اثر تنش خشکی و محلول پاشی اسید هیومیک بر بخی‌های شاخص‌های
فیزیولوژی‌ای لوبیا لیما (Phaseolus lunatus L.)

محمد بختیاری و علی تدین
گروه زراعت، دانشکده کشاورزی، دانشگاهشهرکرد
(تاریخ دریافت: 1387/09/28، تاریخ پذیرش نهایی: 1389/06/13)

چکیده:

به منظور بررسی اثر سطوح مختلف آبیاری و محلولپاشی اسید هیومیک بر بخی‌های شاخص‌های فیزیولوژی‌ای لوبیا لیما از آزمایشی به صورت کرت‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی در سه تکرار در مزرعه تحصیلاتی دانشگاه شهرکرد در سال 1343 اجرای فاکتور اصلی شامل چهار سطح تنش خشکی (50، 100 و 110 و 170 گرمی بیشتر از تنش تبخیر کلسیم) و فاکتور فرعی شامل محلولپاشی چهار سطح اسید هیومیک (صرف 3 و 6 لیتر در هکتار) بود. در این آزمایش صفات کلونفیل، کلونی‌های پایداری، شکافتی و سبزی‌گی از شاخص‌های فیزیولوژی‌ای لوبیا لیما اثر اسید هیومیک با افزایش معنادار صفات گردید. اثر مقایسه تنش خشکی و محلولپاشی اسید هیومیک با میزان کارتنی‌های و میزان پولین معنادار بود. همچنین این صفات با ایجاد تکرر محلولپاشی اسید هیومیک با افزایش قفل‌سازی اسپورلیت شاخصی از جمله تکه‌های محلول و پوستین و در تیپ کمک به حفظ بازار اسیدی در سولولها، در تحمل تنش خشکی به کمک کمک کرد.

کلمات کلیدی: پایداری شکوفه، پوستین، آبیاری، لوبیا، میزان نسبی آب برف.

مقدمه:

لوبیا عروس یا لوبیا با نام رایج اکلیس Lima bean پس از لوبیا عمومی Phaseolus lunatus L. یا پیشترین اهمیت در بین کونه‌های Phaseolus vulgaris L. از نظر کشت و کار دارد. این نوع لوبیا یک کونه گرم‌سیری و متعلق به سرزمین‌های پست بوده و به فصل رشد غرب نیز دارد (بافری و همکاران 1380). یکی از مهم‌ترین عوامل کاهش عملکرد لوبیا، تنش خشکی می‌باشد. هر 20% از پودر لوبیا در شرایط چهار تاثیر منفی می‌گذارد. در این راستا توزیع ارقام و انواع لوبیا برای سازگاری با شرایط‌های استان‌های مهم برای به

Tadayyon.SKU@gmail.com

نویسنده مسئول، نشانی پست الکترونیکی:
تا حدود زیادی منع از تبخیر آب می‌گردد. همچنین مولکول‌های فیزیولوژیک در بخش زیر مولکول‌های هیدروپیک (Kron درون بافت‌های گیاهی نفوذ می‌کنند و با پریدن شدن به مولکول‌های آب تعریق و تعرق گیاهی داده به حفظ آب درون گیاه کمک می‌کند (2005: Nardi et al., 2002) اثر مستقیم اسید هیدروپیک به عنوان یک ترکیب شیمیایی هورمونی (Dehydration Yielding) و اثر غیر مستقیم آن به صورت فیزیولوژیک جذب عناصر غلیانی از طریق شیاریت کلات کندنگی و احیاکندگی و حفظ نفوذپذیری غش افزایش متاپلیسم رژیم‌راناخ، به‌وبود و ضعیفی گیاهی خاک و افزایش رشد ریشه و ساقه می‌باشد (Sanchez et al., 2002). باشند.)

یکی از اهداف اصلی در علم گیاه‌های جدید برای سازگاری کردن گیاهان به شرایط محیطی درک مکانیسم‌های فیزیولوژیکی مقاومت به پاسخش است. با توجه به این هدف و از آنجایی که مطالعات بیانگر اثرات مثبت مولکول‌های بر رشد گیاه است، این آزمایش به هدف استفاده از یک کود آلی به عنوان منبع اسید هیدروپیک تحت شرایط نشان خشکی، به منظور بررسی برخی از صفات فیزیولوژیک لوبیای لیما به عنوان یک گونه جدید در اقلیم شهرکرد اجرا شد.

مواد و روش‌ها:

این آزمایش به منظور بررسی تأثیر اسید هیدروپیک بر محاسبه طبیعی فیزیولوژیکی گیاههای علفی تحت شرایط آب کم آب به صورت کردن پایه خرد شده در قابل طرح بلع‌های کامل تصادفی در سه در猫 در مزرعه تحقیقاتی دانشگاه گیلان داشته‌که شرکانت‌های ۳۲ درجه و ۲۱ دقیقه عرض جغرافیایی ۳۴ درجه و ۴۹ دقیقه طول جغرافیایی ۶۰ درجه و ۳۹ دقیقه شرکت با ارتفاع ۱۱۱۶ متر از سطح دریا در سال ۱۳۶۳ اجرا شده. فاکتور اصلی شامل چهار سطح نشان‌پذیرکه آب به صورت کردن خرد شده به سه در猫 در مزرعه تحقیقاتی دانشگاه گیلان (۲۵۰، ۷۰، ۱۱۰ و ۱۴۰ میلی‌متر تبخیر از نشان‌پذیرکه تنفس سطح محلول‌پذیر اسید هیدروپیک (سفر، ۳، ۱ و ۶ لیتر در هکتار) بود. به منظور آماده‌سازی زمین در بهار با گاراه برگردان، ثب تخم نیمه عمیق زده، سپس با رشد دو دیسک

سایر فاکتورهایی: که باعث کاهش تنفس سطح سطح نشان‌پذیرکه آب کردند تحت تأثیر قرار می‌گرفتند. باید لطفاً اسناد و مقالات، اصول و ابزارهایی که تأثیر قرار می‌گرفتند تحت تأثیر قرار می‌گرفتند. باید لطفاً اسناد و مقالات، اصول و ابزارهایی که تأثیر قرار می‌گرفتند تحت تأثیر قرار می‌گرفتند. باید لطفاً اسناد و مقالات، اصول و ابزارهایی که تأثیر قرار می‌گرفتند تحت تأثیر قرار می‌گرفتند.
اثیب شکل و محلول‌پذیری اسید هیموگری بر برخی از شاخص‌های...

اوش همیکیکی تاثیر مثبت و معنی‌داری در سطح بک درصد بر افزایش کارکرده a داشته (جدول 1). بهترین میزان کارکرده a (11/2 و 11/3 میلی‌گرم در گرم زن تر برگ) با کاربرد 6 و 7 لیتر در هكتار اوش همیکیکی بدست آمده که از نظر آماری با کاربرد 3 لیتر در هکتار اوش همیکیکی اختلاف معنی‌داری نداشته (جدول 3). مطالعه همین شکل کمترین میزان آن (13/1 میلی‌گرم در گرم زن تر برگ) در تیمار شاهد مشاهده شد که با کاربرد یک لیتر اوش همیکیکی در هکتار اختلاف معنی‌داری نداشت. همچنین نتایج معنی‌داری بین سطح کاربرد 1 و 3 لیتر محلول وجود نداشت. در این آزمایش کارکرده a را می‌توان در توانایی گیاه در جذب بیشتر نشان دهد و ناری (2002) نیز افزایش قدرت کلات کندگی و جذب میزان پرولین، جذب نور محلول در طول موج 500 نانومتر قرار گرفت. از تولید خاص خود به عنوان شاهد استفاده شد. در نهایت مقدار پرولین موجود از هر نوع با استفاده از منحنی استاندارد بر حسب میلی‌گرم در گرم وزن تازه برگ محاسبه شد.

پایه محلول: بدن منظور در روش Sheligl (1989) پس از نتیجه عصاره ۱/۹۱ گرم نمونه برگ خشک را به استفاده از انتانول۸۰٪ و حذف رسوبات آن توسط محلول ۵٪ سولفات روز و ۴۰٪ میلی‌لیتر از محلول هیدروکسید باریم ۱/۳ نرمال، به ۲ میلی‌لیتر از عصاره مابع ۱ میلی‌لیتر محلول ۵٪ فل و مقدار ۵ میلی‌لیتر اسید سولفیوریک ۹۸٪ اضافه شد. پس از تهیه نرگ محلول، میزان جذب در طول موج ۵۸۰ نانومتر قرار گرفت. از گل‌وکلر خاص برای نتیجه محلول استاندارد و از آب برای شاهد استفاده شد.

برای آنتیل داده‌ها از نرم‌افزار SAS و معادله SAS میانگین اثرات متقابل از نرم‌افزار SAS به‌همراه استفاده شد. مقایسه میانگین عوامل آزمایش‌یابی با استفاده از آزمون حداکثر اختلاف معنی‌داری (LSD) در سطح احتمال ۵ درصد ارزیابی شدند. رسم نمودارها نیز با Excel انجام شد.

نتایج و بحث:

کارکرده a با توجه به نتایج آنالیز واریانس در جدول ۱ نش خشکی تاثیر معنی‌داری در سطح احتمال ۱/۰ بر میزان کارکرده داشت. با افزایش شدت نشنت ۷۲ تا ۸۰ گرم درصد بر افزایش کارکرده a به‌طور ترتیب ۶/۰ و ۷/۲ درصد نسبت به شاهد کاهش یافته (جدول 2). بهترین مقدار کارکرده a در تیمار شاهد (بدون تنش) و کمترین آن در تیمار آبیاری پس از ۱۱۰ میلی‌متر دست آمده. میزان این صفت در تیمار آبیاری پس از ۴۰ و ۷۰ میلی‌متر از نظر آماری مشابه بود. به‌علاوه عکس العمل گیاه نسبت به صفت کارکرده a در هر سه تیمار آبیاری پس از ۴۰، ۷۰ و ۱۱۰ میلی‌متر مشابه بود و اختلاف معنی‌داری را نشان داد.

اثرات نش خشکی بر میزان کارکرده a در گیاهان زراعی
جدول 1- نتایج آنالیز واریانس (میانگین مربعات) صفات کاروفیل، کاروفیل b، کاروفیلهای a، b، پایداری غشاء، میزان نسبی آب برگ و قندهای محلول

<table>
<thead>
<tr>
<th>قندهای محلول</th>
<th>پایداری غشاء (%)</th>
<th>کاروفیل (mg/gr FW)</th>
<th>کاروفیل b (mg/gr FW)</th>
<th>کاروفیلهای a (mg/gr FW)</th>
<th>صفر</th>
<th>محصولاتی اسید</th>
<th>عنصر غذایی</th>
<th>محاسبه (LSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/15</td>
<td>70/61</td>
<td>0/74</td>
<td>0/33</td>
<td>0/11</td>
<td>50/0</td>
<td>1/0</td>
<td>0/075</td>
<td>0/005</td>
</tr>
<tr>
<td>1/0/6</td>
<td>0/74</td>
<td>0/11</td>
<td>0/075</td>
<td>0/005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/3/6</td>
<td>0/11</td>
<td>0/075</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/2/6</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین های دارای حداکثر یک حرف مشترک در هر ستون در هر تیمار تفاوت معنادار در سطح احتمال 5 درصد ندارند (LSD).

AN و **AN**s به ترتیب معناداری در سطح 1% و 5% میانگین علمی دارای میانگین است.

جدول 2- نتایج مقایسه میانگین های اثرات ساده تنش خشکی و سید هیومیک بر کاروفیلهای a، b، پایداری غشاء، میزان نسبی آب برگ و

<table>
<thead>
<tr>
<th>قندهای محلول</th>
<th>پایداری غشاء (%) برگ</th>
<th>کاروفیل (mg/gr FW)</th>
<th>کاروفیل b (mg/gr FW)</th>
<th>کاروفیلهای a (mg/gr FW)</th>
<th>صفر</th>
<th>محصولاتی اسید</th>
<th>عنصر غذایی</th>
<th>محاسبه (LSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/15</td>
<td>70/61</td>
<td>0/74</td>
<td>0/33</td>
<td>0/11</td>
<td>50/0</td>
<td>1/0</td>
<td>0/075</td>
<td>0/005</td>
</tr>
<tr>
<td>1/0/6</td>
<td>0/74</td>
<td>0/11</td>
<td>0/075</td>
<td>0/005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/3/6</td>
<td>0/11</td>
<td>0/075</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/2/6</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین های دارای حداکثر یک حرف مشترک در هر ستون در هر تیمار تفاوت معنادار در سطح احتمال 5 درصد ندارند (LSD).

AN و **AN**s به ترتیب معناداری در سطح 1% و 5% میانگین علمی دارای میانگین است.
مقایسه میانگین‌های سطح محلول‌پاشی اسید هیمیک

(جدول 2) نشان‌دهنده این است که ترکیبی از افزایش نسبت کولری‌های (A) بخشی به طوری که بیشترین میزان کولری‌های (B) بخشی در نمایشگاه در دریافت آزمایشگاهی است که از نظر آماری تفاوت معنی‌داری با سطح محلول‌پاشی 3 لیتر در هکتار داشت. سایر سطح‌ها عامل هیمیک در گروه‌های آماری قرار می‌گردند. به طور کلی کاربرد سطح اسید هیمیک

به ترتیب باعث افزایش به ترتیب 33، 34 و 43 درصدی کولری (B نسبت به نیم‌شاره بدون اسید هیمیک قدرتی) این افزایش در سطح پایین ترش بارتر بود. این تیجه بهینه به صورت توجیه‌پذیر است که تیتروژن یکی از اجزاء مهم رنگ‌دانه‌های فتوسترهای است و نیمه در فعالیت فتوستر دارد و اسید هیمیک نیز سبب افزایش میزان نوروزن (Ayas and Gulser, 2005) این افزایش در سطح پایین ترش بارتر بود. این تیجه بهینه به صورت توجیه‌پذیر است که تیتروژن یکی از اجزاء مهم رنگ‌دانه‌های فتوسترهای است و نیمه در فعالیت فتوستر دارد و اسید هیمیک نیز سبب افزایش میزان نوروزن (Ayas and Gulser, 2005)

به استفاده از اسید هیمیک از این افزایش کاربردی که باعث افزایش کاربردی (B) در نمایشگاه در دریافت آزمایشگاهی است که از نظر آماری تفاوت معنی‌داری با سطح محلول‌پاشی 3 لیتر در هکتار داشت. سایر سطح‌ها عامل هیمیک در گروه‌های آماری قرار می‌گردند. به طور کلی کاربرد سطح اسید هیمیک

به ترتیب باعث افزایش به ترتیب 33، 34 و 43 درصدی کولری (B نسبت به نیم‌شاره بدون اسید هیمیک قدرتی) این افزایش در سطح پایین ترش بارتر بود. این تیجه بهینه به صورت توجیه‌پذیر است که تیتروژن یکی از اجزاء مهم رنگ‌دانه‌های فتوسترهای است و نیمه در فعالیت فتوستر دارد و اسید هیمیک نیز سبب افزایش میزان نوروزن (Ayas and Gulser, 2005)

به استفاده از اسید هیمیک از این افزایش کاربردی که باعث افزایش کاربردی (B) در نمایشگاه در دریافت آزمایشگاهی است که از نظر آماری تفاوت معنی‌داری با سطح محلول‌پاشی 3 لیتر در هکتار داشت. سایر سطح‌ها عامل هیمیک در گروه‌های آماری قرار می‌گردند. به طور کلی کاربرد سطح اسید هیمیک
شکل 1- اثرات مقیاس سطح مختلف اسید هیومیک و نشنش‌شکی در پرورش میزان کاروتئنیدها. میانگین‌های دارای حداقل یک حرف مشترک در هر ستون در هر تیمار، نشان‌دهنده مقیاس طبیعی در سطح اختلاف 5 درصد ندارند (LSD).

باشد در تشیع اسید‌های ناشی از نش‌آب دفاع مؤقتی خواهد داشت و در مقابل نش آب این بی‌پردازی از خود نشان می‌دهد (Foyer et al., 1998). با توجه به اینکه اعمال نش خشکی در گیاه، نسبت بی‌پرداز و تجزیه رنگدانه‌های فتوسنتزی را در یک دار، از نظری که کاهش کارآیی استفاده از کربن سبب کاهش سنتز کاروتئنیدها در گیاهان می‌شود (Oliviera-Neto et al., 2009). اسید هیومیک در افزایش میزان کاروتئنیدها نشان داد، چرا که ۵۰٪ از وزن مولکولی اسید هیومیک کربن تکمیل کردن می‌دهد. بر اساس نظر Nardi اسید هیومیک از طریق اثرات مثبت فیسیولوژیکی از جمله افزایش تولید سولفولی و همچنین یالی در سیروان کاروئولی در برگ‌ها مناسب‌تری برای برگ‌ها می‌شود. و همکاران (2009) در لپخاید افزایش میزان El-Ghamry کاروتئنیدها در حضور اسید هیومیک را گزارش کردند.

پرولین: با توجه به تابع جدول آنالیز واریانس، تیمارهای پرولین اثرات اسید هیومیک اثر معنی‌داری (P<0.01) بر تنش خشکی و اسید هیومیک اثر معنی‌داری (P<0.05) بر غلظت پرولین برگ داشتند (جدول ۱). ضمناً میزان حدود ۱ اثرات متقابل عوامل مذکور نیز در سطح ۵٪ معنی‌دار شد. مقایسه میانگین‌های اثرات متقابل نش و همکارن می‌دهد کاربرد اسید هیومیک باعث افزایش میزان پرولین در شرایط تنش خشکی گردید (شکل ۲). میانگین این شکل بیشترین میزان
شکل ۲- اثرات متقابل سطح مختلف اسید هیبریدی و تنش خشکی بر میزان پرولین. میانگین‌های مراحل مختلف یک هر هفته مشترک در هر ستون در هر میزان اکسید شدن پرولین سبب افزایش تجمع آن شده که در کاهش اثرات تنش نشان داد (کافی و همکاران، ۱۳۸۸). پرولین به عنوان یک ماده محلول سبب تنظیم فشار اسمری کاهش یافت. این مقدار کاهش اثرکندی یون واژه فعلیت آنی از لحاظ pH محلول (برنگی، ۱۳۹۹) که افزایش پایداری برخی آنزیم‌های سیتوپلاسمی و میتوکندریایی، پایداری شکل تیخی پروتئین‌ها و در نتیجه حفاظت سامانه‌های غشایی می‌شود (کافی و همکاران، ۱۳۸۸). گیاهان داخل نیز نشان داد که تنش خشکی، فنله‌های محلول را افزایش داد و باعث کاهش میزان نشان‌های در آن شده که در شرایط نشان، گیاه برای مقابله با نشان، محلول‌های درشتی مثل ناشان‌های در آن ار، سبب افزایش محورگی و دیگر گیاه‌شناسی می‌شود (Sanchez et al., ۱۹۹۸). این در حالی است که زادنیاری و همکاران (۱۳۹۲) عدم تأثیر معنی‌دار تنش خشکی بر میزان فنله‌های محلول در گیاه لوپیا را گزارش دادند. در پاسخ به نشان، کاهش پتانسیل اسمروی به وسیله تجمیع اسملوئیت الهایی و ظرفیت حفظ فشار تورگر سلول را افزایش می‌دهد که این عمل برای فرآیندهای فیزیولوژیکی مانند نتوانستن، فعالیت آنزیم‌ها و نکبر سلولی، اساسی است (نحص‌زدایه اصل و احساسنور، ۱۳۹۱). این سازوکار می‌تواند به گیاه کمک کند که در جر تنش و کمبود آب را تحمل کن و به رشد خود ادامه دهد.

تقنیه محلول: تنش خشکی تاثیری معنی‌داری در سطح احتمال ۱/۲ بر تجمع فنله‌های محلول دارد (جدول ۲). با افزایش شدت تنش خشکی تجمع فنله‌های محلول افزایش یافت (جدول ۲). بیشترین غلظت فن محلول در تیمار نشان شدید (۱۰ میلی‌متر تبخیر) حاصل شد که با ۷/۱ و ۲/۷ درصد افزایش نسبت به تیمارهای آبیاری به ترتیب پس از ۵۰ و ۷۰
فرآوری‌های بازیابی: گزارش‌هایی از اهداف و ممکنیه‌های توانایی‌های بازسازی از شاخص‌های مربوط به سطح فیزیکی، انتقال اطلاعات و استقرار می‌باشد.

\[P_{\text{فراوری‌های بازیابی}} = \frac{E_{\text{کانال}}}{P_{\text{فراوری‌های بازیابی}}} \]
پایداری غشاء در کاربرد ۶ لیتر در هکتار مشاهده شد که نسبت به سطوح‌پایین اسید، هیولوکمیک به ترتیب ۶/۴.۲/۱۸ و ۱/۱۳/۱۸ درصد افزایش نشان داد. با این حال، شاهد برخی از این افزایش هیولوکمیک و کاربرد ۱ لیتر اسید هیولوکمیک اختلاف معنی‌داری در صفت پایداری نشان دادند. کاهش نشت سیتوپلاسمی در تیمار کاردیا اسید هیولوکمیک احتمالاً نشان دهنده این است که اسید هیولوکمیک گیاه را در شرایط مناسب‌تری قرار داده و باعث افزایش فشار دیوایر سطح‌پایی گیاه و در نتیجه افزایش پایداری غشاء سطحی در هکتار، اسید هیولوکمیک (۱۳۹۲). در مورد اثبات مثبت اسید هیولوکمیک بر شاخص پایداری غشاء، برزیلی و همکاران (۱۳۹۲) در گذشته نیز به نتایج مشابه دست پیدا کردند.

پایداری غشاء در کاربرد ۶ لیتر در هکتار مشاهده شد که نسبت به سطوح‌پایین اسید، هیولوکمیک به ترتیب ۶/۴.۲/۱۸ و ۱/۱۳/۱۸ درصد افزایش نشان داد. با این حال، شاهد برخی از این افزایش هیولوکمیک و کاربرد ۱ لیتر اسید هیولوکمیک اختلاف معنی‌داری در صفت پایداری نشان دادند. کاهش نشت سیتوپلاسمی در تیمار کاردیا اسید هیولوکمیک احتمالاً نشان دهنده این است که اسید هیولوکمیک گیاه را در شرایط مناسب‌تری قرار داده و باعث افزایش فشار دیوایر سطح‌پایی گیاه و در نتیجه افزایش پایداری غشاء سطحی در هکتار، اسید هیولوکمیک (۱۳۹۲). در مورد اثبات مثبت اسید هیولوکمیک بر شاخص پایداری غشاء، برزیلی و همکاران (۱۳۹۲) در گذشته نیز به نتایج مشابه دست پیدا کردند.
جذب آب و تنظیم فشار اسمری می‌گردد. به طور کلی بعضی از پژوهشگران بر این عقیده هستند که در اثر تنش خشنگی میزان جذب پتاسیم در گیاه افزایش می‌یابد که به دلیل تنظیم فشار اسمری و نقص بی‌تناسیم در کنترل روند و برخی مواردی هم مشاهده شده که درصد پتاسیم در گیاهان تحت تنش کمتر بوده که دلیل آن می‌تواند کاهش قابلیت دسترسی گیاهان به این عنصر در شرایط کمبود رطوبت باشد. به این صورت هر کاهش وجود آب منجر به میزان پتاسیم مانند پتاسیم در محلول خاک به طور نسبی بیشتر از گیاهان دو طرفی مانند کلسیم و منیزیم افزایش می‌یابد. اما به دیدگاهی که خاک محلول می‌شود، کلریدهای رس با قدرت بیشتری یونهای یک طرفی پتاسیم را به سطح خود جذب می‌کند و مانع از جداشدن این یونها و جذب آنها توسط گیاه می‌شوند (کورکچی و علیزاده، 1382).

نتیجه‌گیری:

با توجه به نتایج به دست آمده در این بررسی، می‌توان اظهار داشت که محلول‌بردی اسید هیویکی به افزایش فاکتورهای

منابع:

احمدی موسوی، ع. ا.، منوچهری کلاتراتی، خ. و ترکزی، م. (1389) اثر نوعی بررسی استروئید (24-epibrassinolide) بر مقدار تجمع مالون فیتوژنتیکی از جمله گیاه‌های کلزا (Brassica napus L) تحت تنش کم آبی، مجله زیست‌شناسی ایران: 18، 646-652.

آزتین، ع. (1374) اصول زراعت در منطقه خشنگ. ترجمه کوچکی و علیزاده، ا. مجله، ا. 1جلد، اول، انتشارات آستان قدس رضوی.

پاکندو، ف.، ولیعهد، س.، صادقی‌پور، ع.، نورمحمدی، ق. و سادات، س. ع. (1389) بررسی تأثیر افزایش گل میوه در برخی از گیاهان بر عملکرد فیتوژنتیکی از جمله کلزا (Brassica napus L) تحت تنش کم آبی، مجله زیست‌شناسی ایران: 18، 646-652.

پوزنیی، ع.، شیخ، ع.، اسکندرزاده، ا.، آزادی، ا. و پاکندو، ف. (1389) اثر دور آبیاری، اسیدهیموئیک و باکتری‌های محور رشد بر ویژگی‌های فیتوژنتیکی گندم رقم کروم در منطقه پهری، فصلنامه علمی پژوهش‌های فیتوژنتیکی گیاهان زراعی: 19، 63-32.

پورنیپور، م.، گلووی، م.، ناهیان، ج.، قربانی، ا. و بیبستیپور، ن. (1384) بررسی تأثیر افزایش گل میوه و کربن دی‌اکسید بر محتوای رطوبت و میزان پتاسیم غشاء سلول و محتوای کلر وجود در گیاهان کلزا (Brassica napus L).

رضا، ب.، باردلی، م.، امری، ر. و رضائی، ع. (1391) اثرات نیتروژنی در برخی از گیاهان: گیاهان (Pisum sativum L) بر روی تعداد کلریدهای رس با قدرت بیشتری یونهای یک طرفی نسبت به شکافت و درمان دارو به دست آمده که هر دو این یونها و جذب آنها توسط گیاه می‌شوند (کورکچی و علیزاده، 1382)

