واکنش رنگدانه‌های فتوستزی، تسهیم ماده خشک و محتوای نیترات گیاه خرده (Portulaca oleracea) به تغذیه گیاهی

بهجت عمرانی، سیف‌الله فلاح و محمدرضا تدین
گروه زراعت، دانشکده کشاورزی، دانشگاه شهرکرد
تاریخ دریافت: 04/2014، تاریخ پذیرش نهایی: 07/2013

چکیده:
نتیجه و فسفر می‌توانند عنصر غذایی در تغذیه گیاهی به شمار می‌روند ولی گیاه غلیظ، گیاه غلیظ خه، گیاه غلیظ که از صورت کرده خود شده در زمان در قالب طرح پایه بلکه‌ها کامل تصادفی در سه تکرار که در این تغذیه گیاهی به عنوان عامل اصلی در نه سطح شالی: (۱) ۱۰/۰۰۰ مصرف، (۲) کود مرغی بر اساس نیترات گیاهی؛ (۳) کود کاپی بر اساس نیترات گیاهی؛ (۴) کود گازی بر اساس نیترات گیاهی؛ (۵) کود شیمیایی مادا (۶) کود شبیه‌ای مادا (۷) T۴: T۱ (۸) T۱: T۴: T۷ نسبت به هرینه به‌طور مینی‌داری افزایش دادند. در برداشت اول این میزان ۳/۳۰ میلی‌گرم در گرم کمترین میزان کاروتئین‌ها را نشان داد. در برداشت دوم نیز، کمترین میزان کاروتئین‌ها مربوط به تریا T۴ و T۷ به ترتیب با میانگین‌های ۴/۳۰ و ۸۵/۵۰ میلی‌گرم در گرم بود و اختلاف معنادار با T۴ و T۷ نشان داد. در تیمارهای آلی نیز مشابه شد. میزان تسهیم ماده خشک برگ: سطح تیمارهای کود مرغی (۲۱/۳۹/۷۷٪) نسبت آن از تیمارهای کود گازی بود (۲/۷۳/۷۷٪). میزان تئرات تیمارهای کود مرغی و کود گازی به مصرف معنی‌داری کمتر از تیمارهای کود شیمیایی بود. به‌طور کلی می‌توان اظهار کرد که تغذیه گیاهی با بین نیترات کود مرغی، تولید گیاه خرده نسبت به تهیه نیترات از کود مرغی و حتی کود گازی برتری نشان داده و منجر به افزایش قابل ملاحظه تولید سلامت محصول می‌شود.

واژه‌های کلیدی: فسفر؛ کاروتئین‌ها؛ کاروتئین‌ها

مقدمه:
گیاه خرده به نام علمی Portulaca oleracea از نیترات کاپی آباد است (Hyam Pankhurst, 1995). (Cahn (که عمداً به صورت علیه و گوشتی رشد می‌کند) که در گیاه خرده از عنصر et al., 2000; Rashed et al., 2003) اصلی در تغذیه گیاهی بوده (El-Sayed et al., 2009) و کاربرد وسیعی در تولید محصولات کشاورزی دارد و به دلیل

فلاح1357@yahoo.com

نویسنده مسئول، نشانی پست الکترونیکی:

کپینگ و کارکرد گیاهی، جلد ۵، شماره ۱۵، بهار ۱۳۹۵.
اگرچه جنبه‌های فوتوسنتزی گیاهان مختلف در شرایط مختلف تغییراتی داشته و به شرایط مناسب حاویت مناسب خشک‌سازی کرده است و در شرایط نشین همکاری می‌نماید (Yadav et al., 2000; Yadvinder et al., 2004). شرایط کاهش در حال حاضر دارای جنبه‌های مختلفی هستند که به دلیل ضروری بودن کاندید نیتروژن جهت بهبود عملکرد گیاهان (Thomas and Smart, 1993) و البته هم‌اکنون جدید مطالعات نیز بهبود عملکرد گیاهان (Hartemink et al., 2000; Anumah et al., 2003) و در مورد حاویت گروه‌های مختلفی کارایی مصرف نیتروژن به عنوان یک چهار اولین تاثیر محیطی تکثیرگری بهبود کارایی مصرف نیتروژن به عنوان یک اصل مهم در بسیاری از کشورهای دیگر توصیه در نظر گرفته می‌شود (Deloge et al., 1998; Hossain et al., 2005).

با توجه به اینکه استفاده از کودهای شیمیایی معنی‌داری بسیار ترین راه برای تأمین نیتروژن مورد نیاز گیاهان می‌باشد، اما هزینه‌های زیاد مصرف گیاه‌های شیمیایی، ایجاد آلودگی، تخریب محیط و زیست و خاک نگران کننده می‌باشد (Zaidi et al., 2003) بررسی‌های حاکی از آن است که که این استفاده مداوم از کودهای شیمیایی منجر به استفاده بیشتر در کاهش خاک، کاهش خاک و در نتیجه کاهش عملکرد گیاهان زراعی می‌گردد (Agedirian et al., 2004). اما ترویج کاربرد منابع گیاهی و باعث کاهش تعداد و مانع آلی به جای منابع شیمیایی می‌تواند نقش مهمی در باوری و حفظ محیط زیستی و علاوه بر همین، کودهای زراعی سلامت بوم‌زایی و افزایش کیفی محصولات زراعی داشته باشند (Zaidi et al., 2003).

موجب بهبود فعالیت‌های ميكروبی خاک و بهبود فراهم کردن عناصر پرنصر و کم‌یافته مورد نیاز گیاه را می‌شود.
جدول 1- برخی ویژگی‌های فیزیکی و شیمیایی خاک، کود مرغی و کود گاorf مورد استفاده.

<table>
<thead>
<tr>
<th>کود گاorf</th>
<th>کود مرغی</th>
<th>واحد</th>
<th>ویژگی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14/5</td>
<td>14/99</td>
<td>dS m⁻¹</td>
<td>EC</td>
</tr>
<tr>
<td>8/1</td>
<td>8/241</td>
<td>pH</td>
<td>-</td>
</tr>
<tr>
<td>4/9</td>
<td>3/790</td>
<td>OC</td>
<td>-</td>
</tr>
<tr>
<td>1/280</td>
<td>1/20</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>2/99</td>
<td>3/970</td>
<td>mg kg⁻¹</td>
<td>P*</td>
</tr>
<tr>
<td>3/990</td>
<td>3/990</td>
<td>mg kg⁻¹</td>
<td>K*</td>
</tr>
</tbody>
</table>

* برای کود مرغی و کود گاorf قرم اکسید این عناصر گزارش شده است.

(سالنی یزد، 1982). اولین آبایی پس از کاشت و آبایی‌های بعدی با توجه به شرایط محیطی و نیاز گیاهی به روش غارقایی انجام شد. و جین دستی علف‌های هرز در طول دوره رد شد انجام گردید. برداشت پس از هرین مانگین ارتفاع بوته‌ها و حذف 20 سانتی‌متر انجام شد و بیش از 80 درصد برداشت اول و دوم به ترتیب در پنج و بست و پنج مرداد ماه انجام گردید که با دوره رشد گزارش شده برابر این کیفی ظرفیت داشت (سالنی یزد، 1992). در هنگام برداشت برای انتقاد جهت صفات زیر پس از حذف اثر محیطی بوده‌های هر کرت از ارتفاع 5 سانتی‌متر سطح خاک قطع و سپس تعداد 10 بونه از هر کرت به اطراف صصیگ انتخاب شد. ابتدا ریز نمونه‌ای از بوته به طور تصادفی انداخت و به جهت انتقاد فیزیکی کوارتالی a کوارتالی و محاسبه کوارتالی a غیر علاوه، b کوارتالی، c محاسبه قرار گرفت. برای انتقاد فیزیکی کوارتالی، استخراج این رنگ‌دانها از پرگ با استون 80 درصد و به روش Lichtenhaler، (1988) انجام گرفت. ابتدا 0/5 گرم از گفت تازه پهن برگ در هاونا به 10 میلی لیتر استون سایدش شد تا نکی بافت سوز نگ کنی باید باید. پس از آن به مدت 5 دقیقه در دستگاه شیکار قرار گرفت، بعد در داخل لوله‌های سانتی‌متری با圍 300 دور در دقیقه به مدت 5 دقیقه قرار داده شد تا یک محلول زلال سیز رنگ حاصل شود و پس از آن محلول حاصله را با استفاده از کاغذ صافی و فیبر درون بالن زوزه صاف گیاه‌های T، کود شیمیایی معادل T، کود شیمیایی معادل T و T، کود شیمیایی معادل T و T، تاریخ برداشت به عنوان عامل فری در دو مقطع شامل دو تاریخ 5 و 25 مرداد ماه بود. انجام شد. قبل از تهیه بست، نمونه مربی از عمق 30 سانتی‌متری خاک مزرعه تهیه گردید و یکی از خاک و همچنین کود مرغی و کود گاری نیز در آزمایشگاه تعیین گردید (جدول 1). نیاز نیتروژن و فسفری گیاه خرده به ترتیب 10 و 50 کیلوگرم در هكتار در نظر گرفته شد (سالنی یزد، 1392 و امیدیچی، 1378). عملکرد بیماری‌های کود شیمیایی و دامی، بعد از عملیات آماده‌سازی زین مرود نظر انجام شد. به این صورت که بابت کرت‌های آزمایشی ایجاد و سپس کود دامی، کود سپرده‌ساز تعیین و همچنین 50 گرم کود از طبق تیمار مربوط به کرت نور مرود نظر اضافه و کاملاً با خاک مخلوط گردید. در این مراحل کود شیمیایی اورده مرز نیاز به صورت سرد بعد از برداشت اول به کرت اضافه شد. به دلیل کافی بودن پتانسیم خاک برای رشد این گیاه (جدول 1) همچنین کود تناسبی به خاک افزوده شد. همچنین کود تناسبی به خاک افزوده شد.
برای اندازه‌گیری صفاتی مانند وزن خشک برگ، وزن خشک ساقه، وزن خشک آدام هواپیک نمونه‌ی تصادفی (10 بونه) انتخاب و از جداسازی برگ و ساقه و تعیین وزن تر در همان 25 چرخه سنگی گردان آن تن تخته وزن نگهداری شدند. پس از خشکشدن بر ترازوی مدل (V-1mg) توزین شدند.

در یکین داده‌هاي بسته آمده، توسط رم افزار آماري LSD مورد تجزیه و ارائه مقدارهاي بر اساس آزمون Excel در سطح احتمال 0.05 ودندوادار با نرم افزار رسم شد.

نتیج و بحث:
کارولفیل a نتیج تجزیه واریانس نشان داد که اثرات تغذیه گیاهی و برداشت در سطح احتمال 0.05 دارد بر محتوای کارولفیل a معنی‌دار بود. در حالی که بیشترین دو عامل بر این صفت معنی‌دار نبود (جدول 2). با توجه به شکل 1 (A)

میزان بین نمونه که بیشترین میزان کارولفیل a در کرت‌ها دریافت گردید که آلی بیشتر شباهت داشته و کارولفیل a در تیمار شباهی معادل کود گاری بر اساس نیاز ترکزی نشان داد و نسبت به شباهتی شیمیایی معادل کود مرغی بر اساس نیاز فسفر، معادل کود گاری بر اساس نیاز فسفر و تیمار شباهت (عدم منفی) کوک معنی‌داری نشان داد. در برداشت دوم نیز میزان کارولفیل a در مقایسه با برداشت اول 9 دصد افزایش یافت که این افزایش در سطح احتمال 0.05 مورد با 400 میکروگرم/لیتر (B)

کارولفیل a در برداشت دوم، به دلیل تأثیر نیتروژن معدنی شده

گریده، سیس حجم محلول به دست آمده از استون 80یر (cell) به 25 میلی لیتر رسیدند. شاپلا استالیقی که تک (Jenway 3000) منطبق و جذب محلول با استیت‌کلروفیل (سولفوریک) در طول موج‌های 440 و 470 نانومتر قرات. شد. سیس میزان کارولفیل a و مجموع آنها و همچنین کارولفیلهای دیگر روابط دیگر حسب میلی‌گرم در گرم روز بانک‌های محاسبه‌های شد (Ghnaya et al., 2009).

تباره: (1)

رباطه: (1): Cha = 12.25 × A665 - 2.79 A645

رباطه: (2): Chb = 21.50 × A645 - 5.10 A663

رباطه: (3): Chab = 7.15 × A665 + 18.71 A645

رباطه: (4): Car = (100A570-3.27×C580-1045×C680)

میزان کارولفیل a و کارولفیلهای: A جذب Car b و کارولفیلهای: a مجموع کارولفیل a و کارولفیلهایبیانات اندازه‌گیری نتایج: نتایج آماده‌های خرده به روش کالری‌متری بود. اندوز (1) گیاه (یا به گیاه) در نتیجه، به این صورت که اندوز (2) گیاه (یا به گیاه) در نتیجه، به این صورت که اندوز (2) گیاه (یا به گیاه) در نتیجه، به این صورت که اندوز (2) گیاه (یا به گیاه) در نتیجه، به این صورت که اندوز (2) گیاه (یا به گیاه) در نتیجه، به این صورت که اندوز (2) گیاه (یا به گیاه) در نتیجه، به این صورت که اندوز (2)

حل: (1)

حل: (2)

حل: (3)

حل: (4)

حل: (5)

حل: (6)

حل: (7)

حل: (8)

حل: (9)

حل: (10)

حل: (11)

حل: (12)

حل: (13)

حل: (14)

حل: (15)

حل: (16)

حل: (17)

حل: (18)

حل: (19)

حل: (20)

حل: (21)

حل: (22)

حل: (23)

حل: (24)

حل: (25)

حل: (26)

حل: (27)

حل: (28)

حل: (29)

حل: (30)

حل: (31)

حل: (32)

حل: (33)

حل: (34)

حل: (35)

حل: (36)

حل: (37)

حل: (38)

حل: (39)

حل: (40)

حل: (41)

حل: (42)

حل: (43)

حل: (44)

حل: (45)

حل: (46)

حل: (47)

حل: (48)

حل: (49)

حل: (50)

حل: (51)

 حل: (52)

 حل: (53)

 حل: (54)

 حل: (55)

 حل: (56)

 حل: (57)

 حل: (58)

 حل: (59)

 حل: (60)
جدول 2 - تأثیر تجزیه واریانس اثرات تغذیه گیاهی بر صفات اندازه‌گیری شده گیاه خرده طی برداده‌های مختلف

<table>
<thead>
<tr>
<th>میانگین برای</th>
<th>کارتوئیدها</th>
<th>ماده خشک</th>
<th>کارتوئیل</th>
<th>کارتوئیل</th>
<th>dr</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>شکل</td>
<td>T0</td>
<td>T1</td>
<td>T2</td>
<td>T3</td>
<td>T4</td>
<td>T5</td>
</tr>
</tbody>
</table>
| پلک | 7.5 | 6.6 | 6.0 | 6.5 | 6.2 | 6.4 | 6.3 | 6.2 | 6.0 | میانگین تفاوت 3 درست است. بایدین میانگین T0 تفاوت گیاهی و برداده است. بایدین میانگین T0 تфа...
شکل ۲- تأثیر تغذیه غلیظ (A) و البردانش (B) بر مقدار کلوروفیل b گیاه خرد. میانگین‌های دارای حروف مشابه فاقد اختلاف آماری معناداری LSD در سطح استاندارد ۰.۰۵. برای اختصار تیمارها شکل ۱ مشاهده شد.

شیمیایی

و شیمیایی در گیاه دارویی خرده باعث افزایش کلوروفیل برگ شد.

کاروتئنیدها: مطلوب تناجع تجزیه واربندن می‌توان اظهار نمو در آتات تغذیه گیاهی. برداشت و برمکنش این دو عامل بر میزان کاروتئنیدها برگ در سطح استاندارد ۱ دارد مقدار شد (جدول ۲). مقایسه میانگین این‌ها در شکل ۲ بیانگر این امر است که در برداشت اول، کاروتئنید تیمار کود شیمیایی معادل کود مرغی بر اساس نیاز سفری (T۰) اختلاف معناداری با تیمار شاهد داشت. علاوه بر این، تیومارهای کود مرغی و کود گاوی بر اساس نیاز نیتروژن تفاوت معناداری با تیمار شاهد نداشت. همچنین در تیمار شیمیایی معادل کود گاوی بر اساس نیاز سفری + اوره (T۰ + میانگین۰/۹۷) میلی‌گرم در گرم کمیتری میزان کاروتئنید مشاهده شد. برای برداشت دوم کاروتئنیدها تیمار شاهد با تیومارهای شیمیایی اختلاف معناداری داشت. ولی میزان کاروتئنید در دیگر کرتها در دو میزان کود از تیمار آلی و شیمیایی کاهش معناداری با تیمار شاهد داشت. در زمان فتوسنتز، کاروتئنیدها به عنوان محافظ کلوروفیل گیاه عمل می‌کنند بهطوری که با رشد گیاه و ظهور رنگ نهایی همگام با کاهش کلوروفیل، میزان کاروتئنید زیاد می‌شود و (Deamn، ۱۹۹۹). با توجه به افزایش کلوروفیل أ و کلوروفیل b در (۱۹۹۴) نیز بانی داشته که افزایش مصرف نیتروژن به فرم آلی

A

B

برداشت اول

برداشت دوم

T۰ T۱ T۲ T۳ T۴ T۵ T۶ T۷ T۸

(kг/گ) b a ab ab ab ab ab bc

تیمارهای کودی از معنی آلی و شیمیایی (شکل های ۲،۳)
یک درصد معنادار شد. همانطور که در شکل 3 مشاهده می‌شود در برداشت اول ماده خشک برگ تیمار کود گاوا بر اساس نیاز تیتروژنی (T3) از دیگر کرت‌های دریافت کننده کود و تیمار شاهد ناشان داد. در واقع مشتریان ماده خشک برگ در تیمار T3، 115/56 گرم در مترمیوئر و کمتری از تیمار شاهد (147/67 گرم در مترمیوئر) مشاهده شد. برای برداشت دوم نیز تیمار کود گاری بر اساس نیاز سفیری (T2) با مانگنز 232/67 گرم در مترمیوئر بالاترین مقدار ماده خشک برگ را در مقایسه با کرت‌های دریافت کننده کود (تیتروژن و سفیر) از منبع آلی و شیمیایی و تیمار شاهد با مانگنز 193/13 گرم در مترمیوئر حاصل نمود.

می‌توان نتیجه گرفت که کاهش کاروتئونید در تیمارهای کرده از منبع مرغی، گاوا و شیمیایی به دلیل حضور کلروفیل بوده است ولی در تیمار شاهد عكس این حالات اتفاق افتاده است. علاوه بر این در برداشت دوم به دلیل آشوب‌های بارشی تیتروژن کودهای شیمیایی به علت کاهش کمتری تیمار شیمیایی معادل T1 مواجه گیاهان با روزهای گرمتر میزان کلروفیل آن تیمارها روبه کاهش گذاشته (شکل‌های 2، 1) و در نتیجه کاروتئونید بیشتری تولید نموده‌اند (شکل 3).

شکل 3 - برهمکنش تغذیه گیاهی با برداشت بر ماده خشک برگ گیاه خرده. میانگین‌های دیاپا بهترین حروف مشابه فاقد اختلاف آماری معنادار بر اساس آزمون LSD در سطح احتمال 0/05 درصد می‌باشند. برای اختصاص تیمارها شکل 3 مشاهده شود.

شکل 4 - برهمکنش تغذیه گیاهی با برداشت بر ماده خشک برگ گیاه خرده. میانگین‌های دیاپا بهترین حروف مشابه فاقد اختلاف آماری معنادار بر اساس آزمون LSD در سطح احتمال 0/05 درصد می‌باشند. برای اختصاص تیمارها شکل 1 مشاهده شود.
افزایش معنی ماده خشک برق در تیمار T۰ و T۱ از T۲ و T۳.
آن کود مرغی بر اساس نیاز نیتروژن (T۲) و T۳ و T۴ معناد کود گاوی بر اساس نیاز فسفری و T۰ و T۱ و T۲ و T۳ و T۴ معناد کود گاوی بر اساس نیاز فسفری + اوره و ریس تیبرهاتی یافته این تیمارها نسبت داد که با فراهم نمودن عناصر غذایی رشد برق در افزایش داده. برای برداشت دوم همین تیمارها با استنادی چاپی تیمارها T۰ و T۱ و T۲ و T۳ در تولید بالاترین ماده خشک نیز نتایج مشابهی را نشان دادند. ممکن است در تیمار T۱ و T۲ برداشت دوم دسترسی به نیتروژن مناسب با تیمار گیاهی بوده و این طریق رشد برق کاهش یافته است. احتمالاً تیمار کود مرغی، به دلیل فراهم یکی منابع معناد بنا یا اینجا نیاز ریز، منجر به ساخت رنگهای فوستری و تولید برق بین بیشتر تیمار گیاهی کودی است. Zira، که میزان مرغی از نظر داشتن نیتروژن نسبت به مادری واهی دامی Lawrence et al., 2008; and Walter, 2008) و اعلاه به عنوان غذایی، دارای خواص مانند آزاد (Hirzell et al., 2005) سازی تدریجی نیتروژن (کاهش آیوجی نیترات)، ترکیبات پتانسیم و کلسیم (کاهش اسیدن خاک) و ماده آلی (افزایش ظرفیت تجدیداری آب و مواد غذایی) می‌باشد. این میزان تغییر در طی یک تحقیق یافته که با کود مرغی پاروی شده بالاترین پارامترهای رشدی و عملکرد مرغی بازېرارشده بود. Uddin et al., 2009) سبب مرغی به منابع ماده معناد موجود در کودهای آلی را می‌دانند. همچنین با کلمن یکی نیز به دست آمده (Ouda Mahadeen, 2008) است که کیانه تولید شده توسط کود معناد عملکرد نسبتاً پایینتر در مقایسه به مواد آلی احتمال و نتایج قابل توجهی در منابع کیانه برق وجود نداشت (Magkos et al., 2003).

ماده خشک انتام هواپی: با توجه به نتایج آنالیز واریانس داده‌ها در جدول ۲، منابع نیتروژن که اثرات تغذیه‌گاهی در برداشت و برهمکنش این دو عامل بر ماده خشک انتام هواپی در اولم احتمال کود درصد معناد شده است. تیمار کود مرغی بر اساس نیاز فسفری (T۲) و T۴ و تیمار کود گاوی بر اساس نیاز نیتروژن در برداشت اول و تیمار بینشیرین ماده خشک انتام هواپی اختلاف با سایر تیمارهای کودی و شاهد نشان می‌دهد.

ماده خشک ساقه: همان‌طور که در جدول ۲ نشان داده شده است اثرات اصلی و برهمکنش تغذیه‌گاهی و برداشت بر ماده خشک ساقه در اولم احتمال کود درصد معناد بود. در شکل 5 مشاهده می‌شود که در برداشت اول ماده خشک ساقه در تیمار کود مرغی بر اساس نیاز فسفری (T۲) افزایش می‌کند.
آکش رنگ‌های فیورتیرو، تهیه ماده خشک و محیاط نیترات...

شکل ۵- برهمکنش‌های دمایی با برداشت ماده خشک ساکه گیاه خرده. میانگین‌های دارای حروف مشابه فاقد اختلاف آماری معن‌دار بر اساس آزمون LSD در سطح احتمال ۰/۰۵ می‌باشد. برای اختصار تیمارها شکل ۱ مشاهده شود.

شکل ۶- برهمکنش‌های دمایی با برداشت ماده خشک ساکه گیاه خرده. میانگین‌های دارای حروف مشابه فاقد اختلاف آماری معن‌دار بر اساس آزمون LSD در سطح احتمال ۰/۰۵ می‌باشد. برای اختصار تیمارها شکل ۱ مشاهده شود.

دادن، به‌طوری‌که برتری تولید ماده خشک این دو تیمار در مقایسه با شاهد به ترتیب ۷۵ و ۷۳ درصد بود. همچنین در برداشت دوم ماده خشک ساکه گیاه خرده، تیمار T۰۳ برای تیمار شاهد (علم مصرف کود) بود و تیمار شیمیایی معادل کود مرغی بر اساس نیاز تیتروزین و تیمار آلی کود مرغی بر اساس نیاز تیتروزین به ترتیب ۲۵ و ۲ برای تیمار شاهد بودند و در رتبه دوم قرار گرفتند (شکل ۵). به نظر می‌رسد که در برداشت دوم تیمار T۰۳ به دلیل مصرف حجم زیادی از کود مرغی که علاوه بر تیتروزین، سفر و مواد غذی زیادی به گیاه رسانده و گیاه دچار کمبود تنشی است و باعث ناهماهنگی معن‌داری در ماده خشک بگر و ساقه (شکل ۴ و ۵) در این تیمار شده است.
تیمار شیمیایی معادل کود گاوی بر اساس نیاز نیتروژنی (T2) افزایش معادلی در میانگین 8877 میلی‌گرم در کیلوگرم نسبت به دیگر تیمارهای دریافت کننده کود و شاهد (عدم مصرف کود) داشت. فلوت تیمار T2 اخیار تیمارها تیمار T1 نشان داد. در برداشت دوم، تیمارهای شیمیایی T3 و T5 نسبت به دیگر تیمارهای کود داری تیمار بیشتری بودند. از طرفی تیمارهای کود مرغ بر اساس نیاز نیتروژنی و فسفری و کود گاور بر اساس نیاز نیتروژنی از لحاظ تیمار نتایج معناداری با یکدیگر نداشتند.

اگرچه کودهای شیمیایی سبز ترین روش جهت جبر کمبود عناصر غذایی مورد نیاز گیاهان است (ویلکینز، 2008)، اما بیشتری مقدار تیمارها در گیاهان ایجاد می‌کند. در برداشت اول تیمار شیمیایی T1 ابتدای مقدار تیمارها در نشان داد احتمالاً به جزین انداس‌سازی سبز نیتروژن در این تیمار بوده و دسترسی به نیتروژن زیاد در موضعی که گیاه نیاز داشته است، به عبارتی از آنجا که نیتروژن جزو اولیه تشکیل‌دهنده ترکیبات آلی همانند اسیدهای آمینه، پروتئین‌ها و اسیدهای بوتاکتیک به شمار می‌رود (آذ، سیدی و همکاران، 2000). ۴۷٪، تحقیقات در ساختار گیاه مورد استفاده قرار نگیرد به شکل تیمار تجمع ترپتین با میانگین 176/74 و 175/2 گیاهی گرم در کیلوگرم (T2) و به ترپتین با میانگین 3/377 و 3/416 گیاهی گرم در کیلوگرم (T5) نیز به‌طور محسوس در تیمارهای گیاه شده در برداشت دوم به دلیل دسترسی به نیتروژن معمول نشده شده فرم قابل جذب (آوه) و عدم هماهنگی با نیاز رویشی در بیماری گیاه به شکل نتایج غیر قابل استفاده در برگ و ساقه گیاه تجمیع یافته است. احتمالاً و همکاران (2010) که تحقیقات کردند که محتوی تیمار در بگاه استفاح به تأمین نیتروژن از منبع افزایش معادلی را نشان داد. هیبرید همکاران (2005) نشان دادند که مقدار نیتروژن آن نسبت به غیر آنی‌شده به کاهش تیمار و افزایش نشان‌سازه و اسیده‌ها می‌شود. به طور که در نهایت باید علم ولع مطلوب‌های می‌شود.

غلظت نتیجت: اثر تغذیه‌گاهی و برداشت غلفت نتیجت در سطح احتمال بک‌درصد معنادار بود. در حالی که به‌همکاران این دو عامل به میزان صاف باید شده در سطح احتمال پنج درصد معنادار بک‌درصد ۲۰٪ مقایسه میانگین‌ها شامل ۷ نشان داد که در برداشت اول میزان غلفت نتیجت ۷ یکی‌اند.
پرهمکشی تغذیه گیاهی با برداشت بر خلخت نتیجه‌گیری کننده‌ای در میانگین‌های دارای حروف مشابه فاقد اختلاف آماری معنی‌دار بر اساس LSD در سطح احتمال 5 درصد می‌باشد. برای اختصار تیمارها شکل 1 مشاهده شود.

![نمودار تصویری](image-url)

نمودار 7: تأثیر تغذیه گیاهی (A) و برداشت (B) بر غلظت کلسیم گیاه خرده. میانگین‌های دارای حروف مشابه فاقد اختلاف آماری معنی‌دار بر اساس آزمون LSD در سطح احتمال 5 درصد می‌باشد. برای اختصار تیمارها شکل 1 مشاهده شود.

نتیجه‌گیری:
به طور کلی می‌توان نتیجه گیری نمود که نتایج تیمارهای کود شیمیایی میزان غلظت کلسیم تحت تأثیر اصلی تغذیه گیاهی و برداشت قاره گرفت (P < 0.01). مطابق شکل 8 (A) می‌توان بیان نمود که در برداشت اول تیمارهای دارای کود آلی بیشترین غلظت کلسیم در مقایسه با تیمارهای کودی از منبع شیمیایی و شاهد (عند مصرف کود) را نشان دادند. همان‌طور که در شکل 8 (B) این شده است نفاست معنی‌داری بین برداشت اول و برداشت دوم بر میزان غلظت کلسیم مشاهده نشد. اصولاً مصرف کودهای آلی نسبت به کودهای شیمیایی حاصل اهمیت بیشتری است زیرا کودهای شیمیایی صرفاً یک با چند عنصر مورد نیاز برای رشد گیاه را فراهم می‌کنند، در حالی که کود آلی ضمن در دسترس قرار دادن بسیاری از عنصر
گزارش:

پرورش گیاهی:

امامی، ع. (1375) روشهای تجربه‌گیری گیاه (جلد اول). مؤسسه خاک و آب. نشریه شماره 2, تهران. ایران

امید بیگی، ر. (1376) رهایش‌های تولید و فروآوری گیاهان دارویی. جلد 5. ص. 150. انتشارات آستان قدس.

پورعمری، م. (1390) تأثیر روش‌های تلفیقی و متدال کوددهی بر معده شدن نتروزن حاک. ویژه‌های کم و کیفی سوئورگم علف‌های. پایان‌نامه کارشناسی ارشد. آگرو‌کولرژی، دانشگاه شهید رضوی، دانشگاه شهید رضوی.

سلطانی نزدیک، ف. (1391) اثر کاربرد جدالگاه‌های تلفیقی کود اوره و کود گاری بر غلظت کاپیوم و عملکرد گیاه دارویی خرفر. پایان‌نامه کارشناسی ارشد آگرو‌کولرژی، دانشگاه شهید رضوی، دانشگاه شهید رضوی.

ظهری، ا.،ادمی، م. (1393) بررسی اثر سطوح مختلف نتروزن، فسفر و پتاسیم بر عملکرد، فوستنی و بیگمات‌های فوستنی، کلوشیل و غلظت نتروزن اجزای دارویی و صنعتی موسری (الیسیسیم رگن). شماره 6, ص. 101-207.

عارفی، ا.،کامی، م. (1391) روشهای کنترل استفاده از نتروزن در گیاه‌های دارویی. مهندسی کشاورزی و محیط زیست، شرکت ملی پژوهش کشاورزی، تهران.

عصار، م. (1390) روشهای کنترل استفاده از نتروزن در گیاه‌های دارویی. مهندسی کشاورزی و محیط زیست، شرکت ملی پژوهش کشاورزی، تهران.
transportation. College of Agriculture and Life Sciences 1-64.