واکنش رنگدانه‌های فتوستزی، تسهیم ماده خشک و محترق نیترات گیاه خرده (Portulaca oleracea) به تغذیه گیاهی

به‌جای عمانی، سیف‌الله فلاح و محمدرضا تامین
گروه زراعت، دانشکده کشاورزی، دانشگاه شهید رجایی
تاریخ دریافت: 2004/11/17 تاریخ پذیرش نهایی: 2004/12/17

چکیده:
نیترژن و فسفر مهم‌ترین عناصر غذایی در تغذیه گیاهی به شمار می‌رود ولی کاربرد نامشخص آنها جنینه‌های فیزیولوژیکی گیاه را تحت تأثیر قرار می‌دهد. به‌نظر می‌رسد، که در برابر طرح بافته‌های پایدارهای فیزیولوژیکی گیاه، خرده به تغذیه کاملاً به عنوان عامل اصلی در نه سطح شعله تأثیر می‌گذارد. (حدی)

کود کپری بر اساس نیترژن گیاه؛ (کود مس غیر رایگان گیاه)، (کود کپری بر اساس نیترژن گیاه)، (کود کپری بر اساس نیترژن گیاه)، (کود کپری بر اساس نیترژن گیاه).

در برابر اولیت‌های تالا، کمترین میزان قارچ‌نیتریدها را نشان داد، دربردارنده امیر، کمترین میزان کاروتئنی‌های مربوط به دو/36 و تا/34 میلی‌گرم در گرم کمترین میزان قارچ‌نیتریدها را نشان داد، دربردارند. در تهیه‌های آلی نیز مشاهده شد. میزان تسمه‌های خشک برگ ساخته تیمارها به کود مس غیر رایگان گیاه (70/63 میلی‌گرم) (1/67 تا/34 میلی‌گرم)

که تقاضای گیاه با علائم کود مس غیر رایگان گیاه، نیترژن به تأمین نیترژن از کود استفاده و حتی به کود کپری بر اساس نیترژن گیاه، نیترژن به تأمین نیترژن از کود استفاده و

منجر به افزایش قابل ملاحظه تولید و سلامت محصول می‌شود.

واژه‌های کلیدی: فسفر؛ کاروتئنی‌ها؛ کاروتئنی‌ها؛ کاروتئنی‌ها؛ کاروتئنی‌ها.

مقدمه:

قند کلیدی این عنصر در بهبود عملکرد کمی و کیفی گیاهان و نیز اثرات عنصر بر اکوسیستم‌های زراعی، مدیریت آن در خاک به عنوان یکی از مباحث مهم در کشاورزی مطرح می‌باشد. (Guarda et al., 2004) جزء اولیه تنش‌های بهبودی تربیتی آلی‌های اسیدهای آمینه، پروتئین‌ها و اسیدهای نکولاتکی به شمار می‌رود (El-Sayed et al., 2000) و کمپوز نیتروفلوروزیک را در دو مرحله رویش و زایشی به

falah1357@yahoo.com

نویسنده مسئول، نشنبه پست الکترونیکی: falah1357@yahoo.com

Downloaded from jispp.iut.ac.ir at 5:43 IRDT on Tuesday April 14th 2020
تاخریز می‌دانند از سرعت گسترش برق و دوام سطح برق در گیاهان می‌گارد. این شرایط رادانمان استفاده از نور نیز کاهش می‌یابد و در حالت خفیف افراشی یا باید شدت کریم که بیشتر می‌شود. زیرا نیتروژن لیزر این همه به آرامی داده از اصل تشکیل دهنده گل‌ریزی در گیاه است که عامل اصلی در کرنگری محصول می‌شود (Walker, 2001). از انجام که فتوسنتز ارتباط نزدیکی با محتوای نیتروژن در برق دارد، تعیین سبب نیتروژن برای بهبود عملکرد و سبب ماندن گیاهان مهم است. (Thomas and Smart, 1993) و در باید کاردینال نیتروژن جهت بهبود عملکرد گیاهان (Hartemink et al., 2000; Ankumah et al., 2003) مطرح شده که هر دهه مصرف نیتروژن به عنوان یک هدف اولیه در تولید کشاورزی بهبود کارایی مصرف نیتروژن به عنوان یک اصل مهم در سیاست‌های کشاورزی در حال توجه به نظر گرفته می‌شود (Hossain et al., 2005).

اگرچه استفاده از کودهای شیمیایی معنی‌دار سیر در راه‌برد تأمین نیتروژن مورد نیاز گیاهان می‌باشد، اما هر دهه زیاد مصرف کودهای شیمیایی، ایجاد آلودگی، تخریب محیط زیست و خاک نگران کننده می‌باشد (Zaidi et al., 2003). بررسی‌های حاکی از این است که اجابت با آرامی کودهای متغیر به استفاده مداوم از کودهای شیمیایی جایگزین به استفاده می‌شود. با استفاده از مدل‌بنی شیمیایی که در تحقیقات مطالعه در کشاورزی دانشگاه شهرکرد با عرض چگالی ۲۲ درجه و ۲۱ دقیقه شمالی و طول جغرافیایی ۵۰ درجه و ۴۹ دقیقه شرقی و با ارتفاع ۲۱۱۷ متر از سطح دریا اجرای شد. این آزمایش در سال ۱۳۹۲ مزرعه تصمیم‌گیری دانشگاه کشاورزی دانشگاه شهرکرد با عرض جغرافیایی ۲۲ درجه و ۲۱ دقیقه شمالی و طول جغرافیایی ۵۰ درجه و ۴۹ دقیقه شرقی و با ارتفاع ۲۱۱۷ متر از سطح دریا اجرا شد. این آزمایش به سوخت کردن حشرات خرد شده در زمین که در قالب طرح پایه بلوک‌های کامل تصمیم در سه تکرار که در آن تغذیه گیاهی به عنوان عامل اصلی در نه شرائط شاهد (عدم مصرف کود) T۰: کود غیر مفعول بر اساس نیاز نیتروژن گیاه T۱: کود مرغی بر اساس نیاز نیتروژن گیاه T۲: کود گاوی بر اساس نیاز نیتروژن گیاه T۳: کود گاوی بر اساس نیاز اصلی تأکید می‌کنند و از سرعت گسترش برق و دوام سطح برق در گیاهان می‌گارد. این شرایط رادانمان استفاده از نور نیز کاهش می‌یابد و در حالت خفیف افراشی یا باید شدت کریم که بیشتر می‌شود. زیرا نیتروژن لیزر این همه به آرامی داده از اصل تشکیل دهنده گل‌ریزی در گیاه است که عامل اصلی در کرنگری محصول می‌شود (Walker, 2001). از انجام که فتوسنتز ارتباط نزدیکی با محتوای نیتروژن در برق دارد، تعیین سبب نیتروژن برای بهبود عملکرد و سبب ماندن گیاهان مهم است. (Thomas and Smart, 1993) و در باید کاردینال نیتروژن جهت بهبود عملکرد گیاهان (Hartemink et al., 2000; Ankumah et al., 2003) مطرح شده که هر دهه مصرف نیتروژن به عنوان یک هدف اولیه در تولید کشاورزی بهبود کارایی مصرف نیتروژن به عنوان یک اصل مهم در سیاست‌های کشاورزی در حال توجه به نظر گرفته می‌شود (Hossain et al., 2005).

اگرچه استفاده از کودهای شیمیایی معنی‌دار سیر در راه‌برد تأمین نیتروژن مورد نیاز گیاهان می‌باشد، اما هر دهه زیاد مصرف کودهای شیمیایی، ایجاد آلودگی، تخریب محیط زیست و خاک نگران کننده می‌باشد (Zaidi et al., 2003). بررسی‌های حاکی از این است که اجابت با آرامی کودهای متغیر به استفاده مداوم از کودهای شیمیایی جایگزین به استفاده می‌شود. با استفاده از مدل‌بنی شیمیایی که در تحقیقات مطالعه در کشاورزی دانشگاه شهرکرد با عرض چگالی ۲۲ درجه و ۲۱ دقیقه شمالی و طول جغرافیایی ۵۰ درجه و ۴۹ دقیقه شرقی و با ارتفاع ۲۱۱۷ متر از سطح دریا اجرا شد. این آزمایش در سال ۱۳۹۲ مزرعه تصمیم‌گیری دانشگاه کشاورزی دانشگاه شهرکرد با عرض جغرافیایی ۲۲ درجه و ۲۱ دقیقه شمالی و طول جغرافیایی ۵۰ درجه و ۴۹ دقیقه شرقی و با ارتفاع ۲۱۱۷ متر از سطح دریا اجرا شد. این آزمایش به سوخت کردن حشرات خرد شده در زمین که در قالب طرح پایه بلوک‌های کامل تصمیم در سه تکرار که در آن تغذیه گیاهی به عنوان عامل اصلی در نه شرائط شاهد (عدم مصرف کود) T۰: کود غیر مفعول بر اساس نیاز نیتروژن گیاه T۱: کود مرغی بر اساس نیاز نیتروژن گیاه T۲: کود گاوی بر اساس نیاز اصلی
جدول 1- بررسی ویژگی‌های فیزیکی و شیمیایی خاک، کود مرغی و کود گاوری مورد استفاده

<table>
<thead>
<tr>
<th>کود گاوری</th>
<th>کود مرغی</th>
<th>واحد</th>
<th>ویژگی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>لومو رسی</td>
<td>پاشت</td>
</tr>
<tr>
<td>14/5</td>
<td>18/99</td>
<td>dS m⁻¹</td>
<td>EC</td>
</tr>
<tr>
<td>6/1</td>
<td>8/21</td>
<td>7/96</td>
<td>pH</td>
</tr>
<tr>
<td>48/9</td>
<td>32/10</td>
<td>9/55</td>
<td>OC</td>
</tr>
<tr>
<td>120/8</td>
<td>10/82</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>2900</td>
<td>3470</td>
<td>(mg kg⁻¹)</td>
<td>p*</td>
</tr>
<tr>
<td>8000</td>
<td>19200</td>
<td>(mg kg⁻¹)</td>
<td>K*</td>
</tr>
</tbody>
</table>

* برای کود مرغی و کود گاوری قرم اکسید این عناصر گزارش شده است.

(سالمتی و نژاد، ۱۳۹۲) ارائه تعداد پی از کاشت و آب‌یاری‌های بعدی با توجه به شرایط محیطی و نیاز گیاهی به روش غرافی انجام شد. ویژگی‌های مختلف گیاه در طول دوره رشد انجام گردید. برداشت گزارش انجام گردید که یکی از نتایج اصلی این مطالعه می‌باشد. عضویت متفاوتی از کشورهای به این ترتیب در پنج و بست و پنج مرداد ماه اندازه‌گیری شده که با دوره رشد گزارش شده برای این کیفیت در طبقه داشت (سالمتی و نژاد، ۱۳۹۲) در همان رفت، برای اندازه‌گیری صفات زیر پس از حذف اثر حساسیت، گیاه‌های هر کرت از ارتقای ۵ سانتی‌متری سطح خاک قطع و سپس تعداد ۱۰ بوته از هر کرت به تعداد صرفه‌ای انتخاب شد. بعداً، این نمونه‌ها از بوته به طور صرفه‌ای انتخاب شد و جهت اندازه‌گیری کلروفیل a، کلروفیل b و محبس کلروفیل ظرفیت عملکرد نرم که علاوی b، کاروتینوئیدها، محتوای نیترات و کلسیم مورد استفاده کرد. برای اندازه‌گیری فیزیکی، استخراج این رنگ‌دهنده‌ها از گرگ با استن ۸۰ درصد و به روش Lichtenenthaler (۱۹۸۸) (انجام گرفت. ابتدا ۲/۵ گرم از پخت تازه یک پنک برگ در هاوانا ۱۰ به میلی لیتر استن سایه‌ای شد تا به همراه سمنگ برای تغییر رنگ بپاشد. پس از آن به مدت ۵ دقیقه در دستگاه شیکور قرار گرفت. بعد از داخل ولوله‌های سانتی‌فریزر با ۳۲۰۰ دور در دقیقه به مدت ۵ دقیقه قرار داده شد تا یک محلول زلال سیز رنگ حاصل شود و پس از آن محلول حاصله را با استفاده از کاغذ صاف و قیف درون بالن زهره‌های صاف گیاه، تی‌بی و تی‌جی: کود شیمیایی معادل ۱۲، تی‌بی و تی‌جی: کود شیمیایی معادل ۱۲ مورد بررسی مورد بررسی. تاریخ برداشت به عنوان عامل فریغ در دو سطح شامل دو تاریخ ۵ و ۲۵ مرداد ماه بود. اندازه‌گیری قبل از تهیه بست، نمونه‌هایی از هر ۳۰ سانتی‌متری خاک مرزخوره گردید. ویژگی‌های خاک و همچنین کود مرغی و کود گاوری نیز از آزمایشگاه تعیین گردید (جدول ۱). نیاز نیتروژنی و فسفری گیاه خرده به ترتیب ۱۲۰ و ۱۵۰ کیلوگرم در هکتار در نظم گردش شد (سالمتی و نژاد، ۱۳۹۲ و امیدیبیک، ۱۳۸۷). عامل‌های نیازمندی کود شیمیایی و دامی. بعد از عملیات آماده‌سازی زمین مورد نظر اندازه‌گیری شد. به این صورت که ابتدا کرتن‌های آزمایشی ایجاد و سپس کود دامی کود سپرسه‌های تنری و همچنین ۵۰ گرم از کود اوره طبق تیمار مربوط به کرتین نورد اضافه و کاملاً با خاک محلول گردید. بایلی‌گردی کود شیمیایی مورد نیاز به صورت سری بعد از برداشت اول به کرتین اضافه شد. به دلیل کافی بودن تپاپیمی خاک برای رشد این گیاه (جدول ۱) هیچ کوتی کود تناسبی به خاک افزوده نشد.

کشت بهور خرده (تونه محلی بوشهر) در ریف‌های با فواصل ۲۵ سانتی‌متری تا ترکم در برای تراکم مطلوب (۸۰ بوته در مترمربع) در فاصله یک سانتی‌متری خاک به صورت خشک‌کاری در نمایش ناحیه مرحله ۶-۴ برگی خشک رپید ام در تراکم مطلوب نکش شدند.
برای اندازه‌گیری صفاتی مانند وزن خشک برگ، وزن خشک ساقه، وزن خشک آدام هواپی که نمونه تصادفی (10 بوته) انتخاب و پس از جداسازی برگ و ساقه و تعیین وزن تر، در دو میلی‌لیتر بسیار استاندارد (ان، 1496) نگهداری شدند. پس از خشک شدن با ترازوی مدل (V-1mg) توپین شدند.
در پایان داده‌های بدست آمده، توسط نرم‌افزار آماری SAS مورد تجزیه و تحلیل و مقایسه میانگین‌ها بر اساس آزمون Excel در صفحه احتمال 5 درصد اندازه‌گیری و نمودار با نرم‌افزار رسم شد.

نتایج و بحث:

کلروفیل: نتایج تجزیه واریانس نشان داد که تاثیر تعیین‌گذاری خشکی و پرداخت در سطح احتمال 5 درصد بر حاصلی کلروفیل معنی‌دار بود. در حالی که برهمکنش این دو عامل برای تعیین‌گذاری نبود (جدول 2). با توجه به شکل 1 (A) میزان بیان نمود که بیشترین میزان کلروفیل a در کرت‌ها دریافت کننده کود آلی و شیمیایی مشاهده شد. میزان کلروفیل a تیمار شیمیایی معادل کود کاپی با اندازه‌گیری نیاز تیمارزنی تفاوت معنی‌داری با تیمارهای کود آلی نداشت و نسبت به تیمارهای شیمیایی معادل کود مرغی با اندازه‌گیری نیاز تیمارزنی معادل کود کاپی با اندازه‌گیری نیاز تیمارزنی a و تیمار شاهد (عصر صورت گرفته) معنی‌داری نشان داد. در پرداخت دوم نیز میزان کلروفیل a در مقایسه با پرداخت اول 9 درصد افزایش یافت که این افزایش در سطح احتمال 1 درصد معنی‌دار بود (شکل 1 (B)).

افاژیش نیتروژن یکی از عناصر اصلی در تغذیه گیاهان است. ته می‌رسد در تیمارهای آلی از منبع کود مرغی و کود گاوی با آزادسازی تریپیدی نیتروژن در طی مرحله روشنی گیاه منجر به افزایش رشدگان‌های توئستی شده و نهایتاً باعث افزایش معنی‌داری کلروفیل a در تیمارهای آلی شده و خود این میکروآب است افزایش کلروفیل a در پرداخت دوم، به دلیل تأمین نیتروژن معدنی شده گردد. سپس حجم محلول به دست آمده با استون 80 درصد به 25 میلی‌لیتر رسیدند. بلاتاله مقادیری که کوت (Jenway منطق و جذب محلول با اسکیکس. رمان (300 ۳۶۷ در طول موج‌های ۴۴۸، ۴۰۷ و ۴۰۷ نانومتر قرنطین شد. سپس میزان کلروفیل a می‌گردد. مجموع آنها و همچنین کاراکترهای طبق روابط زیر حسب میلی‌گرم در گرم وزن تر بافت گیاهی محاسبه شد (Ghnaya et al., 2009).

<table>
<thead>
<tr>
<th>Cha</th>
<th>Chb</th>
<th>Chb+</th>
<th>Car</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ghnaya et al., 2009)

**اندازه‌گیری نیتروژن: نیتروژن اندام هواپی خرده به روش کارلیمتی بعد از انجام اندازه‌گیری شب. به این صورت که این 11 الی 15 گرم پودر گیاه (بسته به مقدار نیتروژن) را توزین و به انزیم مایلی‌لیتر منتقل گردید. میزان 5 میلی‌لیتر از درصد اسید استیک اضافه کرد و به مدت 30 دقیقه در شبکه دورانی به زده و صاف شد. عصاره بدست آمده را گرفت. صافی عازده‌های صاف در 10 میلی‌لیتر از صاف دیگری استاندارد به لوله آزمایش درب دار منتقل گردید. میزان 0/5 گرم از پودر محلول اضافه کرد و مدت 30 ثانیه به شدت یقظه محلول نگه‌داشته شده با بلا‌افزایش صاف گردید. بعد از 10 دقیقه شدت رنگ افزاش شده را با اسکیکس‌متر (فارسی‌سی- مدل LKB ساخت انگلستان) در طول موج ۴۵۰ نانومتر قرنطین کرد. (Emami, 1996)

گردیده:

اندازه‌گیری کلروفیل: به منظور اندازه‌گیری کلروفیل اندام هواپی گیاه، ابتدا نمونه‌های شش‌شکل (1 گرم) را به وسیله ته می‌رسد در تیمارهای آلی از منبع کود مرغی و کود گاوی با آزادسازی تریپیدی نیتروژن در طی مرحله روشنی گیاه منجر به افزایش رشدگان‌های توئستی شده و نهایتاً باعث افزایش معنی‌داری کلروفیل a در تیمارهای آلی شده و خود این میکروآب است افزایش کلروفیل a در پرداخت دوم، به دلیل تأمین نیتروژن معدنی شده گردد. سپس حجم محلول به دست آمده با استون 80 درصد به 25 میلی‌لیتر رسیدند. بلاتاله مقادیری که کوت (Jenway منطق و جذب محلول با اسکیکس. رمان (300 ۳۶۷ در طول موج‌های ۴۴۸، ۴۰۷ و ۴۰۷ نانومتر قرنطین شد. سپس میزان کلروفیل a می‌گردد. مجموع آنها و همچنین کاراکترهای طبق روابط زیر حسب میلی‌گرم در گرم وزن تر بافت گیاهی محاسبه شد (Ghnaya et al., 2009).
جدول 2- تاثیر تجربه واریانس اثرات تغذیه گیاهی بر صفات اندازه‌گیری شده گیاه خرده طی برداشت‌های مختلف

<table>
<thead>
<tr>
<th>میانگین معیار</th>
<th>کارتوئیلا</th>
<th>کارتوئیل</th>
<th>کارتوئیل</th>
<th>کارتوئیل</th>
<th>کارتوئیل</th>
<th>کارتوئیل</th>
<th>کارتوئیل</th>
<th>کارتوئیل</th>
</tr>
</thead>
<tbody>
<tr>
<td>درجه سطح</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>منبع تغییرات</td>
<td>برداشت</td>
<td>گیاه</td>
<td>برداشت</td>
<td>گیاه</td>
<td>برداشت</td>
<td>گیاه</td>
<td>برداشت</td>
<td>گیاه</td>
</tr>
<tr>
<td>نسخه اول</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>نسخه دوم</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>نسخه سوم</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>نسخه چهارم</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>نسخه پنجم</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>نسخه ششم</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
</tr>
<tr>
<td>نسخه هفتم</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>نسخه هشتم</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
</tr>
<tr>
<td>نسخه نهم</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
</tr>
<tr>
<td>نسخه دهم</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
</tr>
</tbody>
</table>

به ترتیب پایاک گیاهی در میانه دری در سطح اختلاف آماری و 5 درصد می‌باشد.

شکل 1- تأثیر تغذیه گیاهی (A) و برداشت (B) بر میزان کارتوئیل a گیاه خرده. میانگین‌هایی داریای حروف مشابه فاقد اختلاف آماری معنی‌دار بر اساس آزمون LSD در سطح اختلاف 5 درصد می‌باشند. a: شاهد (عدم معروف کود); T1: کود مرغی بر اساس نیاز تیتروژن گیاه; T2: کود گاوی بر اساس نیاز تیتروژن گیاه; T3: کود شیمیایی معادل T1؛ T4: کود شیمیایی معادل T2؛ T5: کود شیمیایی مدا (T1+T2+T3+T4+T5) می‌باشد.
نتایج میزان‌های دارای اختلاف آماری معنی‌دار بر اساس آزمون LSD در سطح احتمال 0.05 بیان شده است. برای اختصار تیمارها شکل 1 ماهیت شد.

شیمیایی در گیاه دارویی خرده باعث افزایش کلروفیل بر گر شد.

کاراکتریستیک محققی تابعی تجزیه واریانس می‌توان اظهار نمود که اثرات گیاهی برداشت و بازکردن این دو عامل بر میزان کاراکتریستیک های برگ در سطح احتمال 0.05 معنی‌دار شد (جدول 2). مقایسه میانگین ارائه شده در شکل 3 بین‌گیری این امر است که در برداشت اول، کاراکتریستیک تیمار کود شیمیایی معادل کود مرغی بر اساس نیاز سفارشی (T8) اختلاف معنی‌داری با تیمار نشان داده. علاوه براین، تیمارهای کود مرغی و کود گازی بر اساس نیاز نیتروژنی نتایج معنی‌داری با تیمار نشان دادند. همچنین در تیمار شیمیایی معادل کود گازی بر اساس نیاز سفارشی + اوره (T7) با میانگین 0/97 میلی‌گرم در گرم کمترین میزان کاراکتریستیک مشاهده شد. برای برداشت دوم کاراکتریستیک تیمار شاهد با تیمار‌های شیمیایی اختلاف معنی‌داری نداشت. ولی میزان کاراکتریستیک در دیگر ترکیبات کننده کود از آن‌ها و شیمیایی کاهش معنی‌داری با تیمار شاهد داشت.

در زمان فتوستزر، کاراکتریستیک به عنوان محفظه کلروفیل گیاه عمل می‌کنند به‌طوری که با رشد گیاه و ظهور رنگ‌های نهایی همگام با کاهش کلروفیل، میزان کاراکتریستیک زیاد می‌شود و (Deamn, 1999). با توجه به افزایش کلروفیل a و کلروفیل b در T8.

شیمیایی 1393/2، نتایج مشابه را نشان دادند، از طرفی کمترین مقدار کلروفیل b در شاهد (عمر صورت کود) با میانگین 0/33 میلی‌گرم در گرم مشاهده شد (شکل 2). طعم خیال و حیف که در شکل 2 (B) مشاهده می‌شود برداشت دوم میزان کلروفیل b از افزایش 9/3 درصد نسبت به برداشت اول برخوردار بود و این اختلاف در سطح احتمال 1 درصد معنی‌دار بود.

از آنجایی که نیتروژن در ساختار کلروفیل b نیز شرکت دارد، پس اندازه‌گیری می‌روید که با فراهم شدن نیتروژن معنی‌شده از منبع آن و شیمیایی افزایش نگدان‌های از جمله کلروفیل b در ساختار فتوستزر وجود داشته باشد. زیرا بررسی‌ها حاکی از آن است که تأثیر ان تنش صرب می‌تواند دلیل افزایش کلروفیل پرک باشند (حمیدی و همکاران، 1390). نشان می‌دهد که نیتروژن بر فعالیت آنزیم‌های فتوسنتز و سایر رنگدان‌های فتوسنتز (Zhang و Li, 2003) موجب شده است که استفاده از میزان کود a و شیمیایی افزایش کلروفیل را به دنبال داشته باشد. افزایش نیتروژن در گیاه سبب افزایش پروتئین‌ها و در نتیجه افزایش انرژی سولو و سطح برگ شده و در نهایت باعث افزایش فعالیت فتوسنتز می‌گردد (عافری و همکاران، 1391). در برداشت دوم وضعیت رنگدان‌هایی بهتر از برداشت اول بود که این امر ممکن است به دسترسی عنصر در تیمارهای کود و یا واریز گیاه مرتبط باشد. سلطانی نژاد (1392) نیز بیان داشت که افزایش مصرف نیتروژن به فرم آنی
شکل 3- برهمکشی تغییر گیاهی و برداشت بر کاروتوئیدی گیاه خرده. میانگین‌های دوباره حروف مشابه فاصله اختلاف آماری معنی‌دار بر اساس آزمون LSD در سطح احتمال 5 درصد می‌باشند. برای اختصار تیمارها شکل 1 مشاهده شود.

شکل 4- برهمکشی تغییر گیاهی با برداشت بر ماده خشک برگ گیاه خرده. میانگین‌های دوباره حروف مشابه فاصله اختلاف آماری معنی‌دار بر اساس آزمون LSD در سطح احتمال 5 درصد می‌باشند. برای اختصار تیمارها شکل 1 مشاهده شود.

یک درصد معنی‌دار شد. همان‌طور که در شکل 4 مشاهده می‌شود در برداشت اول ماده خشک برگ تیمار کود گاوا بر اساس نیاز نیتروزینی (T1) اختلاف معنی‌داری با دیگر کرت‌های دریافت کننده کود و تیمار شاهد نداشت. در واقع بیشترین ماده خشک برگ در تیمار T1 115/65 گرم در متراکم و کمترین آن در تیمار شاهد (47/16 گرم در متراکم) مشاهده شد. برای برداشت دوم نیز تیمار کود گاوا بر اساس نیاز نیتروزینی 22/65 گرم در متراکم بالاترین مقدار ماده خشک برگ را در مقایسه با کرت‌های دریافت کننده کود (نیتروزین و فسفر) از منبع آلی و شیمیایی و تیمار شاهد با میانگین 33/92 گرم در متراکم حاصل نمود.

می‌توان نتیجه گرفت که کاهش کاروتوئیدی در تیمارهای کودی از منبع مرغی، گاوا و شیمیایی به دلیل حضور کلروفیل بوده است ولی در تیمار شاهد عکس این حال اتفاق افتاده است. علاوه بر این در برداشت دوم به دلیل این‌که تیمار نیتروزین کودهای شیمیایی به خصوص تیمار شیمیایی معادل و T1 می‌توانند گیاهان با روزه‌ای گرمتر میزان کلروفیل این تیمارها روبره کاهش کند. نتیجه‌ها (شكل‌های 2، 1) و در نتیجه کاروتوئید بیشتری تولید نمودهاند (شكل‌های 3).

ماده خشک برگ: نتایج تجزیه واریانس (جدول 2) حاکی از آن است که اثرات تغییر گیاهی، برداشت و همین‌طور برهمکشی این عوامل بر ماده خشک برگ در سطح احتمال
معنی‌داری نسبت به دیگر تیمارهای کودکی نشان داد. ولی رنگتیر کود مزمن نسبت به تیمارهای اول (T4) و تیمارهای دوم و سوم (T1, T2) با عناصر غذایی در رفتار تغذیه متفاوت می‌باشد. این نتایج به دست آمده بر اساس مشاهده‌های داده شده، ممکن است در تیمار T2 و برداشت

4. افرادی که در طی یک تحقیق غیابی تازه شده، همچنین تیمارهای ثبت یافته تا اینجا نسبت به تیمارهای اول (T4) و افراد مزمن نسبت به تیمارهای دوم و سوم (T1, T2) با عناصر غذایی در رفتار تغذیه متفاوت می‌باشد. این نتایج به دست آمده بر اساس مشاهده‌های داده شده، ممکن است در تیمار T2 و برداشت

3. افرادی که در طی یک تحقیق غیابی تازه شده، همچنین تیمارهای ثبت یافته تا اینجا نسبت به تیمارهای اول (T4) و افراد مزمن نسبت به تیمارهای دوم و سوم (T1, T2) با عناصر غذایی در رفتار تغذیه متفاوت می‌باشد. این نتایج به دست آمده بر اساس مشاهده‌های داده شده، ممکن است در تیمار T2 و برداشت

2. افرادی که در طی یک تحقیق غیابی تازه شده، همچنین تیمارهای ثبت یافته تا اینجا نسبت به تیمارهای اول (T4) و افراد مزمن نسبت به تیمارهای دوم و سوم (T1, T2) با عناصر غذایی در رفتار تغذیه متفاوت می‌باشد. این نتایج به دست آمده بر اساس مشاهده‌های داده شده، ممکن است در تیمار T2 و برداشت

1. افرادی که در طی یک تحقیق غیابی تازه شده، همچنین تیمارهای ثبت یافته تا اینجا نسبت به تیمارهای اول (T4) و افراد مزمن نسبت به تیمارهای دوم و سوم (T1, T2) با عناصر غذایی در رفتار تغذیه متفاوت می‌باشد. این نتایج به دست آمده بر اساس مشاهده‌های داده شده، ممکن است در تیمار T2 و برداشت

\[\text{افراشی و گزارش‌های جلد ۶، شماره ۱۵، سال ۱۳۹۵} \]
و باکیش ریگدانه‌های فرمستری، تهیه ماده خشک و محترش‌های نیترات... 189

![فیلم]

شکل 5 - برهمکنش تغذیه گیاهی با برداشت بر ماده خشک ساقه گیاه خرده. بیانگر‌های دارای حروف مشابه فاقد اختلاف آماری معنی‌دار براساس آزمون LSD در سطح احتمال 5 درصد می‌باشند. برای اختصار تیمارها شکل 1 مشاهده شود.

![فیلم]

شکل 6 - برهمکنش تغذیه گیاهی با برداشت بر ماده خشک ساقه گیاه خرده. بیانگر‌های دارای حروف مشابه فاقد اختلاف آماری معنی‌دار براساس آزمون LSD در سطح احتمال 5 درصد می‌باشند. برای اختصار تیمارها شکل 1 مشاهده شود.

و نهایتاً بیشترین ماده خشک ساقه گیاه خرده موثر در تیمار تلفیقی کود گاوی بر اساس نیاز فسفر و نیترات حداکثر بوده است که زیادی نیترزون بر ماده خشک بکر و ساقه (شکل 4) ایجاد کرده و منجر به کاهش تجمع ماده خشک ساقه گیاه خرده است (شکل 6). البته بین عناصر غذایی حداکثر در بررسی‌های می‌پاید (پورژیری، 1390). بنا برای طبقه‌بندی محتمل باید به نظر می‌رسد نیترزون مصرف شده بر پایه 120 کیلوگرم در هکتار برای گیاه قابل دادن، به‌طوری که برتری تولید ماده خشک این دو تیمار در مقایسه با شاهد به ترتیب 75 و 73 درصد بوده. همچنین در برداشت دوم ماده خشک ساقه گیاه خرده، تیمار T3 برای تیمار شاهد (عدم مصرف کود) بود و تیمار شیمیایی معادل کود مرغی بر اساس نیاز نیترزونی و تیمار آلی کود مرغی بر اساس نیاز نیترزونی به ترتیب 20 و 2 برای تیمار شاهد بدست و در رتبه دوم قرار گرفته (شکل 7). به نظر می‌رسد که در برداشت دوم تیمار T2 به دلیل مصرف حجم زیادی از کود مرغی، که علاوه بر نیترزون، فسفر و مواد مغذی دیگری به گیاه روستید و گیاه دچار کمبود نشده است باعث افزایش معنی‌داری در ماده خشک بکر و ساقه (شکل 4 و 5) در این تیمار شده است.
تیمار شیمیایی معادل کود کاوه بر اساس نیاز نیتروژنی (T2) باعث افزایش معمایی در نیتروژن 1877 میلی گرم در کیلو گرم نسبت به دیگر تیمارهای دریافت کننده کود و شاهد (عدم مصرف کود) شد. خلفت نیترات تیمار T2 اختراف T1 نسبت به دیگر تیمارهای کود داری نیترات بیشتری T2 و T1 بودند. از طرفی تیمارهای کود مرغی بر اساس نیاز نیتروژن و سفری و کود گلو بر اساس نیاز نیتروژنی از لحاظ نیترات نتفاوت معناداری به یکدیگر نداشتند.

اگرچه کودهای شیمیایی سریع ترین روش جهت جبران کمبود عناصر غذایی مورد نیاز گیاهان است (ویکینگ، 2008)، اما بیشتر مقدار نیترات را در گیاهان اجرا می‌کنند. در برداشت او یافته‌های تیمارهای T2 تا T4 نیترات با نسبتی میانگین 0.004 در وسیله‌های D و در تیمارهای شیمیایی T1 و T2 نسبت تیمارهای کود داری نیترات بیشتری و T2 و T3 نسبت به تیمارهای سبزیتی و نیتروژنی T1 بودند. این نتایج نشان می‌دهد که نیازهای کود در تیمارهای شیمیایی و کود داری نیتراتی بهتر و T2 و T1 از نظر نیترات از لحاظ نیترات نتفاوت معناداری به یکدیگر نداشتند.

تیمارهای شیمیایی معادل کود کاوه بر اساس نیاز نیتروژنی (T2) باعث افزایش معمایی در نیتروژن 1877 میلی گرم در کیلو گرم نسبت به دیگر تیمارهای دریافت کننده کود و شاهد (عدم مصرف کود) شد. خلفت نیترات تیمار T2 اختراف T1 نسبت به دیگر تیمارهای کود داری نیترات بیشتری T2 و T1 بودند. از طرفی تیمارهای کود مرغی بر اساس نیاز نیتروژن و سفری و کود گلو بر اساس نیاز نیتروژنی از لحاظ نیترات نتفاوت معناداری به یکدیگر نداشتند.

در ساختار گیاه مورد استفاده قرار دارد به شکل نیترات تجمع پیدا می‌کند. در برداشت دوم تیمارهایی شیمیایی T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرم در کیلو گرم تیمارهایی شیمیایی T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرم در کیلو گرم تیمارهایی شیمیایی T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرم در کیلو گرم T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرم در کیلو گرم T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرم در کیلو گرم تیمارهایی شیمیایی T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرم در کیلو گرم T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرم در کیلو گرم تیمارهایی شیمیایی T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرام در کیلو گرم تیمارهایی شیمیایی T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرام در کیلو گرام T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرام در کیلو گرام T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرام در کیلو گرام T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرام در کیلو گرام T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرام در کیلو گرام T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرام در کیلو گرام T2 و T3 به ترتیب با میانگین 0.1970 و 0.1867 میلی گرام در کیلو گرام
دستگاه‌های فستیوی، شهپسی ماده شکر و محیطی نیترات.

شکل 7- پرهمکنش گیاهی با برداشت بر غلظت نیترات گیاه خرده. میانگین‌های دارای خروش مشابه فاصله اختلاف آماری معنی‌دار بر اساس آزمون LSD در سطح احتمال 0.05 درصد می‌باشد. برای اختصار تیمارها شکل 1 مشاهده شود.

شکل 8- تأثیر غلظت کلسیم (A) و برداشت (B) بر غلظت کلسیم گیاه خرده. میانگین‌های دارای خروش مشابه فاصله اختلاف آماری معنی‌دار بر اساس آزمون LSD در سطح احتمال 0.05 درصد می‌باشد. برای اختصار تیمارها شکل 1 مشاهده شود.

کم‌صرف و پرفسرف، باعث به‌هم‌ آوردن خواص فیزیکی و شیمیایی خاک و ایجاد محیط مناسب برای رشد بافت و کیفیت بالاتر گیاهان می‌شود (Fallah et al., 2013). به نظر می‌رسد که تیمارهای A و B دارا بودن کلسیم به فرم قابل جذب گیاه و همچنین تأثیر بر گذشتن کلسیم موجود در خاک از طریق کاهش اسیدیت بهبود می‌یابد. بنابراین، باعث افزایش مقادیر کلسیم جذب شده توسط گیاه شده و میزان نهادگری گیاه در طی تجدیدی شود. میزان غلظت کلسیم تحت تأثیر اثرات اصلی تغذیه گیاهی

و برداشت قرار گرفت (P<0.01). مشابه به (A) می‌توان بیان نمود که در برداشت اول تیمارهای دارای کود A و B بیشترین غلظت کلسیم در مقایسه با تیمارهای کودی از منبع شیمیایی و شاهد (عکس مصرف کود) را نشان داده. همانطور که در شکل 8 ارائه شده است تفاوت معنی‌داری بین برداشت اول و برداشت دوم بر میزان غلظت کلسیم مشاهده نشده.

اصولً مصرف کودهای A نسبت به کودهای شیمیایی حائز اهمیت بیشتری است زیرا کودهای شیمیایی ضرری یک‌پای چند عصر مورد نیاز برای رشد گیاه را فراهم می‌کنند. در حالتی که کود آلی ضمن در دسترس قرار دادن پیشگیری از عناصر

نتیجه‌گیری:

به‌طور کلی می‌توان نتیجه گیری نمود که تیمارهای کود شیمیایی
نتایج و تولید نسبت به تأمین نیترژن از کود معدنی و حتی کود گاوی برتری داشته و منجر به افزایش قابل‌توجه تولید و سلامت محصول می‌شود.

سیاست گزارشی:
بدين وسيله از مساعدت مالی دانشگاه شهرکرد در اجرای این پژوهش قدردانی می‌گردد.

نتایج زراعی، نشریه دانش کشاورزی و تولید پایدار جلد ۲ (شماره ۲/۳)، ۱۸۷-۸۸

طی پرداخت اول تأثیر نسبی‌مناسبی بر رشد گیاه خرده داشته و در پرداخت دوم این تأثیر تا حدودی کاهش می‌یابد.

ługچه تیمار کود گاوی بر اساس نیاز نیترژنی طی پرداخت اول با کود مرغی براساس نیاز نیز نیترژنی قابل مقایسه بود ولی در پرداخت دوم همانند کود مرغی ممتاز نبود. علاوه بر این گیاهان تعیین شده کود مرغی و کود گاوی محتوای نیترژن کمتری در مقایسه با تغذیه شیمیایی داشتند. بنابراین، می‌توان اظهار کرد که تغذیه گیاهی گاهی گوشتی خرده با منبع کود مرغی برای...

متن:

امامی، غ. (۱۳۸۵) روش‌های تجهیز گیاه (جلد اول). مؤسسه خاک و آب. نشریه شماره ۸۲. تهران، ایران

امید بیگی، ر. (۱۳۸۸) رهیافت‌های تولید و فرآوری گیاهان دارویی. جلد سوم. چاپ نهم. اشیا. انتشارات آستان قدس. پژوهشی

پوروزیری، م. (۱۳۹۰) تأثیر روش‌های تغذیه‌ی ویژه و میان‌واژه کوددهی بر مدل سن نیترژن حاکم و یگهی‌های کمی و کیفی سرگرم علوفه‌ای. پایان‌نامه کارشناسی ارشد آگراوکولوزی، دانشکده کشاورزی، دانشگاه شهرکرد، ایران

سلطنی نژاد، ف. (۱۳۹۲) اثر کاربرد جدایگانه و تلفیقی کود اوره و کود گاوی بر غلظت کادمیوم و عملکرد گیاه دارویی خرده. پایان‌نامه کارشناسی ارشد آگراوکولوزی، دانشگاه شهرکرد، ایران

عذرا، ی. (۱۳۹۱) بررسی اثر سطوح مختلف نیترژن، فسفر و پاناسیم بر عملکرد، فوتوسنتز و پیگمنت‌های آنتئز، کارولیف و غلظت نیترژن اجزای دارویی و صنعتی موی‌ال (Allium sativum L) شریه بوم‌شناستی کشاورزی جلد ۴-

فارسی‌وکارکرد گیاهی جلد ۵، شماره ۱۵، سال ۱۳۹۵

Downloaded from jspp.iut.ac.ir at 5:43 IRDT on Tuesday April 14th 2020
transportation. College of Agriculture and Life Sciences 1-64.