اثر تنش خشکی و محلول پاشی اسید-هیومیک بر برخی از شاخص‌های فیزیولوژیکی لوبیا لیما (Phaseolus lunatus L.)

صدیقه بهشتی و علی تدین
گروه زراعت، دانشکده کشاورزی، دانشگاه شهید چمران
(تاریخ دریافت: 1394/08/13، تاریخ پذیرش نهایی: 1394/08/13)

چکیده:

به‌منظور بررسی اثر سطوح مختلف آب‌زی و محلول‌پاشی اسید-هیومیک بر برخی از شاخص‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی در سه تکرار در مزرعه تحقیقات دانشگاه شهید چمران در سال‌های 1393 و 1394 انجام شد. فاکتور اصلی شامل چهار سطح تنش خشکی (60، 70، 110، 120 میلی‌پرسی تیگر از شدت تیگر کلاس 7) و فاکتور فرعی شرکت محلول‌پاشی چهار سطح اسید هیومیک (صفر، 0.3، 0.6 و 1.5 میلی‌متری تیگر از شدت تیگر کلاس 9) بود. در این آزمایش مقدار از هر میلی‌متری تیگر کلاس 5 کارشتمیه‌ها، پایداری شلک، میزان نسبی آب برگ پرولین و قند اصل محلول بررسی شد. نتایج نشان داد تنش خشکی به‌کاهش میزان دار کلیه مقدار به‌طور میانگین گردید. اما اسید هیومیک باعث افزایش مقدار این صفات گردید. اثر مقابل تنش خشکی و محلول‌پاشی اسید هیومیک بر میزان کارشتمیه‌ها، پرولین و قند اصل محلول در سه تکرار مشابه با اندازه‌گیری نشان داد. یک درجه تنش خشکی و محلول پرولین در تجربه کمک به حفظ فشار اسیدی در سولیدها، در تحقیق تنش خشکی به کمک آب برگ کمک کرد.

کلمات کلیدی: پایداری شلک، پرولین، آب‌زی، لوبیا، میزان نسبی آب برگ.

مقدمه:

لوبیا عروس یا لیما یا نام رایج انگلیسی Lima bean و نام علمی Phaseolus lunatus L. در سال 1876 توسط موریس (Morgan) ختم شد. این نام از لوبیا پرولین (Phaseolus vulgaris L.) نشأت گرفت که از نظر کشت و کار دارد. این نوع لوبیا یکی از جنس Phaseolus که گونه‌گرایی و متعلق به سرده‌ی Phaseolus L. است. یکی از مهم‌ترین مسئله‌های کشاورزی لوبیا، تنش خشکی می‌باشد که به طوری که بر پریش بیش از 70٪ تولید لوبیا در سراسر جهان تاثیر منفی می‌گذارد، در این راستا توصیه از افزایش میزان است. لیما برای سازگاری با خشکسالی از استراتژی‌های مهم برای به...

Tadayyon SKU@gmail.com
تا حدود زيادة ملحوظة في تجربة ألب ميغردن. همجنين مولكول هاي (أليكوتي) اسدي (محمود ريز مولكول اسدي هيموب)
درن بافتغاة همجنين مولكول في غلوت انسبسيت هيبوسن (Bromnican and Lai, 2002) و غير مستقيم أن هن صورت اسدي جذب
عناصر غلوباني من طريق خاصت كلاك كندينيكي و احيان يدك و حفظ تغذيرية غشاء اسدي لابابيس ريجوادان في خاک،
به پیا وضعیت هیپوکری خاک و اسدي رشد ریشه و ساق ها. (Sanchez et al., 2002)

(Desiccation) (Kuznetsov and Shevyakova, 1999)

كان کیل توجه در کاروین a و b و کاروتونیوا و گل
ریگدان ها تحت نش خشکی نیز بر اکثر آب و عمداً از
دیل آسبه کاراوالست توسط همجنين استرس می دهد (Agastian et al., 2000). (Kuznetsov and Shevyakova, 1999)

سراب فاکتورهای که باعث کاهش پانتسیل آبل شد مولکول
مضون تحت تأثیر قرار می گیرند. باید غلوت اسپممنت هیپوسن
را افزایش دهن جدب این تأثیر شرایط نش ادامه بیان کند
(تنظیم اسپممنت) که تنظیم بیمار و تغییر در خصوصیات دیواره
و انداز سلول برای افزایش مقدار دیواره مولکولی، از هم‌مظین (Desiccation)
سمولیا می‌برای نتایج این ابستسیختهگی کنن. (Kuznetsov and Shevyakova, 1999)

یابند توجه در کاروین a و b و کاروتونیوا و گل
ریگدان ها تحت نش خشکی نیز بر اکثر آب و عمداً از

(Desiccation) (Kuznetsov and Shevyakova, 1999)

که باعث کاهش پانتسیل آبل شد مولکول
مضون تحت تأثیر قرار می گیرند. باید غلوت اسپممنت هیپوسن
را افزایش دهن جدب این تأثیر شرایط نش ادامه بیان کند
(تنظیم اسپممنت) که تنظیم بیمار و تغییر در خصوصیات دیواره
و انداز سلول برای افزایش مقدار دیواره مولکولی، از هم‌مظین (Desiccation)
سمولیا می‌برای نتایج این ابستسیختهگی کنن. (Kuznetsov and Shevyakova, 1999)

(Desiccation) (Kuznetsov and Shevyakova, 1999)

که باعث کاهش پانتسیل آبل شد مولکول
مضون تحت تأثیر قرار می گیرند. باید غلوت اسپممنت هیپوسن
را افزایش دهن جدب این تأثیر شرایط نش ادامه بیان کند
(تنظیم اسپممنت) که تنظیم بیمار و تغییر در خصوصیات دیواره
و انداز سلول برای افزایش مقدار دیواره مولکولی، از هم‌مظین (Desiccation)
سمولیا می‌برای نتایج این ابستسیختهگی کنن. (Kuznetsov and Shevyakova, 1999)

یابند توجه در کاروین a و b و کاروتونیوا و گل
ریگدان ها تحت نش خشکی نیز بر اکثر آب و عمداً از

(Desiccation) (Kuznetsov and Shevyakova, 1999)

که باعث کاهش پانتسیل آبل شد مولکول
مضون تحت تأثیر قرار می گیرند. باید غلوت اسپممنت هیپوسن
را افزایش دهن جدب این تأثیر شرایط نش ادامه بیان کند
(تنظیم اسپممنت) که تنظیم بیمار و تغییر در خصوصیات دیواره
و انداز سلول برای افزایش مقدار دیواره مولکولی، از هم‌مظین (Desiccation)
سمولیا می‌برای نتایج این ابستسیختهگی کنن. (Kuznetsov and Shevyakova, 1999)

(Desiccation) (Kuznetsov and Shevyakova, 1999)

که باعث کاهش پانتسیل آبل شد مولکول
مضون تحت تأثیر قرار می گیرند. باید غلوت اسپممنت هیپوسن
را افزایش دهن جدب این تأثیر شرایط نش ادامه بیان کند
(تنظیم اسپممنت) که تنظیم بیمار و تغییر در خصوصیات دیواره
و انداز سلول برای افزایش مقدار دیواره مولکولی، از هم‌مظین (Desiccation)
سمولیا می‌برای نتایج این ابستسیختهگی کنن. (Kuznetsov and Shevyakova, 1999)
عمود برهم زمین تسطیح شد و به وسیله فاروئ پشتیبانی به طول 4 متر، عرض 80 و فاصله 20 سانتی‌متر ایجاد گردید.

در ادامه بدور ضد طوفان شده، 2 سانتی‌متر بالاتر از محل داغ آب و دو طرف پشتیبانی به فاصله روي ریف 20 و عمق 5 سانتی‌متر (فلاح 1388) در واحدهای آزمایش به ابعاد 36 اثرص به صورت هیزم کارایی شدند. بدور لوتیه از شرکت نکن بیان پایه خمین همه گردید. در طول دوره رشد گیاه آبیاری کوده و کنترن عفونت‌ها به صورت دستی و به موازات ایام تیمارها انجام شد. بعد از استیلی بعضاً تراکم مطلوب و استقرار کامل گیاه، زمانی که گیاه دارای 3-3 گره روی ساقت اصلی خود بود، صفحات زبان آن تیمار تنش با توجه به بیکاری گازهای تنش بخش تیمار کلاس A استفاده و یک زبان کلاس گئید و این این رونده با تزئین دسته‌های زبان‌هایی در مورد استفاده دارای گازهای (IMAR) اولترا شامل می‌باشد.

**کاروئیل a و b: کاروئتئیدها با روش اندازه‌گیری شدند. این مقدار (C) گرم از ماده تر گیاهی با بهره‌برداری و پس از طی این زمان مقدارت رابطه غوطه‌وری نگهداری و پس از طی این زمان مقدارت نگهداری و پس از طی این زمان رابطه غوطه‌وری نگهداری و پس از طی این زمان RWC = (Wf-Wd)/(Ws-Wd)

**بیژنیر کاروئیل a و b: کاروئتئیدها بر حسب میلی‌گرم بر 1000 جاده ساکن در کوت استکروتومی رخته و مقدار این جاده به طور چاپکن در طول موج مربوط به توسط استکروتومی قرار گرفت. در نهایت با استفاده از معادلات نسبی کاروئیل a و b کاروئتئیدها بر حسب میلی‌گرم بر 5 وزن تر نمونه محاسبه شد.

**جرم = (19.3 × A663 - 0.86 × A645) V/100W

**جرم = (19.3 × A645 - 3.6 × A663) V/100W

**جرم = (104(mg chl. b) /227)
توضیح محققین مختلف مورد بررسی قرار گرفته است. به عنوان مثال Agastian و همکاران (2008)، Medranو و Flexas (2004) (Santos)، به کاهش میزان کلروفیل A تحت تنش خشکی در لوبیا ادعا داشتند. به نظر مرسد کاهش در محتوای کلروفیل A می‌تواند به دلیل افزایش کانیولیسم کلروفیل و تغییر رنگ‌های فتوسنتز باشد. که این فرایند نیز به دنبال لیپیدی آزاد نسبت می‌دهد که باعث پراکسیادیون و در نتیجه تجزیه کلروفیل می‌شود (1389). درک محققین نیز کاهش میزان کلروفیل در شرایط تنش خشکی را به افزایش رادیکال‌های آزاد نسبت می‌دهند که باعث پراکسیادیون و در نتیجه تجزیه کلروفیل می‌شود (Flexas و Medran، 2008).

Keles و همکاران به کاهش میزان کلروفیل شده (and Oncel، 2004) اما ممانداکه بر مهاجرت می‌شود هر چه شدت تنش بیشتر می‌شود و پس از شدت کاهش کلروفیل کاسته می‌شود. در این رابطه برخی از محققین علت افزایش کلروفیل با ترکیب بودن کاهش را به کوکتیشن پلاستیکی برگ (به علت کاهش سطح برگ) و افزایش تراکم کلروفیل تنبیه می‌نمایند (یاکانزاد و همکاران، 1389).

آسید هیمیک یک تأثیر مثبت و معناداری در سطح یک دارد. به عنوان مثال بر افزایش کلروفیل A داشت (جدول 1). بیشترین میزان کلروفیل A (11/75 میلی‌گرم در گرم وزن تر برگ) با کربن 6 لیتر در هکتص اسید هیمیک بیشتر می‌شود که از نظر آماری با کاربرد 3 لیتر در هکتص اسید هیمیک اختلاف معناداری نداشتند (جدول 2). مطلق همین شکل کنترا میزان آن (10/45 میلی‌گرم در گرم وزن تر برگ) در تیمار شاهد مشاهده شد که با کاربرد یک لیتر اسید هیمیک در هکتص اختلاف معناداری نداشت. همچنین تأثیر معناداری بین سطح کاربرد 1 و 3 لیتر محلول وجود نداشت. دلیل این افزایش کلروفیل A می‌تواند در توتابان یکی در جذب بیشتر عناصر مختلف در حضور اسید هیمیک شرکت کرده باشد و کربن 6 میزان (2002) نیز افزایش قدرت کلاته کندگی و جذب میزان پروتئین، جذب نور محلول در طول موج 500 نانومتر قرار گرفته. از توتابان خالص به عنوان شاهد استفاده شد. در نهایت مقدار پروتئین موجود از هر نمونه با استفاده از منحنی استاندارد بر حسب میزان گرم در گرم وزن تازه برگ محاسبه شد.

نتایج محرک: بندین منظور در روش پس از تهیه عصاره از 20 گرم نمونه برگ خشک به استفاده از اتانول 80% و حذف رسوبات آن توسط محلول 75% سولفات ترویج 4/5 میلی‌لیتر از محلول هیدروکسید باریم/3 70 نمی‌باشد. به 2 میلی‌لیتر از عصاره مابع 1 میلی‌لیتر محلول 75% فل و مقدار 5 میلی‌لیتر سولفوریک 98% اضافه شد. پس از تختیت رنگ محلول میزان جذب در طول موج 435 نانومتر قرار شد. از گلکز خالص براي تهیه محلول استاندارد و از آب برای شاهد استفاده شد. برای آنالیز داده‌ها از نرم‌افزار SAS و مقایسه SAS version 9 میانگین آزمایشات میزان کلروفیل با از استفاده SAS به عمل آمده. مقایسه میانگین عوامل آزمایشی با استفاده از آزمون حداقل اختلاف معناداری (LSD) در سطح احتمال 5 درصد ارزيابی شدند. رسم نمودارها نیز با Excel انجام شد.

نتایج و بحث:

کلروفیل A با توجه به نتایج آنالیز واریانس در جدول 1. تنها خشکی تأثیر معناداری در سطح احتمال 1% بر میزان کلروفیل داشت. با افزایش شدت تنش از 0 تا 100 میلی‌متر بیتکس میزان کلروفیل A به ترتیب 0/26 و 0/15 درصد نسبت به شاهد کاهش یافت (جدول 2). پیشین تر مقدار کلروفیل A در تیمار شاهد (بدون تنش) و کمترین آن در تیمار آبیاری پس از 110 میلی‌متر به دست آمد. میزان این کاهش در تیمار آبیاری پس از 70 و 90 میلی‌متر از نظر آماری مشابه بود. به علاوه عکس العمل گیاه نسبت به صفت کلروفیل a در هر سه تیمار آبیاری پس از 0/87 و 110 میلی‌متر مشابه بود و اختلاف معناداری را نشان نداد.

اثرات نش خشکی بر میزان کلروفیل A در گیاهان زراعی
جدول 1- نتایج آنالیز واریانس (میانگین مربعات) صفات کارولفیل a، کارولفیل b، کارلوویده، پرونل و قندهای محلول در تیمارهای مختلف

<table>
<thead>
<tr>
<th>تیمار محلول</th>
<th>پرونل</th>
<th>پرونل</th>
<th>کارولفیل b</th>
<th>کارولفیل a</th>
<th>درجه آزادی</th>
<th>معنی تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>بلوک</td>
<td>1/5</td>
<td>0/8</td>
<td>0/07</td>
<td>0/02</td>
<td>11/527</td>
<td>3</td>
</tr>
<tr>
<td>تنش خشک</td>
<td>4/57</td>
<td>0/49</td>
<td>0/18</td>
<td>0/29</td>
<td>11/527</td>
<td>3</td>
</tr>
<tr>
<td>خطای اصلی</td>
<td>0/36</td>
<td>0/25</td>
<td>0/09</td>
<td>0/14</td>
<td>11/527</td>
<td>3</td>
</tr>
<tr>
<td>اسید هیمیک</td>
<td>0/37</td>
<td>0/26</td>
<td>0/11</td>
<td>0/22</td>
<td>11/527</td>
<td>3</td>
</tr>
<tr>
<td>بلوکx اسید هیمیک</td>
<td>0/11</td>
<td>0/08</td>
<td>0/04</td>
<td>0/03</td>
<td>11/527</td>
<td>3</td>
</tr>
<tr>
<td>تنش خشکx اسید هیمیک</td>
<td>0/18</td>
<td>0/13</td>
<td>0/07</td>
<td>0/06</td>
<td>11/527</td>
<td>3</td>
</tr>
<tr>
<td>خطای فرعي</td>
<td>0/35</td>
<td>0/24</td>
<td>0/09</td>
<td>0/08</td>
<td>11/527</td>
<td>3</td>
</tr>
<tr>
<td>ضریب تغییرات (%)</td>
<td>6/55</td>
<td>6/82</td>
<td>6/82</td>
<td>6/83</td>
<td>11/527</td>
<td>3</td>
</tr>
</tbody>
</table>

** و * به ترتیب معنی‌داری در سطح 1% و 5% یانگر معنی‌داری مشاهده.

جدول 2- نتایج مقایسه میانگین‌های آرایه ساده تنش خشک و اسید هیمیک بر کارولفیل a و b پایداری غشاء، میزان نسبی آب برگ و قندهای محلول

<table>
<thead>
<tr>
<th>تیمار محلول</th>
<th>پایداری غشاء (میلی‌متر نیچر)</th>
<th>کارولفیل b (mg/gr FW)</th>
<th>کارولفیل a (mg/gr FW)</th>
<th>سطح</th>
</tr>
</thead>
<tbody>
<tr>
<td>بلوک</td>
<td>40/41</td>
<td>37/94</td>
<td>38/40</td>
<td>110</td>
</tr>
<tr>
<td>تنش خشک</td>
<td>40/41</td>
<td>37/94</td>
<td>38/40</td>
<td>110</td>
</tr>
<tr>
<td>خطای اصلی</td>
<td>3/77</td>
<td>3/77</td>
<td>3/77</td>
<td>110</td>
</tr>
<tr>
<td>اسید هیمیک</td>
<td>3/77</td>
<td>3/77</td>
<td>3/77</td>
<td>110</td>
</tr>
<tr>
<td>بلوکx اسید هیمیک</td>
<td>3/77</td>
<td>3/77</td>
<td>3/77</td>
<td>110</td>
</tr>
<tr>
<td>تنش خشکx اسید هیمیک</td>
<td>3/77</td>
<td>3/77</td>
<td>3/77</td>
<td>110</td>
</tr>
<tr>
<td>خطای فرعي</td>
<td>3/77</td>
<td>3/77</td>
<td>3/77</td>
<td>110</td>
</tr>
<tr>
<td>ضریب تغییرات (%)</td>
<td>6/55</td>
<td>6/82</td>
<td>6/82</td>
<td>6/83</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حداکثر یک حرف مشترک در هر ستون در هر تیمار با تفاوت معنی‌داری در سطح اختلال 5 درصدی تدارکه (LSD).

جناور غذایی توسعه گیاه را با کاربرد اسید هیمیک گوارش کرد. نتایج آزمایش عدم معنی‌داری اثرات متکب اسید هیمیک و تنش خشک بر میزان کارولفیل a نشان داد که با تناوب رسایی و همکاران (1391) در مورد نخود فرگی مطمئنی دارد. کارولفیل b نتایج تجزیه واریانس (جدول 1) حاکی از آن است که اثرات متکب فاکتورهای آزمایشی تأثیر معنی‌داری بر میزان کارولفیل b نداشت. اما اعمال تنش خشک و کاربرد اسید هیمیک بر میزان کارولفیل b تأثیر معنی‌دار در سطح 1 درصدی داشت. به طوری که سطوح مختلف خشکی، کاهشی بود.

تم جهانی اثرات مختلف آب و کربنزاژ در محیط‌های مختلف سبب تغییر در میزان اسید هیمیک و کارولفیل a و b شد.
فاصله و کاردرک گیاهی جلد 6، شماره 19، سال 1396

۶

مقداریان و همکاران (1392) گردید. Agastian (2000) یک هاش بال توجه در کارولفیل a1 کارولنوده و کل

رنگ‌دانه‌ها تحت تشخیص، یا توجه به کمبود آب و

تعدادی به دلیل اسپی بکارهای توسط گونه‌های اکسیژن

فعال توجیه می‌کند. عده‌ای نز میزان کارولفیل در شارا تنش

تشخیص یا به افزایش رادیکال‌های آزاد نسبت می‌دهند که باعث

پراکسیداسیون و در نهایت جریه کارولفیل می‌شود.

(Flexas and Medrano, 2008)

مقایسه منابع‌های فضح محلول‌پاشی اسید هیموک

(جدول 2) یک اثر کاهش نسبت به افزایش آنتی‌اکسیدان

افزایش مصرف کارولفیل گردیده، به طوری که بیشترین میزان

کارولفیل ۶ لیتر در هکارهای هیموک بست مد که

از نظر آماری تفاوت معنی‌داری با مولوی‌پاشی ۶ لیتر در هکار

نداشت. سابع طرح اعمال هیموک در کروهای معنی‌داری

امرا بود. به طور کاملاً کارولفیل می‌گردید. با تریب بخانه در کار

درباره اسید هیموک به ترتیب ۳۳ و ۴۳ درصدی

کارولفیل ۶ نسبت به نیاز به جلب مرغوب اسید هیموک گردید.

این افزایش در سطح پایین‌تر تنش بارزتر بود. این تجربه به

صرفه‌تری فرایند کاهش کاهش اسید هیموک به افزایش شدن

رنگ‌دانه‌های فتوستانی و تنش مهم در فعالیت فتوستان

دار و اسید هیموک نیز سبب افزایش محتوا نیترات

کروها (Ayas and Gulser, 2005) می‌گردید. از تابعیات همی‌مان

به استفاده از اسید هیموک مهم‌اند که به سبب افزایش

کارولفیل ۶ a یا b نیز نهایتی در کارولفیل (راسپیلی و همکاران

۱۳۹۱) همچنین اسیری برگی اسید فولیک (بخش ریزه‌کلک

اسید هیموک) روش برکشی این سبب افزایش معنی‌دار در

محیط کارولفیل برخی کرده‌گردید.

(Xudan, 1986) می‌گردید.

کارتونومیا: ناتیج‌های آزمایشات (جدول ۱) نشان می‌دهد

محتوا کارتونوده به پورت علی‌داد (۱۱) (P<0.۰۰۰) تحت تأثیر

سطح مختلف تشخیص و اسید هیموک قرار گرفت. ضمناً

اثر مقابله عوامل آزمایشی تشخیص و اسید هیموک در

سطح ۵ درصد معنی‌دار شد (شکل 1). لذا کاربرد اسید

هیموک منجر به تغییرات میزان کارتونوده در تنش خشکی

بی‌بندی گونه‌گیاهی که بی‌بندی کارتونوده بی‌بندی داشته

جریه کارولفیل بی‌بندی داشته
اردش خانمیک و سه‌دریافت‌پذیر اسید هیووئک بر پایه از شاخص‌های

شکل 1- اثرات مقیاس سطح مختلف اسید هیووئک و تست خشکی بر دما و دما‌گردش میزان آب‌گرفتن‌دهی در فاصله یک حرف مشترک در حر. ستون در هر تیم. تفاوت معنی‌داری در سطح احتمال 5 درصد ندارد (LSD).

باشد در تست اکسیدان ناشی از تست آب دفع مؤقتی
خواهد داشت و در مقابل تست آب بردیاری بیشتری از خود
نشان می‌دهد (Foyer et al., 1998). با توجه به اینکه
تست خشکی در گیاه، نسبت بییر برگ و تجزیه رنگ‌های
فتوسنتزی را در پی دارد و از نظری که کاهش کارآیی استفاده
از کربن سبب کاهش سنتز کاروتئنیدها در گیاهان می‌شود
(Oliviera-Neto et al., 2009)، اسید هیووئک در افزایش میزان
کاروتئنیدها اثر دارد. چرا که 50% از وزن مولکولی اسید
هیووئک را کربنی تکیه می‌دهد. بر اساس نظر
Nardi (2009) اسید هیووئک از طریق آنزیم‌های فیزیولوژیکی از
جمله آنزیم مناسب‌سازی در درون سولول‌ها و همچنین با درد
میزان کاروتئنول در برگ‌ها ماندگاری پیشر خبرگ می‌شود.
و همکاران (2009) در لولیا نیز افزایش میزان
کاروتئنیدها در حضور اسید هیووئک را گزارش کردند.

پژوهش: با توجه به نتایج جدول آنانیز واریانس، تیم‌های
تست خشکی و اسید هیووئک اثر معنی‌داری (P<0.05)
بر و همکاران (1394) و در گیاه
Loza و همکاران (2004) و در گیاه
Souza و همکاران (1393) و در گیاه
Sanchez و همکاران (1998) در گیاه نخود گزارش
شده است. در این استویت‌های آلی، بردلین احتمال
فرآیندتین و عوامیتین ماده حج شده سازگار است که
تجمع می‌یابد (1999). کاهش

cd bc de
50 60 70 80 90 100
Irrigation levels (mm evaporation)
Cardenoids (mger FW)

این مطالعه اسید هیووئک باعث افزایش میزان پروپتین در شرایط
تست خشکی گردید (شکل 2). مطالعه این شکل پیش‌ترین میزان

\[\text{DOR: 20.1001.1.23222727.1396.6.19.9.7} \]

[Downloaded from jispp.iut.ac.ir on 2024-07-03]
شکل 2- اثرات مختلف سطح مختلف اسید هیدرو میک و نش خشکی بر میزان پرولین. میانگین‌های دارای حفاظت یک حریف مشترک در هر ستون در هر تیم، تفاوت معنی‌داری در سطح احتمال 5 درصد ندارند.

تا میزان اکسید شدن پرولین سبب افزایش تجمع آن شده که در کاهش اثرات نش نش دارد (کافی و همکاران، 1394). پرولین به عنوان یک ماده محلول سبب تغییر فشار اسیدی، کاهش هدایت آب سولول، حفظ آماس سولولی، کاهش اثر کندگی بروز روز فعالیت آنزیم‌ها، جلولکریز از دسته پرتنی‌ها مختلف (احتمالاً از طریق کنترل pH سولول) افزایش پاپیداری برخی آنزیم‌های سیتوپلاسمی و میتوکاندرویایی، پاپیداری شکل طبیعی بروز‌تنی‌ها و در نتیجه حفاظت سامان‌های غشا شی می‌شود (کافی و همکاران، 1388). (Kuznetsov 1999) نیز اعضا دارند که پرولین به عنوان یک ماده محلول سبب تغییر فشار اسیدی و کاهش از دست دادن آب از سولول و تغییر آماس می‌شود. بنابراین افزایش غفلت آن تحت تنش ممکن است نشان دهنده نش احتمالی این اسید آمیت در اندازه‌گیری اسیدی باشد.

تندیس محلول: نش خشکی تاثیری معنی‌داری در سطح احتمال 1% بر تجمع فندهای محلول دارد (جدول ۲). با افزایش شدت نش خشکی تجمع فندهای محلول افزایش یافته (جدول ۲). پیش‌ترین غفلت فن محلول در تیمار نش شدید (100 میلی‌متر تبخیر) حاصل شد که با 77 و 72 درصد افزایش نسبت به تیمارهای آب‌پزی به ترتیب یکا و ۵۰ از 70-

밀ی‌متر تبخیر از نظر آماری دارای اختلاف معنی‌داری نبود. در حالت که با سطح آبیاری پس از 90 میلی‌متر تبخیر تفاوت معنی‌داری نداشت. ضمیمای آبیاری 70 و 90 میلی‌متر تبخیر در یک گروه آماری قرار گرفتند. در نتیجه دیگر مشخص شد که کمبود آب باعث افزایش میزان پرولین و قندهای محلول درگیاه لوبیا چشم بیلبی شد (Souza et al., 2004). از آن‌رویت روي کیاها تجوید نیز نشان داد که نش خشکی قندهای محلول را افزایش داد و باعث کاهش میزان نشان‌دهنده در آن شد. دلیل این امر، آن است که در شرایط نش، گیاه برای مقابله با نش، مولکول‌های درستی مثل نشان‌دهنده را شکسته و این امر، سبب افزایش محتوای قند گیاهی می‌شود (Sanchez et al., 1998). این آزمایشات در حالی است که زاده‌افری و همکاران (1393) عدم تاثیر معنی‌دار نش خشکی بر میزان قندهای محلول در گیاه لوبیا را گزارش دادند. در پاسخ به نش، کاهش پتانسیل اسیدی به وسیله تجمع اسملیت‌ها، طرفین حفظ فشار تورک سولول را افزایش می‌دهد که این عمل برای خوراک‌های نیتروژنیک مانند سلورت، فعالیت آنزیم‌ها و تکثیر سولول، اساسی است (نگرفت‌داره، اصل و احساس‌ور، 1391). این سازوساز کیا به گیاه کمک کننده به دو روش دارد: نش و کمبود آب را تجربه نکند و به رشد خود ادامه دهد.
نیکی نیز باعث افزایش معنی دارد(P<0.001) تجربه. اگر محدودگردد (جدول 2) استفاده از اسید هیومیک باعث ایجاد نارنجی افزایشی در تولید قندهای محدود گردد. به طوری که کاربرد 6 لیتر در هکتار از این مخلوط پیشبرنین (9/16 میلی‌گرم بر گرم وزن خشک برگ) و عدم کاربرد آن (کمترین) 16/6 میلی‌گرم بر گرم وزن خشک برگ) غلظت قند محلول را تولید کرد (جدول 2). سطوح 6 و 3 لیتر اسید هیومیک نیز به ترتیب افزایش 1/4 و 1/2 درصدی این صفت را باعث شدند که مقدار شکل این دو از نظر آماری تفاوت معنی‌داری با هم نداشتند. در این رابطه Hanafy Ahmad و همکاران (2010) در لوبیا سبز به افزایش قندهای محلول در حضور اسید هیومیک ادعای داشتند. رسانه و همکاران (1391) نیز نتایج مشابهی مبنی بر افزایش میزان قندهای محلول نخود در حضور اسید هیومیک را گزارش دادند. ممکن است آنها به عدم معدومی اثرات متقابل تنش خشکی×اسید هیومیک پی برده که با تناوب این آزمایش مطابقت دارد (جدول 1). بر اساس نظر Nardi و همکاران (2002) اسید هیومیک دارای فعالیت شی هورمونی است و جذب عناصر معنی‌داری همانند فسفر و پتاسیم را در گیاهان افزایش می‌دهد که این امر خود سبب بهبود فتوسنتز و افزایش مقدار قند تولیدی خواهد شد.}

پایانه سلول:

نتایج تجربه واریانس نشان داد که نشان خشکی باعث افزایش معنی‌دار شاخص‌های غشای سلولی در سطح احتمال 1/0.01 گردد. این اثر متقابل تنش خشکی و هیومیک تأثیر معنی‌داری بر پایداری غشای سلولی داشته است (جدول 3). بر اساس مقایسه میانگین‌های صفت پایداری غشای سلولی در جدول 3 بیشترین میزان پایداری غشای سلولی با اعمال تیمار تنش شدید (آبیاری اس 110 میلی‌متر بخار) داشت. این در حالی است که سایر سطوح تنش گرچه باعث افزایش در میزان این صفت شدند، اما از نظر آماری تفاوت معنی‌داری با تیمار شاهد (آبیاری اس و 50 میلی‌متر بخار) نداشتند.}

پورموسی و همکاران (1385) در سویا و Saneoka و همکاران (2004) در غلاف گندمی به نتایج مشابهی مبنی بر
به نظر می‌رسد که این‌ها در شرایط نشی خشکی میزان آب سلول‌ها خود را از طریق افزایش موارد امروزی در درون بافت‌ها به حداکثر مساحتی تا آب از بافت خاک به انرژی بیشتری وارد آنها شود، این امر موجب کاهش میزان آب نسبی در شرایط نش خشکی می‌گردد (Rosales)، و همکاران (2012).

با این حال، در نوع میزان آب نسبی گراف آبی در شرایط نش خشکی، کاهش محور نسبی گراف در اثر نش خشکی دارای رابطه مستقیمی با محور واقعی رطوبت خاک می‌باشد (Nautiyal, 2002). با این حال، این سبب می‌شود محور نسبی آب گراف می‌تواند علائم شاخصی که با پتانسیل رطوبتی خاک در ارتباط مستقیم استفاده شود و آثاری مزرعه با محاسبه رطوبت نسبی بکر انجام گیرد.

اسید هیومیک نیز تاثیر معنی‌داری (P<0.01) بر میزان آب نسبی گراف داشت، به طوری که محلول‌پذیر هر یک از میزان آب سلول‌ها در یک سطح آماری معنی‌دار گرفت (جدول 3). بیشترین میزان نسبی آب گراف بر چندین میزان آب سلول‌ها (193/6 درصد) با کاربرد 6 لیتر در هکتار اسید هیومیک مشابهت شد که نسبت به سطوح پایینتر به ترتیب 3/2، 6/8 و ۱۰/۹ درصد افزایش داشت.

روزهای شنی و همکاران (1392) به نتایج مشاهده می‌نمایند: برای افزایش میزان آب گراف در حضور اسید هیومیک در گندم، دست‌بافند. محلول‌های اسید هیومیک با بیونید به مولکول‌های آب تا حدود زیادی مانع از ترکیب آب می‌گردد. همچنین محلول‌های اسید فولیک (بخش دریچه مو) اسید هیومیک) به درون بافت‌های کیسه‌های نفوذ می‌کند تا به پوست‌شدن به مولکول‌های آب تعریخ و تعریخ گذاشته را کاهش داده به خشک آب درون گیاه کمک می‌کند. (Bronick و Lai، 2005). علاوه بر تاثیر مستقیم اسید هیومیک و اسید فولیک در حفظ آب سلول‌ها در ترکیب اسید هیومیک مصرفی 3/ هیدروکسید پتاسیم موجود بود به نظر می‌رسد اسمز افزایش غلظت پتاسیم باعث افزایش قدرت روزنه‌ها در بار و بسیار شدن و جلوگیری از تعریخ آب می‌شود. همچنین افزایش جدِب پتاسیم سبب افزایش پایداری غشاء در کاربرد 6 لیتر در هکتار مشاهده شد که نسبت به سطوح پایین‌تر اسید هیومیک به ترتیب 1/3/5 و 19/1 درصد افزایش نشان داد. به این ترتیب تیمار شاهد بدون اسید هیومیک و کاربرد 1 لیتر اسید هیومیک اختلاف معنی‌دار در صفت پایداری غشاء سلولی نشان‌داد. کاهش نشان اسید هیومیک بهبودی‌سازی خشاکی است. این است که اسید هیومیک کاهج را در شرایط مناسب‌تری قرار داده و باعث افزایش قدر دیواره سلولی گیاه و در تهیه افزایش پایداری غشاء سلولی شده است (روزایی‌نیک و همکاران، 1394). در مورد دست‌بافند اسید هیومیک بر شاخص پایداری غشاء، رویزایی‌نیک و همکاران (1394) در کنار نیز بناهیبی مشاهده داشتند.

پایداری غشاء در کاربرد 6 لیتر در هکتار مشاهده شد که نسبت به سطوح پایین‌تر اسید هیومیک به ترتیب 1/3/5 و 19/1 درصد افزایش نشان داد. به این ترتیب تیمار شاهد بدون اسید هیومیک و کاربرد 1 لیتر اسید هیومیک اختلاف معنی‌دار در صفت پایداری غشاء سلولی نشان‌داد. کاهش نشان اسید هیومیک بهبودی‌سازی خشاکی است. این است که اسید هیومیک کاهج را در شرایط مناسب‌تری قرار داده و باعث افزایش قدر دیواره سلولی گیاه و در تهیه افزایش پایداری غشاء سلولی شده است (روزایی‌نیک و همکاران، 1394). در مورد دست‌بافند اسید هیومیک بر شاخص پایداری غشاء، رویزایی‌نیک و همکاران (1394) در کنار نیز بناهیبی مشاهده داشتند.
جذب آب و تنظیم فشار اسمری می‌گردد. به طور کلی بعضی از پژوهشگران بر این عقیده هستند که در اثر نش خشکی میزان جذب پانسیم در گیاه افرازی می‌زاید که به دلیل تنظیم فشار اسمری و نقش پانسیم در کنترل رونده است. در مواردی هم مشاهده شده که درصد پانسیم در گیاهان تحت نش کمتر بوده که دلیل آن می‌تواند کاهش قابلیت دسترسی گیاهان به این عنصر در شرایط کمبود رطوبت باشد. به این صورت که در اثر وجود آب زیادتر، یونه‌های یک طرفین مانند پانسیم در محلول خاک به طور نسبی بیشتر از یونه‌های دو طرفین مانند کلسیم و منیزیم افرازی می‌زاید. اما به تدریج همین خشکی می‌شود که پانسیم به ظرفیت پانسیم بیشتری بیشتری یونه‌های یک طرفین مانند پانسیم یا به سطح خشک چرب می‌کند و منافع دیگر از جذب آب و آبزیان بیشتری که در این مورد اشاره شدند، کار و کارکرد مانند پانسیم و افرازی می‌زاید. این اشاره در این مورد به نش خشکی و در راستای اهداف کشاورزی در کشور است که در کلیه گفت اکثر گیاهان (کریمی: و کار یکسان) در مقامات به نش از جمله خشکی بهره بردن بله یک گیاه ممکن است خشکی از خشکی باشید. این نتایج با نش خشکی باشید. این نتایج ب

