اثر سلسله سدیم بر برخی آنزیم‌های آنیک اکسیدان در گیاه آفتابگردان تحت تنش شوری

فرزند نجفی*، رضا علی‌عسکری حصیری‌نژاد1 و مهتاب رشیدی

گروه علوم گیاهی، دانشکده علوم زیستی، دانشگاه خوارزمی، کد پستی 14919، شهر تهران، ایران
گروه زیست‌شناسی، دانشکده علوم، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

*نویسنده مسئول، نشانی پست الکترونیکی: f_najafi@yahoo.com

تاریخ دریافت: ۷/۲/۲۰۱۷، تاریخ پذیرش نهایی: ۷/۲۰/۲۰۱۷ (۱۳۹۶)

چکیده:

یکی از معضلات محدود کننده رشد گیاهان زراعی، تنش شوری می باشد. سلول سدیم (SE) یک عنصر غیر فلور است که به‌عنوان یک آنتی اکسیدان در گیاهان، جانوران و انسان مطرح است. دراین پژوهش تاثیر سلول سدیم و شوری بر گیاه آفتابگردان مورد بررسی قرار گرفت. گیاهان تحت تاثیر مقدار مختلف سلول سدیم در فاصله‌های ۰، ۲۰ و ۵۰ میلی‌مولار و کلرید سدیم در فاصله‌های ۰، ۵۰ و ۷۵ میلی‌مولار قرار گرفتند. تاثیر نشان داد که در گیاهانی که در معرض کلرید سدیم قرار داشتند، در مقایسه با گیاهان کنترلی، با افزایش قلیقرنیت کلرید سدیم، میزان پروتئین کاهش یافته گیاهانی که در معرض همزمان کلرید سدیم و سلول سدیم قرار داشتند، در مقایسه با گیاهان کنترلی که در معرض تنش شوری بودند، در غلظت های کلسیم کلرید سدیم، میزان پروتئین بیشتری ثبت شده است. این نتایج نشان دهنده که سلول سدیم به عنوان یک آنتی اکسیدان به کمک افزایش قلیقرنیت کلرید سدیم کاهش می‌یابد. این نتایج نشان دهنده که سلول سدیم سبب افزایش برخی پارامترهای آنزیم دارای کاهش می‌گردد. در نهایت نشان دهنده که سلول سدیم به عنوان یک آنتی اکسیدان و سبب کاهش آنزیم‌های آنزیم‌های کنترلی می‌گردد.

واژه‌های کلیدی: آفتابگردان، پراکسیداز لیپید، آنتی اکسیدان، سلول سدیم

مقدمه:

یکی از خطرات جدی علیه مزارع کشاورزی، تنش شوری می باشد که مزروع ویژه را به زیست‌های خسک و غیر قابل کشت تبدیل کرده و رشد گیاه و محصولات گیاهی را کاهش می‌دهد (Khan et al., 2010). به‌عنوان هزینه‌های قابل ارتقاء سطح کره زمین (FAO) تحت تاثیر نشان داده که این مقدار بالغ بر ۶ درصد کل خاک حیاتی می‌باشد (Seckin et al., 2010).

شوری سبب نابودی فرآیندهای هیدروژنی در گیاهان گردیده‌است.

*نویسنده مسئول، نشانی پست الکترونیکی: f_najafi@yahoo.com

*
A report on the growth of Spirulina platensis in different conditions (Chen et al., 2008). A study on the effect of Brassica juncea (Singh and Mehandiratta, 1990) on growth showed that the presence of Brassica juncea could increase the growth of Spirulina platensis. A study conducted by Jiang and Zhang (2001) showed that the presence of Brassica juncea could increase the growth of Spirulina platensis. A study conducted by Demiral and Turkan (2005) showed that the presence of Brassica juncea could increase the growth of Spirulina platensis. A study conducted by Gressel and Galun (1994) showed that the presence of Brassica juncea could increase the growth of Spirulina platensis. A study conducted by Comba et al. (1998) showed that the presence of Brassica juncea could increase the growth of Spirulina platensis. A study conducted by Shanker et al. (2005) showed that the presence of Brassica juncea could increase the growth of Spirulina platensis. A study conducted by Demiral and Turkan (2005) showed that the presence of Brassica juncea could increase the growth of Spirulina platensis.
هر سال میانگین قابلیت ساقه‌های آنزیم از گیاه آگاتریکس در مدیونیت گیاه در زمین‌های اکسیده شده است.

در مورد کاربرد مواد معدنی و تغییر اثرات نیز (Ashraf, 2009) گزارش‌های موجود می‌باشد (Khan et al., 2010; Khoshrudi, 2005; Nazar et al., 2010; Nejad and Chaparzadeh, 1998).

اگلب این مطالعات روز عناصر بر مصرف مانند کلسیم، فسفر (Kharvani-Nejad and Chaparzadeh, 1998) انجام پذیرفته است. این گزارش‌ها نشان می‌دهد (Nazar et al., 2011) شده است. از جمله ریز معذی‌های که در کاهش نشایی غیر‌پس‌می‌آمده مانند مولیر فسفر، ابتکاری و هم‌مردی نتیجه برده اشیاسی به روش روش‌های جدید در میان بیش از هزاران روش بررسی شده است.

۳۵۳ 

به معنای نمایش یک گیاه آگاتریکس در کل‌های بر صنایع غذایی، در صابون سایر و تولید رنگ‌پلاستیک تیم و استفاده از (Karaaslan et al., 2010) خاک‌های ریزه‌به دواد، هفته‌های دیگر گلدان شیاه با دیگر مواد نظر ایزیتی شده. درجه حشره ۲۵ درجه سانتی‌گراد در روز و ۲۰ درجه سانتی‌گراد در شب در نظر گرفته شد. طول دوره روش‌های تاریک بوده ترتبی ۱۶ و ۸ ساعت تنشیم تری. برای به حداکثر سادگان اثرات روش‌هایی می‌تواند از محیط ردیش گیاه در گل‌خانه گردش وضعی و جایی که نمایشگر گلدان به صورت روزانه در دوره ردیش انجام دیده‌رفت. بعد از ۳۹ روز گیاهان جمه سنجش‌های بیوشیمیایی و زیستولوژیکی برای آن‌ها.

کشت و تیمار گیاهان: چند گیاه آگاتریکس از موسمه (Helianthus annuus L., CV, Record) رکورد اصلاح‌بند و تولید کرده به دیدگاه و همگی انتحاب شده و توسط هیپکاردینی سدیم ۵ درصد برای جلوگیری از آلودگی فارنی به مدت یک دقیقه ضدعفونی شده و جنسیت بار ای‌بی می‌کرده شانه داده شدند. بعد از ۲۰ روز که بدست از پرونده و توانایی زنده گیاهانی با گلدان یک حاوی سه مربوط شده با آب می‌کرده شانه داده شدند. 

مواد و روش‌ها:

مواد و روش‌ها: 

کشت و تیمار گیاهان: چند گیاه آگاتریکس، رقم اصلاح‌بند و تولید کرده به دیدگاه و همگی انتحاب شده و توسط هیپکاردینی سدیم ۵ درصد برای جلوگیری از آلودگی فارنی به مدت یک دقیقه ضدعفونی شده و جنسیت بار ای‌بی می‌کرده شانه داده شدند. بعد از ۲۰ روز که بدست از پرونده و توانایی زنده گیاهانی با گلدان یک حاوی سه مربوط شده با آب می‌کرده شانه داده شدند.
سنجد فعالیت آنزیم دیسموتوز پروندر برگ: مخلوط

کاربرد برای سنجد فعالیت آنزیم شلمی با فسفات 50 میلی

میلی مولار، میوتنیون 0.13 میکرومول و

ریبو فلورین 2 میکرومول آماده گردد و در نخست

تکه‌سازی شد. بلافاصله پس از اضافه کردن ریبو فلورین، 3

میلی لیتر از آن را درون لوله آزمایش ریخته و به هر لوله

100 میکرولیتر عصاره پروندری اضافه شد. لوله‌های آزمایش

به مدت 12 دقیقه در فاصله 30 نقطه متراً از منبع نور

گرفتند و در این فاصله اسکیکاروتومی در طول موج

560 نانومتر و توسط محلول تاریکی به عنوان شاهد تنظیم شد.

پس از 12 دقیقه جذب عصاره در طول موج مذکور خوانده

شد. نتایج آن‌هاکه یک واحده آنزیم مذکور عبارت است از:

از آن زمان که 50 درصد بارداری انجام می‌گیرد، فعالیت آنزیم

سوپرکولید دیسموتوز براساس واحد آنزیمی به ارای هر میلی

گرم پروندری برای تمام نمونه‌ها محاسبه گردید.

(Giannopolitis and Ries, 1977)

سنجد فعالیت آنزیم کاتالاز برگ: بررسی میزان فعالیت

آنزیم کاتالاز با بررسی کاهش مقدار پراکسید هیدروژن در طول

موج 240 نانومتر اندازه‌گیری می‌شود. مخلوط و اکتش شلمی با فسفات

60 میلی مولار (pH 7) و پراکسید هیدروژن 15 میلی مولار

بود. و اکتش با 400 میکرونتری ورازه ۱ میلی آنزیمی در

حجم آب ۳ میلی لیتر برای اکتش گردید. تغییرات جذب در

نانومتر به مدت 3 دقیقه ثبت شد. سپس فعالیت آنزیم براساس

واحده آنزیمی به ارای هر میلی گرم پروندری برای تمام نمونه‌ها

محاسبه گردید. (Dazy et al., 2008)

سنجد فعالیت آنزیم آسکوربیات پراکسیداز برگ: برای

سنجد فعالیت آنزیم آسکوربیات پراکسیداز، مخلوط و اکتش

شلمی با فسفات 50 میلی مولار (pH 7) آپ اکسیژن 1/2

250 میلی مولار EDTA میکرومول است. آسکوربیات 500 میلی مولار و

میلی مولار بود. با اضافه کردن اپ کسیژن به مخلوط و اکتش

که محتوی 100 میکرونتری ورازه ی آنزیمی فعالیت آنزیمی

محاسبه گردید.

سنجد فعالیت آنزیم تربوتیکیسن دیسموتوز پروندر برگ: مخلوط

کاربرد برای سنجد فعالیت آنزیم شلمی با فسفات 50 میلی

میلی مولار، میوتنیون 0.13 میکرومول و

ریبو فلورین 2 میکرومول آماده گردد و در نخست

تکه‌سازی شد. بلافاصله پس از اضافه کردن ریبو فلورین، 3

میلی لیتر از آن را درون لوله آزمایش ریخته و به هر لوله

100 میکرولیتر عصاره پروندری اضافه شد. لوله‌های آزمایش

به مدت 12 دقیقه در فاصله 30 نقطه متراً از منبع نور

گرفتند و در این فاصله اسکیکاروتومی در طول موج

560 نانومتر و توسط محلول تاریکی به عنوان شاهد تنظیم شد.

پس از 12 دقیقه جذب عصاره در طول موج مذکور خوانده

شد. نتایج آن‌هاکه یک واحده آنزیم مذکور عبارت است از:

از آن زمان که 50 درصد بارداری انجام می‌گیرد، فعالیت آبرزیم

سوپرکولید دیسموتوز براساس واحد آنزیمی به ارای هر میلی

گرم پروندری برای تمام نمونه‌ها محاسبه گردید.

(Giannopolitis and Ries, 1977)

سنجد فعالیت آنزیم کاتالاز برگ: بررسی میزان فعالیت

آنزیم کاتالاز با بررسی کاهش مقدار پراکسید هیدروژن در طول

موج 240 نانومتر اندازه‌گیری می‌شود. مخلوط و اکتش شلمی با فسفات

60 میلی مولار (pH 7) و پراکسید هیدروژن 15 میلی مولار

بود. و اکتش با 400 میکرونتری ورازه ۱ میلی آنزیمی در

حجم آب ۳ میلی لیتر برای اکتش گردید. تغییرات جذب در

نانومتر به مدت 3 دقیقه ثبت شد. سپس فعالیت آنزیم براساس

واحده آنزیمی به ارای هر میلی گرم پروندری برای تمام نمونه‌ها

محاسبه گردید. (Dazy et al., 2008)

سنجد فعالیت آنزیم آسکوربیات پراکسیداز برگ: برای

سنجد فعالیت آنزیم آسکوربیات پراکسیداز، مخلوط و اکتش

شلمی با فسفات 50 میلی مولار (pH 7) آپ اکسیژن 1/2

250 میلی مولار EDTA میکرومول است. آسکوربیات 500 میلی مولار و

میلی مولار بود. با اضافه کردن اپ کسیژن به مخلوط و اکتش

که محتوی 100 میکرونتری ورازه ی آنزیمی فعالیت آنزیمی

محاسبه گردید.
تایید:
نتایج مربوط به میزان پرفتخاری کل برق: بررسی نتایج حاصل از مقایسه میانگین داده ها نشان داد که در تیمار شوری با افزایش غلظت کارد سدیم از ۲۵ تا ۵۰ و ۷۵ میلی مولار میزان پرفتخاری کل برق به ترتیب ۲۴/۲۵ و ۵۹/۳۳ درصد بیشتر می‌شود. در نتیجه، غلظت تیماری میزان پرفتخاری کل برق به ترتیب ۲۴/۲۵ و ۵۹/۳۳ درصد بیشتر می‌شود.

نتایج مربوط به میزان غلظت آنزیم کاباکل پراکسیداز:
برگ: همان طور که در شکل ۱ نشان داده شده، در تیمار گیاهان با محلول های ۲۵ و ۵۰ میلی مولار کارد سدیم، میزان غلظت آنزیم کاباکل پراکسیداز به ترتیب ۱۱۱ و ۲۲۲ درصد بیشتر می‌شود. در نتیجه، غلظت تیماری میزان غلظت آنزیم کاباکل پراکسیداز به ترتیب ۱۱۱ و ۲۲۲ درصد بیشتر می‌شود.

نتایج مربوط به میزان غلظت آنزیم سپراکسیدومتاز:
برگ: نتایج حاصل از تجزیه و ارتباط داده‌های نشان داد که در تیمار گیاهان با محلول های ۲۵ و ۵۰ میلی مولار کارد سدیم، میزان غلظت آنزیم سپراکسیدومتاز به ترتیب ۱۱۱ و ۲۲۲ درصد بیشتر می‌شود. در نتیجه، غلظت تیماری میزان غلظت آنزیم سپراکسیدومتاز به ترتیب ۱۱۱ و ۲۲۲ درصد بیشتر می‌شود.

نتایج مربوط به میزان غلظت آنزیم پاراکسیداز:
برگ: نتایج حاصل از تجزیه و ارتباط داده‌های نشان داد که در تیمار گیاهان با محلول های ۲۵ و ۵۰ میلی مولار کارد سدیم، میزان غلظت آنزیم پاراکسیداز به ترتیب ۱۱۱ و ۲۲۲ درصد بیشتر می‌شود. در نتیجه، غلظت تیماری میزان غلظت آنزیم پاراکسیداز به ترتیب ۱۱۱ و ۲۲۲ درصد بیشتر می‌شود.

نتایج مربوط به میزان غلظت آنزیم آمبیاکسیدومتاز:
برگ: نتایج حاصل از تجزیه و ارتباط داده‌های نشان داد که در تیمار گیاهان با محلول های ۲۵ و ۵۰ میلی مولار کارد سدیم، میزان غلظت آنزیم آمبیاکسیدومتاز به ترتیب ۱۱۱ و ۲۲۲ درصد بیشتر می‌شود. در نتیجه، غلظت تیماری میزان غلظت آنزیم آمبیاکسیدومتاز به ترتیب ۱۱۱ و ۲۲۲ درصد بیشتر می‌شود.
شکل ۱- اثرات موارد مختلف کلرید سدیم و سلنات سدیم بر میزان پروتئین کل ببرگ. حروفی که نشان دهنده ی عدم تفاوت می‌باشند، دارای معنی دار است.

شکل ۲- اثرات موارد مختلف کلرید سدیم و سلنات سدیم بر میزان فعالیت آنزیم سوپر اکسید دیسموتاز ببرگ. حروفی که نشان دهنده ی عدم تفاوت می‌باشند، دارای معنی دار است.

شکل ۳- اثرات موارد مختلف کلرید سدیم و سلنات سدیم بر میزان فعالیت آنزیم اکسیداز ببرگ. حروفی که نشان دهنده ی عدم تفاوت می‌باشند، دارای معنی دار است.

نتایج مربوط به میزان فعالیت آنزیم آسکوربیک اکسیداز ببرگ، میزان فعالیت آنزیم آسکوربیک اکسیداز ببرگ در شرایط میزان سه شده و رشد در تیمار گیاهان با غلظت‌های ۲۵ و ۵۰ میلی‌مولار کلرید سدیم و با ۱۰ و ۲۰ میکرو‌مولار سلنات سدیم میزان فعالیت آنزیم فوق به ترتیب ۱۲۵/۷۳ و ۱۰۵/۷۳ درصد نسبت به میزان فعالیت سه‌گیاهان مشاهده شد. در گیاهان تحت تیمار برهم کنش ۲۵ و ۵۰ میلی‌میلی‌مولار کلرید بیش از ۲۰۰/۷۶٪ و ۱۵۴/۱۵٪ نسبت به میزان براکسیداز به ترتیب ۱/۲۴٪ و ۰/۲۴٪ نسبت به

نتایج مربوط به میزان پراکسیدازیون لیبد ریش نشان می‌دهد که در اندازه‌های مختلف میزان سلنیوم و کلرید سدیم تأثیر مستحکمی دارد.

بحث:
در پژوهش‌های حاضر تنش و تغییرات در فعالیت آنزیم میزان پروتئین در تنها آنزیم پراکسیدازیون لیبد ریش مشاهده شده و باعث تغییرات در پروتئین‌ها می‌شود. در این تحقیق نشان داده شد که ویژگی‌های مختلف آنزیم پراکسیدازیون لیبد ریش تحت تنش تغییر می‌یابد. در نتیجه این تغییرات، تغییرات در ساختار و عملکرد آنزیم مشاهده شد.

شکل 4- در شکل 4 حاصل از مقایسه حاصله‌های میزان فعالیت آنزیم پراکسیدازیون لیبد ریش تحت تنش تغییرات در پروتئین‌ها مشاهده شد.

شکل 5- در شکل 5 نشان داده شد که تغییرات در ساختار و عملکرد آنزیم پراکسیدازیون لیبد ریش تحت تنش تغییرات در پروتئین‌ها مشاهده شد.
نقطه 6- اثر غلظت های مختلف کلرید سدیم و سلنیت سدیم بر میزان مالون دی آلدهید ریشه حروف پیکان نشان دهنده عدم تفاوت معنی‌دار است.

مبدل کلرید (OH) می‌گردد. بسیاری از ترکیبات سلولی از قبیل لیده‌ها، استهلاک نکاتین و پروتئین‌ها تخریب می‌شوند. جاروی کردن گونه‌های فعال اکسیژن به وسیله آنزیم‌هایی از قبیل کاتالاز، سوپراکسید دیسمونات، گاکول (Gill and Tuteja, 2010) افزایش فعالیت آنزیم های آنتی اکسیدان تحت فشار غلظت را کاهش داده و نشان داده است. افزایش شروعی در سبیل از گیاهان از مدل گاهی فناکی ۲۰۰۱ و ۲۰۰۷ (Sudhakar et al., ۲۰۰۱، Kanagaraj, ۲۰۰۷) که گروه فناکی (Mittova et al., ۲۰۰۲) و پرینج (Vaidyanathan, ۲۰۰۳) نتایج نشان می‌دهد که در تیمار غلظت محدودی از مدل گاهی فناکی ۲۰۰۱ (Desingh and Kanagaraj, ۲۰۰۷)، فناکی ۲۰۰۱ (Kong et al., ۲۰۰۵) و جو (Neto et al., ۲۰۰۴) اشاره کرد (Khosravinejad et al., ۲۰۰۹). نتایج این پژوهش حکایت از آن دارد که در گیاهانی که تحت نتش شوری و سلنیت سدیم قرار داشتند در مقایسه با گیاهانی که تحت نتش شوری واقع شده بودند غلظت های کارسید کاهش پروتئین بیشتری می‌شود. این نتایج نشان می‌دهد که در دستگاهی از طریق افزایش بیماری فعالیت آنزیم پروتئین موردی نتیجه‌گیری از طریق افزایش بیماری فعالیت آنزیم پروتئین موردی (Xue et al., ۲۰۰۱) و گروه سرپردازی فعالیت بیشتری نتیجه‌گیری از طریق افزایش بیماری فعالیت آنزیم پروتئین موردی (Nowak et al., ۲۰۰۴) از آن جا که نشش شوری منجر به ایجاد نشش آتی در گیاه شده که موجب تشکیل افزایش فعالیت اکسیداز (ROS) (کسیکسید هیدروژن (H۲O۲) و رادیکال سوپراکسید (۴۰۰) ) (Nowak et al., ۲۰۰۴) از قبل.
سنينوم همراه با نش خشکی، افزایش میزان فعالیت آنزیمی سیلیمیون (Sajedi et al., 2011) و همکاران (2009) پیشنهاد کردند که تحت نش خشکی پاسخ‌های رشدی و فیتولوژیک داخلی رسته‌ها بستگی به خلفیت سلنیوم دارد. افزایش گیاهان با خلفیت کم سلنیوم موجب تجمع مقادیر بروتان و افزایش فعالیت آنزیم‌های یاراکسیداز و MDA کاتالاز شده، تحت قریب‌رسانی افزایش داده و مقادیر آن (Hartikainen et al., 2000) تنها داده که در بسیاری سلنیوم کاهش تولید و افزایش و همکاران Nowak (2004) افزایش قابل ملاحظه‌ای از میزان عفافیت نیترات رودکیت یادگیری گهند تحت تیمار سلنیوم مشاهده کرده‌اند هرگونه سردیال سلول‌سیستمی به یک گاچه‌ای فعال آزمی به یک سبوده فعال سلنیوم که باعث آدنیولیتی می‌شود اثر قابل مشاهده ندارد. NADPH که رضیت کننده فعالیت Rios و همکاران (2009) مشاهده کرده که تیمار سلول‌های بیشتری به‌صورت آزمایشی تولید می‌شود و در مقدار NADPH که رضیت کننده فعالیت گهند تحت تیمار سلنیوم مشاهده کرده‌اند هرگونه سردیال سلول‌سیستمی به یک گاچه‌ای فعال سلنیوم که باعث آدنیولیتی می‌شود اثر قابل مشاهده ندارد. NADPH که رضیت کردن‌های در که حضور انواع فعال آنزیم‌های گهند تحت تیمار سلنیوم مشاهده کرده‌اند هرگونه سردیال سلول‌سیستمی به یک گاچه‌ای فعال سلنیوم که باعث آدنیولیتی می‌شود اثر قابل مشاهده ندارد. NADPH که رضیت کردن‌های در که حضور انواع فعال آنزیم‌های گهند تحت تیمار سلنیوم مشاهده کرده‌اند هرگونه سردیال سلول‌سیستمی به یک گاچه‌ای فعال سلنیوم که باعث آدنیولیتی می‌شود اثر قابل مشاهده ندارد. NADPH که رضیت کردن‌های در که حضور انواع فعال آنزیم‌های گهند تحت تیمار سلنیوم مشاهده کرده‌اند هرگونه سردیال سلول‌سیستمی به یک گاچه‌ای فعال سلنیوم که باعث آدنیولیتی می‌شود اثر قابل مشاهده ندارد. NADPH که
مهاکاران (2009) مشاهده کردن پراکسیداسیون لیپیدها در گیاه گیاه تحت نش آرسینیک در حضور 5 و 10 میکرومول سلنیوم کاهش نشان داد و باعث افزایش سطح تیولوژی و گلوتاتیون گردد. این نتایج نشان داد که سلنیوم هم یک آنتی اسکیدانی است و تنش اسکیداسیون را با تنظیم زن های سیستم دفاعی کاهش می‌دهد. سلنیوم توانایی آنتی اسکیداسیون را بیشتر و پراکسیداسیون لیپیدها غیرقابلیت در UV-C یا کاهش می‌دهد (Yao et al., 2010). آزمایشاتی که توسط Bv و همکاران (2005) روی سوابق انجام شد نشان داد که سلنیوم تئیکالی را می‌کند و سبب تأخیر بیش از 30 می‌شود. به نظر می‌رسد سلنیوم سدیم تحت حمل گیاه توسط بیشتر می‌دهد.

نتیجه‌گیری کلی: بررسی‌های انجام شده نشان داده که در گروه نش اسکیداسیون تحت نش آرسینیک موجب افزایش استرایژی‌های سازگاری یا سطح تیولوژی و گلوتاتیون گردد. این نتایج نشان می‌دهد که سلنیوم هم یک آنتی اسکیدانی است و تنش اسکیداسیون را با تنظیم زن های سیستم دفاعی کاهش می‌دهد. سلنیوم توانایی آنتی اسکیداسیون را بیشتر و پراکسیداسیون لیپیدها غیرقابلیت در UV-C یا کاهش می‌دهد (Yao et al., 2010). آزمایشاتی که توسط Bv و همکاران (2005) روی سوابق انجام شد نشان داد که سلنیوم تئیکالی را می‌کند و سبب تأخیر بیش از 30 می‌شود. به نظر می‌رسد سلنیوم سدیم تحت حمل گیاه توسط بیشتر می‌دهد.

Ashraf, M. and Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science...
166: 3-16.


