد بدون اسید هیپنیک و کاربرد ۱ لیتر اسید هیپنیک اختلاف معنی‌دار در صفت پایداری غشاء سولول نداشت. کاهش نسبت سیلوپاسی در تیمار کاربرد اسید هیپنیک احتمالا نشان دهنده این است که اسید هیپنیک گیاه را در شرایط مناسب تری قرار داده و باعث افزایش فطر دیوره سولول گیاه و در نتیجه افزایش پایداری غشاء سولول شده است (پروازی نش و همکاران، ۱۳۹۲). در مورد اثرات مثبت اسید هیپنیک بر شاخص پایداری غشاء، پروازی نش و همکاران (۱۳۹۲) در کنده نیز با نهایت مشاهه دست دادند.

میزان نسبی آب برگ: در این آزمایش نشخست باعث کاهش معنی‌دار میزان نسبی آب برگ در سطح ۱/۲ کرید (جدول ۳). تاثیج مقایسه‌ی میانگین‌ها نشان داد که با افزایش سطح نشخست، میزان نسبی آب برگ کاهش یافته است (جدول ۴). براساس این شکل کاهش میزان نسبی آب برگ به ترتیب ۱۲/۳ و ۱۴/۵ درصد نسبت به تیمار شاهد بود. نیز تیمار آبیاری پس از ۵۰ میلی‌متر تبخیر دارای بیشترین میزان آب نسبی برگ بوده که از لحاظ آماری تفاوت معنی‌داری با تیمار آبیاری پس از ۱۱۰ میلی‌متر تبخیر ندارد. نیز تیمار آبیاری پس از ۹۰ میلی‌متر تبخیر ندارد. این نتایج نشان می‌دهد که با تغییرات صفت میزان رطوبت نسبی در این گیاه در تیمارهای نش خشکی و اسید هیپنیک بستگی مستقل عمل می‌کنند.

نسبت معنی‌داری برگ کاهش میزان آب نسبی برگ لما (نظری ناسی و همکاران، ۱۳۹۱) و زاده‌پژوه و همکاران (۱۳۸۹) اذعان نمودند.
تجلیل:
یک تحقیقی در موضوع آب و تأمین فشار اسیده‌های هیومیک در بذری‌های کاهش مقدار تغییرات می‌تواند نتایج به دست آمده در برابر مقدار تغییرات در راستای تغییرات کلیه صفات در راستای تغییرات ارث تنش خشنکی باشد.

جذب آب و تأمین فشار اسیده‌های هیومیک در بذری‌های کاهش مقدار تغییرات می‌تواند نتایج به دست آمده در برابر مقدار تغییرات در راستای تغییرات کلیه صفات در راستای تغییرات ارث تنش خشنکی باشد.

متن:
احمدی موسوی، ع.، متفکری، کلاتری، خ. و ترکزاده، م. (1383) اثر نوعی براسیون‌استروئید (24-epibrassinolide) بر مقدار تجمیع مالون (Brassica napus L. (بازتند، پولین. قند و رنگ‌های فتوستروی در گیاه گل‌کاری) تحت تنش کم آبی. مجله زیست شناسی ایران: 18، 293-300.

آرتون (1374) اصول زراعت در مناطق خشن. تجلیل کوهچیک، ع. و عزیزی: ا. جلد اول، انتشارات آستان قدس رضوی.

پاکدراز، ف.، زبان، س.، مجدی‌هراز، ا.، نورمحمدی، ق. و سعادت، س. (1389) بررسی تأثیر تنش خشنکی بر پارنترهای فلورسنس کلروفیل، محتوا کلروفیل و عملکرد دانه ارقا متفاوت. مجله علم کشاورزی ایران: 27، 864-868.

برزیلی، ف. و پاکدراز، ف. اثر دور آبیاری، اسیده‌هایی و باکتری‌های محور در زیر چاره‌های فیتو‌پژوهی کندن، رقم کور در منطقه شرقی، خ. فصلنامه علمی پژوهشی فیتوپژوهی گیاهی زراعی: 18، 33-37.

پورموسی، م.، گلی، م.، دانش‌پژوهان، ج.، قربانی، م.، و نیکی‌پور، ن. (1387) بررسی تأثیر تنش خشنکی و کود دام بر محتوای رطوبت، میزان پاداپاره غشا سول و محتوا کلروفیل بور، یکی، مجله علم کشاورزی و منابع طبیعی: 14، 125-130.

رسایی، ب.، قربانی، ب.، و سوانی، ع. (1381) اثرات فیتو‌پژوهی کاربرد هیومیک اسید، اسیده‌هایی تکمیلی بر ارقا نشان دهیم کننده، علوم زراعت و اصلاح نباتات دانشگاه آزاد اسلامی واحد کرج، درس ایران.

فیسیوپژوهیکی از جمله کلروفیل و کلروفیل، ۹ کارنوتیوده، پاک‌سین، آب شیرین و اسیده‌های هیومیک به طور کلی به در نظر گرفته شده است. به‌طور کلی، بررسی‌های مربوط به تأثیر فشار اسیده‌های هیومیک در بذری‌های مختلف، سایر محیط‌های زیستی و در رابطه با تنش خشنکی تحت تنش کم آبی است. برای این منظور، می‌تواند نتایج به دست آمده در برابر مقدار تغییرات می‌تواند نتایج به دست آمده در برابر مقدار تغییرات در راستای تغییرات کلیه صفات در راستای تغییرات ارث تنش خشنکی باشد.

پاک‌سین، آب شیرین و اسیده‌های هیومیک به طور کلی به در نظر گرفته شده است. به‌طور کلی، بررسی‌های مربوط به تأثیر فشار اسیده‌های هیومیک در بذری‌های مختلف، سایر محیط‌های زیستی و در رابطه با تنش خشنکی تحت تنش کم آبی است. برای این منظور، می‌تواند نتایج به دست آمده در برابر مقدار تغییرات می‌تواند نتایج به دست آمده در برابر مقدار تغییرات در راستای تغییرات کلیه صفات در راستای تغییرات ارث تنش خشنکی باشد.

پاک‌سین، آب شیرین و اسیده‌های هیومیک به طور کلی به در نظر گرفته شده است. به‌طور کلی، بررسی‌های مربوط به تأثیر فشار اسیده‌های هیومیک در بذری‌های مختلف، سایر محیط‌های زیستی و در رابطه با تنش خشنکی تحت تنش کم آبی است. برای این منظور، می‌تواند نتایج به دست آمده در برابر مقدار تغییرات می‌تواند نتایج به دست آمده در برابر مقدار تغییرات در راستای تغییرات کلیه صفات در راستای تغییرات ارث تنش خشنکی باشد.

پاک‌سین، آب شیرین و اسیده‌های هیومیک به طور کلی به در نظر گرفته شده است. به‌طور کلی، بررسی‌های مربوط به تأثیر فشار اسیده‌های هیومیک در بذری‌های مختلف، سایر محیط‌های زیستی و در رابطه با تنش خشنکی تحت تنش کم آبی است. برای این منظور، می‌تواند نتایج به دست آمده در برابر مقدار تغییرات می‌تواند نتایج به دست آمده در برابر مقدار تغییرات در راستای تغییرات کلیه صفات در راستای تغییرات ارث تنش خشنکی باشد.

پاک‌سین، آب شیرین و اسیده‌های هیومیک به طور کلی به در نظر گرفته شده است. به‌طور کلی، بررسی‌های مربوط به تأثیر فشار اسیده‌های هیومیک در بذری‌های مختلف، سایر محیط‌های زیستی و در رابطه با تنش خشنکی تحت تنش کم آبی است. برای این منظور، می‌تواند نتایج به دست آمده در برابر مقدار تغییرات می‌تواند نتایج به دست آمده در برابر مقدار تغییرات در راستای تغییرات کلیه صفات در راستای تغییرات ارث تنش خشنکی باشد.
اضطرابات زاینده رژ، ر. لاوی. م. و کنگلی، ع. (1392) اثر محلول پاشی اسید سیلسیلیک روی برخی از شاخص‌های فیزیولوژیکی و
بوئی‌سنجی ارکام حساس و مقدار نخود (Cicer arietinum L.) تحت اثر تشخیصی، اکسپریزیوزی گیاهی. 45-38.

زاینده‌راه، م. جامور، م. علی‌زاده، ا. و کامل‌مشت، م. (1393) اثر اثر تشخیصی بر عملکرد دانه و برخی ویژگی‌های فیزیولوژیک
ژن‌تیپ‌های مختلف لریم ترمر، اکسپریزیوزی گیاهی. 81-111.

عمادی، ن. پل‌چی، ج. و جهنمی، ش. (1391) اثر اثر تشخیصی و تراکم بی‌پر اثر عملکرد اجزاء عملکرد و برخی خصوصیات ریخت
شناستی لوبیا قیچی رقم 16 در منطقه پاساوج، مجله الکترونیک تولید گیاهان زراعی. 5: 16-17.

فلح، س. (1388) ظریف (عمومی و خصوصی). انسجام دانشگاه کشاورزی و کشاورزی. کافی، م. برزوری، ا. صالحی، م. کندی، ع. معصومی، ع. و نبی‌یبنی، ج. (1388) فیزیولوژی تشخیصی محیطی در گیاهان. انتشارات
جهان دانشگاهی مشهد.

Soil 39:205-207.
37: 103-106.
Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress.
Environmental and Experimental Botany 43: 227-237.
Growth, Yield and Chemical Composition of Snap Bean Plants Grown under Calcareous Soil Conditions. Journal of
American Science 6: 552-569.
Keles, Y. and Oncel, I. (2004) Growth and solute composition on two wheat species experiencing combined influence of

