تأثیر هگزاکنالزول و تنش خشکی بر برش صفات مورفومیژولوژی و بیوشیمیایی گیاه خمی خیری (Althaea officinalis)

بهاره کاشفی* و الهام احمدیان

گروه کشاورزی، دانشگاه آزاد اسلامی، واحد دامغان، دامغان، ایران

(تاریخ دریافت: 28/11/1395، تاریخ پذیرش نهایی: 1395/11/21)

چکیده

تنش خشکی از موانع اصلی در رشد گیاهان در بسیاری از نقاط دنیا به‌ویژه مناطق خشک و نیمه‌بخش می‌باشد. تجزیه‌کنندگانی رشد گیاهی قادیرند برخی از صدمات حاصل از تنش‌های محیطی را کاهش داده‌اند، با این‌حال، بررسی اثر هگزاکنالزول بر صفات مورفومیژولوژی و بیوشیمیایی گیاه خمی خیری (Althaea officinalis) در شرایط تنش‌های آزمایشی، نشان‌دهنده‌ی به‌صرفه‌ی فاکتوری در قالب طرح‌کاملی تصادفی با چهار تکرار در گلخانه دانشگاه آزاد اسلامی واحد دامغان بوده است. در سال 1394-1393 به کار رفته شد. نتیجه‌های آزمایش به‌نحوی‌ی شکل‌دیده.

واژه‌های کلیدی: پراکیداز، پروپتین، پروتئین، کاتالاز

مقدمه

خمی خیری (الثیا اوفیسینالیس) یکی از گیاهان دارویی مهم از تیره مالوآس (Malvaceae) علفی، خندسانه، اپسنا و خودرو، که سرساخته‌های کلی در نیز ریشه‌ها جایی موارد مورد مطالعه می‌باشد. درستی دارای لعاب و موسمی‌ساز‌فرآوری است. این گیاه دارای موارد نشاسته‌هایی نیز می‌باشد.

نویسنده مسئول، نشانی پست الکترونیکی: bahareh.kashefi@gmail.com
آت آت (Fletcher et al., 2000) اثرات مورفولوژیکی تربیت‌ال hiatus روی گیاه کامل کاهش ارتفاع گیاه، سبزی و متراکم نمونه گیاه، افزایش ضخامت و کاهش سطح برگ، افزایش وزن شکست برگ در واحدهای سطح و افزایش رشد ریشه و تکثیر ریشه نابیا است (1991). {
\[\text{Davis, 2008, 2011}\]}

اصف تربیت‌ال hiatus یا در قسطه‌کشی کم، اثرات فراوانی در گیاه و اثرات مشروط در پی ندارد (2011). ثابت شده است که استفاده صحیح از تضمین کندنهای رشد می‌تواند مقاومت گیاه را نسبت به تنش‌های محیطی نظیر شکست، شوری، فلزات سگین، یخ زدگی و غرفه افزایش دهد (Hojati et al., 2011).

با توجه به کمبود آب در سال‌های اخیر، بهبود و توسه سطح تحلیل گیاهان به کم آبی کاربرد تربیت‌ال طبیعی می‌تواند روستایی و روانی یادی در تولید و عرض مصرف‌های این بهبود در بافت صنعتی و فلاورها نیز موجب تغییرات در اثرات محیطی است. {
\[\text{Szabo et al., 2007; Shao et al., 2008}\]}

گیاهان در فضای محیطی به استفاده از مختلف محصولات اقتصادی گیاه‌های استفاده می‌شود، نتیجه در صفات {
\[\text{Farooq et al., 2008}\]}

فیزیولوژیک شکل کاشش فتوسنتز، افزایش نیاز و افزایش هورمون آسیرک اسید در ریشه و حرقه آن به‌صورت {
\[\text{Manivannan et al., 2007}\]}

اندام‌های هوایی خصوصاً در این زمینه و در نتیجه، بسته نشان دهنده و تجهیز مواد محلول در سرما و خصوص بلوط و پرولین و پرل تغییرات در صفات {
\[\text{Khan et al., 2011}\]}

ورم‌ولوژیکی گیاه در ریشه، ساقه، برگ و میوه می‌گردد. {
\[\text{Abdul Jaleel et al., 2009}\]}

مواد و روش‌ها

به منظور بررسی تأثیر تربیت‌های گیاه‌پروری بر خصوص صفات ورما‌ولوژیکی گیاه تحت شرایط تنش شکستی، آزمایش به‌صورت فاکتوری در قالب طرح کامل تصادفی با چهار تکرار در گلخانه‌ای زیرزمینی جدا و تیمارهای در {
\[\text{Althaea 1391}\]}

این‌ها به اجرای آزمون‌های خریداری شده و (officinalis)

به‌صورت مستقیم در گلخانه‌ها (ظرف‌های 19 و ارتفاع

\[\text{15/5 cm}\]

\[\text{گلدان}\] (با مخلوطی از خاک لوم و خاک برک)

\[\text{نیست سه یک کاشته (جدول 1)}\] و آب‌پذیری گلدان‌ها نا

سرعت تطوری بذر، به‌طور روانی انجام شد، پس از رشد و استقرار مناسب گیاهان در گلدان‌ها در مرحله‌ی 4-5 برگ،
جدول 1- آزمون خاک مورد استفاده در تحقیق

<table>
<thead>
<tr>
<th>pH</th>
<th>EC</th>
<th>T.N.V</th>
<th>O.C</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Na</th>
<th>P</th>
<th>K</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

اسبید سه درصد اضافه گردید. عصاره صاف شده درون جمجمه
آزمایش جدید ریخته (مختلف ناپژوهانیده، اسیدسابقه، اسیدسفید، اسیدسفیدتیک
گل‌مردگان و اسیدسفیدتیک شش مول) و استبزیدتیک
گل‌مردگان به این افزوده و مخلوط گردید. همچنین محلول‌های
استاندارد نیز آماده و تهیه شدند. پس از سرد شدن لوله‌ها، چهار میلی-
لیتر تولید شده با محلول اضافه و پس از تنشیک دو فاز جریان
قسمت زنگی در دستگاه سافتکن‌فومتر با طول موج 540-
تام‌تر قرار گرفت و با کمک محاسبه استاندارد مقدار پرولین
محاسبه شد.

اندازه‌گیری میزان کل کربوهیدرات‌های محلول پرگ به
روش غیر داده شده (Esselrigi, 1986) انجام شد. ابتدا نمونه
برگی خشک شده از پنجم یا پنجم جمعیت از گرده، برگ
که‌های نتیجه‌گیری و صفحات داده‌گیری نادیده گرفته شد. برای
انتقاد نمونه‌گیری گیاهی از طرف حساب حاکم، مقدار، روی
هم‌نمونه‌گیری در آزمایشگاه و دام‌چه، دانشگاه
برای انجام آندازه‌گیری لازم و آماده‌سازی، مقدامات
نگهداری شدند.

صفحه رشد مورد بررسی از نمونه تازه شاخص تعداد برگ
در بونه، رشد ساقه و رشد، ۳۸ درصد زیایی در بونه، انداده‌گیری
سطح برگ (دستگاه سفتکن سفت برگ مدل
Delta T ساخت انجیلستان) در بونه، میزان پرولین، نسبت
فعالیت (انزیم‌های آنزیم‌های
آنتی‌کاردیناپتیک، کاتاژ و محتوای پروتئین‌گیاه (با
Spectrophotometer UV-Vis).

دستگاه استیکسافتووکتور مدل
WPA) یا بونه از نمونه، این جهت تعبیر و نکات گیاه
و میزان کربوهیدرات‌های محلول استفاده شد. طول ساقه
ریشه، رشد و نکات گیاه انداده‌گیری شدند. روی گیاه
اندازه‌گیری سایر صفات بر روی برگ گیاه، به احتیاط به شرح
دریفریزی (Bates et al., 1973).

جهل سنجش غلایی کنی آزماین پراکسیداز
(Chance and Maehly, 1955)
محلول‌های فشرده، پرتوگالاتر (C,H,2O,
و آب آکسیژن،
0.5 گرم ماده گیاهی با هاون مزید شده و سولفاتسیلیک
میزان فعالیت کمی آنزیم ANS و دستگاه اسیستپروفومتوم در طول موج ۴۰۰ نانومتر قرمز و سبز مقدار کالیبره کردن دستگاه از بافر استاندارد استفاده شد و با محاسبه کمیت سنجی در واحد فعالیت بر میلی گرم پروتئین گزارش شد. به منظور سنگین فعالیت کمی آنزیم کالیبره کردن با نتایج آزمایش و آب کسب می‌رود.

فعالیت کمی آنزیم ANS و دستگاه اسیستپروفومتوم در طول موج ۴۰۰ نانومتر قرمز و سبز مقدار کالیبره کردن دستگاه از بافر استاندارد استفاده شد و با محاسبه کمیت سنجی در واحد فعالیت بر میلی گرم پروتئین گزارش شد. به منظور سنگین فعالیت کمی آنزیم کالیبره کردن با نتایج آزمایش و آب کسب می‌رود.

برای اندام‌های پروتئین (Lowry et al., 1951) پس از افزودن هیدروکسید سدیم و نرمال به عصاره گیاهی نامه به استاندارد نمونه‌های یک در حمام آب گرم (دماي ۱۰۰ درجه سانتی گراد) قرار گرفته و پس از سنگین شدن کمپلکس (محول Cusco بر میلی گرم پروتئین گزارش شد. کمبیت دریافت، مواد شیمیایی، آزمون‌های وابسته به آن اضافه شد و مخلوط حاصل پس از ۳۰ دقیقه ماندن در تاریکی و همای انتقال در طول موج ۶۷۵ نانومتر قرنطین شد. برای تهیه استاندارد از آلومینیوم گذاری گه محتوی میزان پروتئین عصاره‌ها استفاده شد.

روش تجزیه و تحلیل آماری: پس از جمع‌آوری داده‌ها تجزیه و تحلیل آماری با استفاده از نرم‌افزار SAS انجام گرفت. مقایسه میانگین‌ها داده‌ها از طریق آزمون چند دامنه‌ای دانکین در سطح احتمال پنج درصد و همبستگی بین صفات تبعیض شد. همچنین برای رسم نمودار از نرم‌افزار Excel گردید.

نتایج و بحث
براساس نتایج (جدول ۲) در سطح تنش خشکی، تیمار هگراکونزاول و اثر منفی خشکی و هگراکونزاول در تعریخت بکر در طول موج ۴۰۰ نانومتر قرمز و سبز مقدار خشکی معنای دارد (نویی‌دانه، ۱۰۰/۰، P<).

 مقایسه میانگین‌ها مشخص نمود. تعداد و طول دریافت و تیمار در سطح تنش خشکی، تیمار هگراکونزاول و اثر منفی خشکی و هگراکونزاول. در تعریخت بکر در طول موج ۴۰۰ نانومتر قرمز و سبز مقدار خشکی معنای دارد (نویی‌دانه، ۱۰۰/۰، P<).
جدول 2- تجزیه و ارایانس (میانگین مربعات) بررسی تنش خشکی و هگزاکنوزول بر صفات رشدی خنثی

| منابع تغییرات | درجه آزادی | تعداد برگ | طول برگ | طول رنگه | وزن نر | وزن شکل | پراکسیداز | پروتئین | کربوهیدرات محلول | پروتئین | وزن شکل | درجه آزادی | تعداد برگ | طول برگ | طول رنگه | وزن نر | وزن شکل |
|----------------|-------------|-----------|---------|-----------|--------|----------|-----------|---------|-------------------|---------|----------|-------------|-----------|---------|---------|---------|--------|---------|
| نش خشکی | 15 | 3.72 | 5.82 | 3.12 | 0.51 | 0.15 | 0.05 | 0.02 | 0.00 | 0.03 | 0.01 | 0.57 | 10 | 5.0 | 3.24 | 0.88 | 0.04 |
| نیمار هگزاکنوزول| 2 | 0.18 | 0.13 | 0.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| نش خشکی | 15 | 3.72 | 5.82 | 3.12 | 0.51 | 0.15 | 0.05 | 0.02 | 0.00 | 0.03 | 0.01 | 0.57 | 10 | 5.0 | 3.24 | 0.88 | 0.04 |
| نیمار هگزاکنوزول| 2 | 0.18 | 0.13 | 0.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| نش خشکی | 15 | 3.72 | 5.82 | 3.12 | 0.51 | 0.15 | 0.05 | 0.02 | 0.00 | 0.03 | 0.01 | 0.57 | 10 | 5.0 | 3.24 | 0.88 | 0.04 |
| نیمار هگزاکنوزول| 2 | 0.18 | 0.13 | 0.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

جدول 3- مقایسه میانگین بررسی تنش خشکی و هگزاکنوزول بر صفات رشدی خنثی

<table>
<thead>
<tr>
<th>وزن خشک</th>
<th>وزن نر</th>
<th>وزن شکل</th>
<th>طول رنگه</th>
<th>طول برگ</th>
<th>سطح هگزاکنوزول</th>
<th>تعداد برگ</th>
<th>درجه آزادی</th>
<th>پراکسیداز</th>
<th>پروتئین</th>
<th>کربوهیدرات محلول</th>
<th>پروتئین</th>
<th>وزن شکل</th>
<th>درجه آزادی</th>
<th>تعداد برگ</th>
<th>طول برگ</th>
<th>طول رنگه</th>
<th>وزن نر</th>
<th>وزن شکل</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌های که دارای حرف مشترک هستند براساس آزمون دانکن در سطح احتمال 5% درصد تفاوت معنی‌داری ندارند.
جدول ۴. مقایسه میانگین بررسی نتش خشکی و هژگاکونازول بر صفات رشدی خصی

<table>
<thead>
<tr>
<th>وزن نر</th>
</tr>
</thead>
<tbody>
<tr>
<td>5010</td>
<td>5020</td>
<td>5030</td>
<td>5040</td>
<td>5050</td>
<td>5060</td>
<td>5070</td>
</tr>
<tr>
<td>6010</td>
<td>6020</td>
<td>6030</td>
<td>6040</td>
<td>6050</td>
<td>6060</td>
<td>6070</td>
</tr>
<tr>
<td>7010</td>
<td>7020</td>
<td>7030</td>
<td>7040</td>
<td>7050</td>
<td>7060</td>
<td>7070</td>
</tr>
<tr>
<td>8010</td>
<td>8020</td>
<td>8030</td>
<td>8040</td>
<td>8050</td>
<td>8060</td>
<td>8070</td>
</tr>
<tr>
<td>9010</td>
<td>9020</td>
<td>9030</td>
<td>9040</td>
<td>9050</td>
<td>9060</td>
<td>9070</td>
</tr>
</tbody>
</table>

جوانتزی و رشد کیاهاه گیاهان دارویی زوفا (Leucanthemum) و هژگاکونازول (Hyssopus Officinalis) به نش خشکی نور متابولیک گرده چفه و در مواردی

اهنگزی و رشد کیاهاه گیاهان دارویی توکر و مارگاریت (Superbum) به نش خشکی نور مشترک هستند براساس آزمون داتنک در مه احتمال یک درصد تفاوت معنی داری ندارند.

در هر ستون میانگین های که دارای حرف مشترک هستند براساس آزمون داتنک در سطح احتمال یک درصد تفاوت معنی داری ندارند.

نتیجه‌گیری نش خشکی، تیمار هژگاکونازول و اثر منتفی خشکی و هژگاکونازولدر نتیج طول ساقه به ریشه اختلاف معنی‌داری نشان داد (۲۰۱۲). احتمال معنی‌داری میانگین‌ها در مواردی نشان داده شد که که کاهش روند در شرایط تیمار ۵۰ درصد، نسبت ساقه به ریشه روغن کاهشی داشته و در شرایط بدون نش، طول ساقه به ریشه بیشتر از شرایط تیمار بود و بیشترین نسبت ساقه به ریشه در تیمار بدون هژگاکونازول مشاهده شد (جدول ۴ و ۵). در بررسی

پایش رشد کیاهاه گیاهان دارویی زوفا و مارگاریت به نش خشکی مشاهده شد که نسبت طول ساقه به ریشه، با افزایش نش خشکی در هر دو گیاه مورد بررسی کاهش یافت (امیری و همکاران، ۱۳۷۹). نظر می‌رسد در گیاهان سازگار با شرایط نش، حتی اگر طول اندام‌ها کاهش یابد، مقدار کاهش در اندام زیرموتی به مراتب کمتر از اندام هوایی گیاه یاد شده تا نیاز به

نتایج حاصل از تحقیق مشخص نمود (جدول ۲)، سطوح
تأثیر هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

یک‌وزی (جدول ۳ و ۴). براساس تحقیق‌ها، دیگر روش‌های تحقیق که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

بوی (Salvia leriifolia) به‌عنوان یک انتخاب به‌عنوان پنجم از گیاه‌هایی است که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

Kishorekumar et al. (2007) شروع به آزمایش‌هایی کردند که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

Akbari et al. (2011) شروع به آزمایش‌هایی کردند که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

بات‌داز، Gopi et al. (2007) شروع به آزمایش‌هایی کردند که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

لکهمنان و همکاران (2007) شروع به آزمایش‌هایی کردند که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

افرازی (Plectranthus vettiveroides) به‌عنوان پنجم از گیاه‌هایی است که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

K.C. Jacob. شروع به آزمایش‌هایی کردند که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

افرازی (Plectranthus vettiveroides) به‌عنوان پنجم از گیاه‌هایی است که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

K.C. Jacob. شروع به آزمایش‌هایی کردند که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

افرازی (Plectranthus vettiveroides) به‌عنوان پنجم از گیاه‌هایی است که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

K.C. Jacob. شروع به آزمایش‌هایی کردند که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

افرازی (Plectranthus vettiveroides) به‌عنوان پنجم از گیاه‌هایی است که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

K.C. Jacob. شروع به آزمایش‌هایی کردند که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...

که از هگوکانولوز و لیسبح شکل بر بقای صفات مورفولوژی و...
نتایج این تحقیق نشان داد (جدول ۲) درصد طرفیت زراعی، تیمار هگرکوناژول و اثر معنی‌دار آنها در فعالیت کمي‌کننده آنزیم پراکسیداز و کاتالاز اختلاف معنی‌داری داشتند (P<0/01). همچنین مقایسه میانگین‌های نشان داد که فعالیت کمی آنزیم پراکسیداز در شرایط بدون تنش نسبت به شرایط تنش بالاتر بود (جدول ۳). در شرایط تنش، بیشترین مقدار فعالیت کمی آنزیم پراکسیداز در تیمار شاهد مشاهده شد، که نشان داد عایق‌های هگرکوناژول تأثیر مثبت بر فعالیت آنزیم در شرایط تنش داشتند (جدول ۴). براساس مقایسه میانگین‌های بیشترین فعالیت کمی آنزیم پراکسیداز در شرایط تنش افزایش یافت و بیشترین مقدار آن در سطح بدون تیمار مشاهده شد. (جدول ۳ و ۴). در گزارش‌های مربوط به این موضوع، آنچه به افزایش فعالیت کمی آنزیم پراکسیداز کمک می‌کند، شامل تاثیر فعالیت این آنزیم در یونجه‌های نیتروژنیک می‌باشد. براساس نتایج این تحقیق، بیشترین فعالیت این آنزیم در یونجه‌های نیتروژنیک می‌باشد. براساس نتایج این تحقیق، بیشترین فعالیت این آنزیم در یونجه‌های نیتروژنیک می‌باشد. براساس نتایج این تحقیق، بیشترین فعالیت این آنزیم در یونجه‌های نیتروژنیک می‌باشد. براساس نتایج این تحقیق
جدول 5- جدول همبستگی صفات بررسی تأثیر سطوح خشکی و هگراکونالز و صفات رشدی خمنی

<table>
<thead>
<tr>
<th>ردیف</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.75</td>
</tr>
<tr>
<td>3</td>
<td>0.67</td>
</tr>
<tr>
<td>4</td>
<td>0.63</td>
</tr>
<tr>
<td>5</td>
<td>0.60</td>
</tr>
<tr>
<td>6</td>
<td>0.59</td>
</tr>
<tr>
<td>7</td>
<td>0.56</td>
</tr>
<tr>
<td>8</td>
<td>0.53</td>
</tr>
<tr>
<td>9</td>
<td>0.52</td>
</tr>
<tr>
<td>10</td>
<td>0.49</td>
</tr>
<tr>
<td>11</td>
<td>0.48</td>
</tr>
<tr>
<td>12</td>
<td>0.47</td>
</tr>
</tbody>
</table>

۱- تعداد برشگ، ۲- سطح برشگ، ۳- طول ساقه، ۴- طول ریشه، ۵- ساقه به ریشه، ۶- وزن برشگ، ۷- وزن خشک، ۸- پرولین، ۹- کربوهیدرات-های محلول، ۱۰- پراکسیداز، ۱۱- کانتانز، ۱۲- پروتئین

نتیجه‌گیری کلی

نتایج حاصل از این تحقیق مشخص نمودن طبیعی تکریک‌های تربیت‌الروی موجب شده است که میزان پروتئین نسبت به شرایط تربیتی می‌باشد. ویژگی‌های حاوی پروتئین‌های محلول در گیاهان سبزبد خشکی افتد. شرایط خشکی و میزان پروتئین نسبت به شرایط تربیتی افزایش می‌یابد. رابطه مثبت بین پروتئین با سطح برشگ مثبت را نشان می‌دهد. (Sanchez et al., 2003).

بررسی نتایج همبستگی صفات نشان داد (جدول ۵) طول ساقه با تعداد برشگ و سطح برشگ، نسبت طول ساقه به ریشه با تعداد برشگ، طول برشگ و طول ساقه رابطه مثبت و مستقل داشتند (P<0.05). همچنین وزن تر با تعداد برشگ، سطح برشگ، طول ساقه و نسبت ساقه به ریشه نشان دادند (P<0.05). صفات وزن خشک با نسبت ساقه به ریشه و وزن تر پراکسیداز با وزن خشک، نسبت همبستگی مثبت و معنی‌داری داشتند (P<0.05). همچنین پرولین با سطح برشگ همبستگی معنی‌داری (P<0.05) را نشان داد. با توجه به اینکه در...
در گزارش‌هایی مربوط به تحقیق‌های متعددی در حوزه‌های مختلف انجام گردید و آن‌ها با توجه به داده‌های جامع و دقیقی که در مورد تأثیرات مختلفی از جمله تغییرات محیطی و بیوتکنیکی در رشد و عملکرد گیاهان در این مطالعات به‌کاررفته بود، در نهایت به بهبود و به‌رهبردی جلوه‌گیری در رشد و عملکرد گیاهان کمک کرد.

نتایج اصلی:

1. تأثیرات تغییرات محیطی و بیوتکنیکی در رشد و عملکرد گیاهان در تحقیقات مختلفی تزاریالی و فیزیولوژیکی بالقوه بسیار مهم و ضروری بوده و اگر نبوده، نتایج را می‌توانیم در بیان شتاب‌زدایی و بهبود عملکرد گیاهان در محیط‌های مختلفی نشان دهیم.

2. ارتباطات متعددی بین تغییرات محیطی و بیوتکنیکی در رشد و عملکرد گیاهان در تحقیقات مختلفی تزاریالی و فیزیولوژیکی بالقوه بسیار مهم و ضروری بوده و اگر نبوده، نتایج را می‌توانیم در بیان شتاب‌زدایی و بهبود عملکرد گیاهان در محیط‌های مختلفی نشان دهیم.

3. نتایج این تحقیقات به‌عنوان امکان‌پذیری برای توسعه فناوری‌های محیطی و بیوتکنیکی در زراعت به‌عنوان یک راهبرد جدید در بهبود عملکرد گیاهان در محیط‌های مختلفی بوده و اگر نبوده، نتایج را می‌توانیم در بیان شتاب‌زدایی و بهبود عملکرد گیاهان در محیط‌های مختلفی نشان دهیم.

4. نتایج این تحقیقات به‌عنوان امکان‌پذیری برای توسعه فناوری‌های محیطی و بیوتکنیکی در زراعت به‌عنوان یک راهبرد جدید در بهبود عملکرد گیاهان در محیط‌های مختلفی بوده و اگر نبوده، نتایج را می‌توانیم در بیان شتاب‌زدایی و بهبود عملکرد گیاهان در محیط‌های مختلفی نشان دهیم.

کلیه این نتایج به‌عنوان امکان‌پذیری برای توسعه فناوری‌های محیطی و بیوتکنیکی در زراعت به‌عنوان یک راهبرد جدید در بهبود عملکرد گیاهان در محیط‌های مختلفی بوده و اگر نبوده، نتایج را می‌توانیم در بیان شتاب‌زدایی و بهبود عملکرد گیاهان در محیط‌های مختلفی نشان دهیم.

کلیه این نتایج به‌عنوان امکان‌پذیری برای توسعه فناوری‌های محیطی و بیوتکنیکی در زراعت به‌عنوان یک راهبرد جدید در بهبود عملکرد گیاهان در محیط‌های مختلفی بوده و اگر نبوده، نتایج را می‌توانیم در بیان شتاب‌زدایی و بهبود عملکرد گیاهان در محیط‌های مختلفی نشان دهیم.

