اثر کلرید کادمیوم بر رنگزه‌های فتوستری، محصول پرولین، میزان پروتئین‌های محلول و برخی آنزیم‌های آمیکسیدان در گیاه‌های عدس

فاطمه بارنده و حمیدرضا کاوی

گروه بیوتکنولوژی، دانشگاهکشاورزی، دانشگاه شهید بهشتی کرمان

(تاریخ دریافت: 9/3/1384، تاریخ پذیرش نهایی: 10/3/1384)

چکیده:
کادمیوم به آسانی توسط سیستم ریشه‌ای پیامی از گونه‌های گیاهی جذب شده و به علت سمیت و حلالیت بالا در آب به عنوان یکی از مهم‌ترین آلاینده‌های محصول مو و بررسی اثرات فیتولوژیک آن در گیاهان حائز اهمیت است. هدف از این تحقیق بررسی آن در مدل کادمیوم بر برخی عناصر فیتولوژیک گیاهی عدس بود. گیاه‌های عدس در شرایط مزرعه‌ای به مدت ۱۰ روز با غلظت‌های مختلف (صرف (شاده)، ۰/۵، ۰/۲۵، ۰/۰۵ و ۰ میلی‌مولار) کلرید کادمیوم در قالب طرح کاملی تصادفی بی سطح صورت گرفت و میزان رنگزه‌های فتوستری، پروتئین محلول و برخی آنزیم‌های آمیکسیدان (توزیر سپریکسید دیسموتاز، کاتالاز و آسکوربین پروکسیداز) آن در مورد ارزیابی قرار گرفت. نتایج نشان داد که با افزایش غلظت کادمیوم، کاهش معنی‌داری در میزان رنگزه‌های فتوستری مشاهده شد. به علاوه، کادمیوم به طور معنی‌داری دارای تأثیر مثبتی در گیاه‌های عدس بود. برخی عناصر فیتولوژیک گیاهی عدس، میزان فعالیت آن‌ها در گیاه‌های عدس کاهش یافت و در نهایت میزان سطح و تأثیر سبب کردن قرار گرفت. است. به علاوه، گیاه‌های عدس برای غله پر شدن کادمیوم، میزان فعالیت آن‌ها در کاهش قرار گرفته و در نهایت بود.

کلمات کلیدی: عدس، تنش کادمیوم، پروتئین، رنگزه‌های فتوستری، آنزیم‌های آمیکسیدان

عنصر ضروری محصول مو و فقط در غلظت‌های بالاتر از نیاز فیتولوژیک گیاهان آثار سمه دارند. ولی در بازی دیگر از فلزات سنگین مانند کادمیوم، آرسنیک، سرب و غیره که جزو فلزات ضروری محصول مو سند، حتی در غلظت‌های بالاتر نیز آثار سمه گیاهان دارند و به همین صورت، فلزات سنگین با عناصر افزایش یافته‌ی گیاهان محصول مو شود. (Babula et al., 2008)

مقدمه:
گیاهان طی چرخه زندگی خود معمولاً در معرض انواع وسیعی از نشانه‌های محیطی قرار می‌گیرند که از جمله آن‌ها می‌توان به تنش فلزات سنگین اشاره نمود. فلزات سنگین خط‌بران ترین آلاینده‌ها هستند که در بیوسنتیزم زمین و رسوبات وجود دارند. برخی فلزات سنگین مانند روی، نیکل و مس چون پیش‌ام نشان دهنده جزء بی‌رگی و آنربی‌هایی از تركیبات مهم رنگزه‌های فتوستری می‌باشند و نشان دهنده جزء بی‌رگی و آنربی‌هایی از تركیبات مهم رنگزه‌های فتوستری می‌باشند. hrkavousi@uk.ac.ir

نویسنده مسئول، نشانی پست الکترونیکی: hrkavousi@uk.ac.ir
بروتئین‌ها، واکنشی داده و باعث تغییر DNA هستند و در مراکز سلولی می‌شوند (بهمنی و همکاران، 1391). در سلول‌های با کاهش داده، یک سیستم دفاع برای مقابله با نقص اکسیدانی ایجاد شده می‌باشد. آنتی اکسیدانی با کاهشی بالا در گیاهان و جوهر دارد که موجب رادیکال‌های آزاد را از بین برده و این کننده سیستم محیطی می‌باشد. (CAT) سویه اکسید دیسنتراز (SOD)، آسکوربیاتراز (APX) و گلیکولاکراز (POX) نیز سیستم آنتی اکسیدانی، ایزوزیمی شال آسکوربیاتراز، آلکاکوریول و فلزیکوریول، Shahid et al., 2014. کمک می‌کنند برای کاهش انسداد و رشد.

بررسی‌ها نشان داده است که کادیوم بر ترشح و رشد سلول‌ها و رشد کلیه، تقسیم سلول‌های میکروسمی و تنظیم رشد و نحو گیاهان اثر می‌گذارد و سبب تأخیر در رشد گیاهان می‌شود. (Liu et al., 2003). از انجایی که می‌تواند در منوط‌های میزی (Mg) موجود در کالریال و یا با یون (Fe) که در طبیعتی تئی، رقابت کرده و جایگزین آن می‌شود بهترین فوستنت را در گیاه دچار احتمال می‌نماید. (Sanita et al., 1999). همچنین کادیوم کمبود عناصر غذایی ضروری را در گیاه افزایش داده و فلزت بسیاری از عناصر کم مصرف کاهاش می‌دهد. (Jiang et al., 2004). کادیوم اضافی از عناصر روشیکس آزمیز کلیدی جرخه کالوریه ممکن است و عمل آورده تفسیر، جهش و اتصال عناصر غذایی و نیتروژن و سولفای در گیاهان مختل می‌شود. (Chen et al., 2011, نمایندگیکی از آسیب‌های مهم بافتی که در گزارنگ گیاهان در محیط فلزات سنگین از جمله کادیوم رخ می‌دهد. افزایش تولید گیاهان با کادیوم عسل (ROS) مانند سرپراکسید، پراکسید هیدروژن و رادیکال‌هیدروکسیل ایجاد نتایج اکسیدانی است (حمودون و همکاران، 1391). انواع مختلف‌کازین فعال می‌توانند به ترکیبات حیاتی سلول مانند اسید‌های نیتریلا و اسید‌های نیتریل به عمل آورده تفسیر، جهش و اتصال عناصر غذایی و نیتروژن و سولفای در گیاهان مختل می‌شود. (Chen et al., 2011).
(آنلاین)

ردش و نمود عدس پارامترهای چنین میزان زنگی‌های فتوسنتزی، محیطی پذیری، میراژ پروتئین‌های محلول و فعالیت برخی آنزیم‌های آنی اکسیدانی در گیاهچه‌های مورد اندازه‌گیری و مقایسه قرار گرفت.

مواد و روش‌ها

کشت و به‌پایان رسیدن کامپیوم به‌طور عادی مورد استفاده از باران مولکول کاهش و دنیز یک کامپیوم از نظر شکل و اندازه انتخاب شدند. در این استحکام، ۷۵ درصد به مدت ۳۰ ثانیه، و صورت کردن، ۵ درصد به مدت ۲ دقیقه ضدعفونی و به کمک آب مقطع مقداری به شستشوی داده شد.

بیشتر از مدت ۲۴ ساعت در پتری دیشهای ۷ سانتی‌متری حاوی کاغذ و اتمام تشکیل داده شدند و دورن انکوباسور ۴۵ دقیقه گردانده گردید. سپس به‌وزن پت هواشان زده به گلدان های حاوی نسبت مساوی از کوکوپستیت و شن باری، در شده متنقل شدند. میانگین میزان روزه‌ها در طول این آزمایش ۷۵ درجه صورت‌گیری در نظر گرفته شد. کلیه پس از کشت در اتاق رشد، تحت شرایط ۱۶ ساعت نور و ۸ ساعت تاریک قرار گرفتند. گیاهان به مدت ۱۴ روز به صورت کروز در میان با محلول هورگنل آبیاری شدند و پس از این که گیاهان به مرحله دو تا چهار برگ رسیدند، به مدت هر روز در معرض گل‌شکن‌های مختل کری‌تکلومبی (شرف) (شاهدی، ۱۳۹۲/۱۲) ۲۵/۱۰، ۵/۰، ۵/۱، ۱۵/۰ و ۵ میلی‌لیتر محلول قرار گرفتند.

سنجش میزان زنگی‌های فتوسنتزی (کلفنفل) و کاربنی‌های (کلفنفل و \nLichtenthaler) برگ با استفاده از روش Wellburn (۱۹۹۴) انجام شد. در ۰/۱ گرم از بیاکتری برگ ون و \nLichtenthaler آن توسط استخراج ۶۰ دسی‌المتر. پس از صاف کردن نمونه با کاغذ صافی، جذب در طول موج‌های ۳۲۰/۳۸، ۴۸۰/۳۸، ۴۷۰ نانومتر بوسیله استخراج‌شده (Analytik Jena, Germany) به کمک ۰/۱ کوه‌بند چینالیش (Kohlen, Zer) (کلفنفل + کلفنفل) و کاربنی‌های با استفاده از فرمول زیر بر حسب میلی‌گرمbr.گرم بر میلی‌گرم ون رنگ قرار می‌گیرند. و

\[Ch_{w} = 12.25 \text{ A}_{663.2} - 2.798 \text{ A}_{648.8} \]
(1979) استفاده شد. قرانت جذب نمونه‌ها در طول موج 495 nm نام‌مر و سرم منجی رگرسیون انجم شد. تجزیه و تحلیل آماری: کلیه آزمایشات در قابل طرح کاملاً تصادفی با 3 تکرار انجم شد. تجزیه واریانس داده‌های استفاده از نرم افزار آماری SAS version 9. ابعاد اکسید مولار (pH) توسط پراکسید هیدروفورم 1 مولار و 10 میکرولیتر عصاره خام بود. فعالیت آنزیم کانالاز بر اساس میزان تجزیه شده، در mM H2O2 در طول موج 440 نانومتر با استفاده از فرم خاموشه 10.744/3 تبین گردید.

(1969) استفاده شد. برای اندازه‌گیری فعالیت آنزیم کانالاز (EC 1.1.1 1) از روش Sizer و Beers استفاده شد. په محلول واتش شال با فاز سفیده بنیامین په مولار 16، pH = 7/1/5 و با ته‌های هیدروفورم 1 مولار و 10 میکرولیتر عصاره خام بود. فعالیت آنزیم کانالاز بر اساس میزان تجزیه شده، در mH2O2 در طول موج 440 نانومتر با استفاده از فرم خاموشه 10.744/3 تبین گردید.

(1959) استفاده شد. برای اندازه‌گیری فعالیت آنزیم کانالاز (EC 1.1.1 1) از روش Asada و Nakano استفاده شد. برای اندازه‌گیری فعالیت آنزیم کانالاز (EC 1.1.1 1) از روش Dhindsa و NBT استفاده شد. مولار 10 میکرولیتر فاز سفیده بنیامین په مولار 7/1/5 و pH = 7/1/5 و با ته‌های هیدروفورم 1 مولار و 10 میکرولیتر عصاره خام بود. فعالیت آنزیم کانالاز بر اساس میزان تجزیه شده، در mH2O2 در طول موج 440 نانومتر با استفاده از فرم خاموشه 10.744/3 تبین گردید.

(1981) استفاده شد. برای اندازه‌گیری فعالیت آنزیم کانالاز (EC 1.1.1 1) از روش مولار 10 میکرولیتر عصاره خام بود. برای اندازه‌گیری فعالیت آنزیم کانالاز (EC 1.1.1 1) از روش مولار 10 میکرولیتر عصاره خام بود. برای اندازه‌گیری فعالیت آنزیم کانالاز (EC 1.1.1 1) از روش مولار 10 میکرولیتر عصاره خام بود. برای اندازه‌گیری فعالیت آنزیم کانالاز (EC 1.1.1 1) از روش مولار 10 میکرولیتر عصاره خام بود. برای اندازه‌گیری فعالیت آنزیم کانالاز (EC 1.1.1 1) از روش مولار 10 میکرولیتر عصاره خام بود. برای اندازه‌گیری فعالیت آنزیم کانالاز (EC 1.1.1 1) از روش مولار 10 میکرولیتر عصاره خام بود. برای اندازه‌گیری فعالیت آنزیم کانالاز (EC 1.1.1 1) از روش M
جدول 1- تجزیه واریانس اثر آزمایش بر صفات اندازه‌گیری شده

<table>
<thead>
<tr>
<th></th>
<th>کلروریک کادمیوم</th>
<th>کلروفیل</th>
<th>کلروفیل</th>
<th>پرتویوند کالروریک</th>
<th>کالروریک</th>
<th>کالروریک</th>
<th>فعالیت</th>
<th>فعالیت</th>
<th>فعالیت</th>
<th>فعالیت</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>APX</td>
<td>(CAT)</td>
<td>(SOD)</td>
<td>محصول پرتوویوند</td>
<td>پرتوویوند</td>
<td>پرتوویوند</td>
<td>آزمایش</td>
<td>آزمایش</td>
<td>آزمایش</td>
<td>آزمایش</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>0</td>
<td>0.125</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2.5</td>
<td>5</td>
<td>0</td>
<td>0.125</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>1/8</td>
<td>0.017</td>
<td>0.015</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>1</td>
<td>0.018</td>
<td>0.017</td>
<td>0.017</td>
<td>0.016</td>
<td>0.016</td>
<td>0.016</td>
<td>0.016</td>
<td>0.016</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>2.5</td>
<td>0.016</td>
</tr>
<tr>
<td>5</td>
<td>0.016</td>
</tr>
</tbody>
</table>

مشخصات مدل: میانگین (میلیمولار) به‌کارگیری شد.

شکل 1- اثر کادمیوم بر مقدار کلروفیل (کلروفیل a کلروفیل b کلروفیل B کلروفیل کل) و کلروفیل کل بر گاه‌گذاری (دائیانی) با استفاده از آزمون دانکن انجم شد (P<0.05). میانگین‌ها که حداکثر یک حرف مشترک دارند، از نظر آماری اختلاف معنی‌داری ندارند (P<0.05).

می‌تواند در ترتیب سپر کاهش سطح انزیم، دفع کادمیوم و کاهش فتوسترز در گیاه‌های سبز نقش داشته باشد. سبب کاهش سطح انزیم کلروفیل ب قشری در این فتوسترز می‌گردد. مقدار تحریک کلروفیل ب تحت شرایط محدود نشان می‌دهد که شرایط محیطی بیش از حد بطوری که غلظت‌های کمتر از 5% میلی‌مولار، سبب کاهش معنی‌داری در میزان کلروفیل کل نشده و با افزایش غلظت به پیش از این مقدار، میزان کلروفیل کل در مقایسه با شاهد بطور معنی‌داری (P<0.05) کاهش یافته است.
(شکل 1) نتایج نشان داد که کامیابی بُنگ کلیس کاهش میزان کارتوئیدها می‌شود. هر
چند غلظت 1 میلی‌مولار سبب افزایش معنی‌دار میزان این
رنگ‌های مشاهده شده که افزایش میزان کادیوم در محيط دوباره میزان
کارتوئید روند نزولی نشان داد. به یکی از قرار گرفتن
در غلظت 5 میلی‌مولار کادیوم میزان
باشگاهی رنگ‌های کارتوئید در مقایسه با شاهد بیش از
42 درصد بود. به عبارت دیگر میزان باشگاهی کادیوم بیش از
رنگ‌های مشاهده شده که کارتوئید
و b به مارک بیشتر بود (شکل 1).
نتایج این تحقیق نشان داد که معیار کادیوم از
مقدار کارتوئید کل کارتوئید کرنا در غلظت‌های 400 و
500 و 800 میکرومولار می‌شود. همچنین
John و همکاران (2009) نشان دادند که کادیوم به میزان کارتوئید
در اثر تمر نثار سبب
و کادیوم کاهش می‌دهد و در میزان کارتوئید را نشان می‌دهد
(Alam et al., 2009). از این میزان اثرات کادیوم، سبب
آورش می‌شود. سبب این جهت اکتشاف این نشان داد که
Array-y می‌شود. از اثرات دیگر فیگورات می‌باشد بر
کارتوئید بررسی می‌شود که این جانشینی سبب کاهش
در وسیله کارتوئید و ناحیه کارتوئید می‌شود (غلظت
میزان کادیوم) (Kupper et al., 1998). کاهش
زرنیم و Fe
2+ در سلیم کارتوئید نظر
حتی غشا کارتوئیدلاست بیش از دیگر
کارتوئید (Prasad and Sziralka, 1999). کاهش
در ترکیب افزایش و سبب کارتوئید و مراکز فعالیت بخشی از
های جنگه کالوین (2005) از دیگر دلال

(122) فرآیند و کارکرد گیاهان جلد 5، شماره 12، سال 1395

[212919]80301945

[212919]80301945
کاهش در محیوت کارولوف می‌باشد.

از دست رفتن کارولوف در اثر عملکرد کاهد می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولوف می‌باشد. نتایج نشان می‌دهد که در برابر کاهش کارولوف، اکسیژن بین کارولوف و بیان کامل‌ترین کارولو
بروژن در کاهش پتانسیل اسمزی سیتوپلاسمی و حفظ نسبت DHA/DHAامسولیت، جاروبرد کننده هموگلوبین، کاهش تأثیر مراکم‌های آبی و یک جزء یکی از سطح عامل می‌کند. اهمیت تجمع بر روی در حفظ وضعیت آبی گیاهی بیشتر از اهمیت سایر موارد همیشه و بر روی بر گونه نمایش دهنده ایشان ایفای نقش در سطح نش عامل می‌کند. که برای کننده در حفظ وضعیت آبی گیاهی بیشتر از اهمیت سایر موارد همیشه و بر روی بر گونه نمایش دهنده ایشان ایفای نقش در سطح نش عامل می‌کند.

شیمیایی باعث یافکنی فرم مولکولی مولکول‌های آبی و حالت خوردن شکل طبیعی ترکیبات آنزیمی مانند NADH و NADPH که در حفظ وضعیت آبی گیاهی بیشتر از اهمیت سایر موارد همیشه و بر روی بر گونه نمایش دهنده ایشان ایفای نقش در سطح نش عامل می‌کند.

فازهٔ دوم: در هنگام نش عامل، در نتیجهٔ اثرات شیمیایی دیگر نش عامل، نش عامل می‌کند.

از میانه‌ها یا نش عامل دارد، خلاصه که در حفظ وضعیت آبی گیاهی بیشتر از اهمیت سایر موارد همیشه و بر روی بر گونه نمایش دهنده ایشان ایفای نقش در سطح نش عامل

(Forde and Lea, 2007)

خواص مشخصه شده است که کاهش در حفظ وضعیت آبی گیاهی بیشتر از اهمیت سایر موارد همیشه و بر روی بر گونه نمایش دهنده ایشان ایفای نقش در سطح نش عامل می‌کند.

(Forde and Lea, 2007)

خواص مشخصه شده است که کاهش در حفظ وضعیت آبی گیاهی بیشتر از اهمیت سایر موارد همیشه و بر روی بر گونه نمایش دهنده ایشان ایفای نقش در سطح نش عامل می‌کند.

(Forde and Lea, 2007)

خواص مشخصه شده است که کاهش در حفظ وضعیت آبی گیاهی بیشتر از اهمیت سایر موارد همیشه و بر روی بر گونه نمایش دهنده ایشان ایفای نقش در سطح نش عامل می‌کند.

(Forde and Lea, 2007)
اثک کامبیوم بر میزان پروتئین‌های محلول برگ، گیاه عدس، مقایسه میانگین‌ها (میانگین‌ها تکرار) با استفاده از آزمون دانک انجم شد

(\text{P}<0.05)

میانگین‌هایی که حداکثر یک حرف مشترکی دارند، از نظر آماری اختلاف معنی‌داری ندارند (\text{P}<0.05).

به طور معنی‌دار کاسته شده است (شکل 3) به گونه‌گاه کمترین مقدار این شاخص با 419 درصد کاهش نسبت به گیاهان شاهد، مرتبه به گیاهانی بود که به مدت 10 روز تحت به‌طور کامل کامبیوم فرار گرفته بودند.

نتیجه‌های غیرمستقیم برخی پروتئین‌ها را مهار و تولید برخی دیگر را تحریک می‌کند. هرچند روند کل در جهت کاهش میزان کل پروتئین‌ها می‌باشد (Ericson and Alfinito, 1984). نتایج حاصل از این تحقیق با پایه‌های همکاران (2008) که کاهش در محتوای پروتئین محلول را \text{Lenna polyrrhza}

تحت تنش کامبیوم و سرب در گیاه گزارش کرده بود، مطالعات دارد. نتایج مشابهی در لوبیا تحت تنش سرب و کامبیوم (Bhardwaj et al., 2009) و به‌طور کامل تحت \text{Brassica juncea} (Liu et al., 2005) و \text{John et al., 2009} (گزارش شده است. تصور می‌شود که کاهش در محتوای پروتئین محلول کل تحت تنش فلزات سنگین ممکن است باعث افزایش در فعالیت پروتئاز (Palma et al., 2002) تغییرات مختلف ساختاری و کارکردی توسط واکنش‌شدن و قطعه فلزات

تاریک کامبیوم بر میزان پروتئین‌های آنزیم‌های آنتی اکسیدان:

بررسی نتایج حاصل از آنالیز آماری داده‌ها، افزایش فعالیت آنزیم اکسیدیسیون سلولر، تحقیق و تجزیه و تحلیل دیسیتیشن، آسکوربیت در برگها و گیاهان اکسیداسیون نسبت به تنش فلز کامبیوم در گیاه نشان می‌دهد (شکل 3). افزایش ظرفیت آنزیم‌های آنتی اکسیدان یک پاسخ عمومی به مقدار سلولر فلزات سنگین می‌باشد. نتایج تحقیق از طریق مهار جذاب K و Mg و تحریک تغییرات

\begin{align*}
\text{شکل 3- اثر کامبیوم بر میزان پروتئین‌های محلول برگ گیاه عدس، مقایسه میانگین‌ها (میانگین‌ها تکرار) با استفاده از آزمون دانک انجم شد}\n\end{align*}
شکل 4- اثر کادمیوم بر میزان فعالیت آنزیم سوپراکسید دیسموتاز، کاتالاز و آسکوربیات پراکسیداز گیاهیهای عدس. مقایسه میانگین‌ها (میانگین‌هایی که حاصل یک حرف مشترک دارند از نظر آماری اختلاف معنی‌داری ندارند (P>0.05).}

این واقعیت است که هر فعالیت یک یا چند مورد از آنزیم‌های آنتی اکسیدان مهم ترین ترکیبات در جلوگیری از تنش اکسیدانی در گیاهان تحت نش آفتابی می‌باشد. در این باشند. آنزیم‌های آنتی اکسیدان مهم ترین ترکیبات در جلوگیری از تنش اکسیدانی در گیاهان تحت نش آفتابی می‌باشد. موضوع فوق بر اساس
مطالعه نیز نش کادومیوم باعث افزایش در عفایل CAT SOD و APX و SHD (شکل ۱) که می‌تواند دلیل غیر مستقیم بر
افزاشار مولکول‌های آنزیم آزاد تحت تنش کادومیوم در
گیاه‌های عدس باشد (خاکی جمال آباد و خارا، ۱۳۸۷) نتایج نشان داد که افزایش غلظت کادومیوم در محیط
میزان عفایل آنزیم SOD، CAT، SOD، والکی، و آکسوپراکسید دیسموتاز، کاتالاز، و آکسوپراکسید
پراکسیداز بطور معنی‌داری (P<0.05) افزایش دیده کرد. کمترین
میزان عفایل هر سه آنزیم مربوط به سطح بدون تنش بود.
غلظت‌های ناشی از کلرد کادومیوم اثر محسوسی بر افزایش، فعالیت
آن‌ها ناشست و اگر افزایش غلظت کادومیوم به بیش از ۰/۵
فعالیت این آنی اکسیداژن افزایش بیشتر نش کد
کادومیوم افزایش یافته و پیش‌ترین میزان فعالیت در مورد هر
آلمندر سطح کلرد کادومیوم ۵ میلی‌مایل مشاهده گردید.
روز قرار گرفتن در معرض غلظت ۵ میلی‌مایل کادومیوم به
ترکیب سبیل افزایش ۳ و ۰/۵/برای میزان فعالیت آنزیم
پراکسیداز دیسموتاز، کاتالاز، و آکسوپراکسید کادومیوم در
مقایسه با کیاهاش شاهد شد (شکل ۱).
کاتالاز نیز یکی از مهم‌ترین اجزای مکان‌سازی‌های محافظتی
کیه‌عیروت که در میوتودزیا و پراکسیداز و جریان وارد و
H۲O۲ دارای نقش مهمی در ماده رادیکال آزاد با جریان به
داده در حین تکامل نوری و شرایط می‌باشد. کاتالاز
مهم‌ترین آنزیم برای حذف پراکسید هیدروژن ژوهمیش که ای
طی شکستن آن با آب و اکسیژن آلی، ذبیح یه
فعالیت کاتالاز باعث گله بر تنش اکسیدانی از طرف سودایی
پراکسیداز هیدروژن شده نه یا از تولید رادیکال هیدروکسی
جلوگیری و پروتئین ای سیلیکولکی و چری یکی در
Rastgo and ROS محیط‌های محلی (برابر ترکیبات
در این تحقیق عفایل آنزیم کاتالاز
Alemzadeh, ۲۰۱۱
ماهمکت با عفایل آنزیم
SOD در گیاه‌های عدس قرار
گرفته در معرض تنش کادومیوم القا شد که این امر به نقش
حفاظتی مهم این آنزیم در فعالیت دانه کادر
و مکمل
بدون نقش کاتالاز و پراکسیداز دیسموتاز در متابولیسم سول
اشه دارد.
و همکاران (۲۰۰۱) گزارش کردند که کاردی
کادومیوم می‌تواند در عفایل آنزیم کاتالاز در گیاه تریچه می‌شود. تاثیر به‌طور پراکسیداز و احساس زاده
۱۲۸۲ (در گلگرک و خاریز زاده و همکاران (۱۳۸۲) در نخود
و بادیا و همکاران (۱۳۹۲) در گلگرک گزارش شده است.

بترونتین آنزیمی که عملیات متابولیسم در گیاه
کاتالاز نیز یکی از مهم‌ترین اجزای جلوگیری به
پروتئین و تونالیتیک و چری‌ها در
Rastgo and ROS محیط‌های محلی (برابر ترکیبات
در این تحقیق عفایل آنزیم کاتالاز
Alemzadeh, ۲۰۱۱
ماهمکت با عفایل آنزیم
SOD در گیاه‌های عدس قرار
گرفته در معرض تنش کادومیوم القا شد که این امر به نقش
حفاظتی مهم این آنزیم در فعالیت دانه کادر
و مکمل
بدون نقش کاتالاز و پراکسیداز دیسموتاز در متابولیسم سول
اشه دارد.
و همکاران (۲۰۰۱) گزارش کردند که کاردی
کادومیوم می‌تواند در عفایل آنزیم کاتالاز در گیاه تریچه می‌شود. تاثیر به‌طور پراکسیداز و احساس زاده
۱۲۸۲ (در گلگرک و خاریز زاده و همکاران (۱۳۸۲) در نخود
و بادیا و همکاران (۱۳۹۲) در گلگرک گزارش شده است.

بترونتین آنزیمی که عملیات متابولیسم در گیاه
کاتالاز نیز یکی از مهم‌ترین اجزای جلوگیری به
پروتئین و تونالیتیک و چری‌ها در
Rastgo and ROS محیط‌های محلی (برابر ترکیبات
در این تحقیق عفایل آنزیم کاتالاز
Alemzadeh, ۲۰۱۱
ماهمکت با عفایل آنزیم
SOD در گیاه‌های عدس قرار
گرفته در معرض تنش کادومیوم القا شد که این امر به نقش
حفاظتی مهم این آنزیم در فعالیت دانه کادر
و مکمل
بدون نقش کاتالاز و پراکسیداز دیسموتاز در متابولیسم سول
اشه دارد.
و همکاران (۲۰۰۱) گزارش کردند که کاردی
کادومیوم می‌تواند در عفایل آنزیم کاتالاز در گیاه تریچه می‌شود. تاثیر به‌طور پراکسیداز و احساس زاده
۱۲۸۲ (در گلگرک و خاریز زاده و همکاران (۱۳۸۲) در نخود
و بادیا و همکاران (۱۳۹۲) در گلگرک گزارش شده است.

بترونتین آنزیمی که عملیات متابولیسم در گیاه
کاتالاز نیز یکی از مهم‌ترین اجزای جلوگیری به
پروتئین و تونالیتیک و چری‌ها در
Rastgo and ROS محیط‌های محلی (برابر ترکیبات
در این تحقیق عفایل آنزیم کاتالاز
Alemzadeh, ۲۰۱۱
ماهمکت با عفایل آنزیم
SOD در گیاه‌های عدس قرار
گرفته در معرض تنش کادومیوم القا شد که این امر به نقش
حفاظتی مهم این آنزیم در فعالیت دانه کادر
و مکمل
بدون نقش کاتالاز و پراکسیداز دیسموتاز در متابولیسم سول
اشه دارد.
و همکاران (۲۰۰۱) گزارش کردند که کاردی
کادومیوم می‌تواند در عفایل آنزیم کاتالاز در گیاه تریچه می‌شود. تاثیر به‌طور پراکسیداز و احساس زاده
۱۲۸۲ (در گلگرک و خاریز زاده و همکاران (۱۳۸۲) در نخود
و بادیا و همکاران (۱۳۹۲) در گلگرک گزارش شده است.
منظر در این جرخه آنزیم‌های مونودهیدروآسکوربات
ردوکاتز، دهیدروآسکوربات ردوکاتز و گلتوانتون ردوکاتز
فعالیت می‌کنند و با استفاده از NAD(P)H آسکوربات را احیا کنند (Mittler, 2002).

در این مطالعه میزان فعالیت آنزیم آسکوربات پراکسیداز نیز
با فعالیت غلظت کادموی فعالیت‌های وابسته. هر چند میزان آنزیم آنزیم این
فعالیت این آنزیم در مقایسه با دو آنزیم دیگر کمتر بود. تحقیق
تحقیق بروکرک و اشرفی (1390) نیز نشان داد که میزان فعالیت
آنزیم کاتالاز و آسکوربات پراکسیداز در گیاهان نمی‌تواند تا
تیمار کادموی آنزیم‌ها پیدا می‌کند. نتایج پراکسیدازها گروه
درگیر از آنزیم‌های دفاعی بسیاری چه در گیاهان به پایهٔ نتش‌های
زیستی و غیر زیستی تولید می‌شوند. پراکسیدازها
معلوماً واکنش اکسیداسیون و احیا را بین پراکسید هیدرون با
عنوان کربنیکینوکس و انتگر زایی از سوستراتا مثل موارد
فیلم ایس ساختنی، آنتی‌اکسیدان‌های آتروماتیک و سیتوکروم
کاتالاز می‌کنند و به عنوان آنزیم‌های گونه‌های فعال
اکسیدی اصلی می‌کنند. آنزیم پراکسیداز موجب شکستند
هیدرون پراکسیداز در سلول می‌شود و بدنی شکل از تولید
تکرکات گلخویگی می‌کنند و نباید با بالا رفتن سطح
فعالیت این آنزیم، گیاه کمتر قدرت همچون تکرکات
قرار می‌گیرد. این امر به آنزیم‌ها در سیتومول و واکنل
کلروفلاست و اپوالاست وجود دارد. از جمله پراکسیدازها
می‌توان به آسکوربات پراکسیداز اشاره کرد. این آنزیم نقش
همه در تعیین میزان تکرکات ROS تولید شده طی نش در
سلول دارد. این آنزیم از آسکوربات به عنوان عامل احیا کننده
استفاده می‌کند و راه‌هایی از طریق چرخه‌ی آسکوربات
آنتی اکسیدان‌های گیاه‌های شد که این مورد
می‌توان آنها از مکانیسم مقاومت گیاه عدس در برابر تنش
کادموی باشد.

پژوهش‌های سلولی و مولکولی (ماجرا وزارتیشناسی
ایران) ۲۴-۲۳۵-۲۵۱-۲۵۲.

دادخا، م.، مودی دهنه، م. و بدویی، ع. (1393). برهم‌کنش
نیترت کادموی و سالوسیلسک اسید بر فعالیت آنزیم‌های
آنی اکسیدان، پروتئین محلول و مولون دی اهدب درگر
گلکنان رقم صفحه فرآیند و کارکرد گیاهی. ۳۳-۱۲-۱۳.

بهمینی، ر.، ب. همت، م.، حجیبی، د. و فرورز، پ. (1391).

مراجع:

احمدی، س.، بهمینی، ر.، حجیبی، د. و فرورز، پ. (1391). بررسی اثر کلرکی کادموی بر پارامترهای رشدی و برخی
صفات فیزیولوژیک در گیاه‌های لوپین، مجله زراعت و
اصلاح نباتات ۸ ۱۶۷-۱۸۳.

امینی، ز. و حداد، ر. (1392). نقش رنگ‌های فوستونی و
آنزیم‌های آنتی اکسیدان در مقابل تنش اکسیداسیون، مجله

Uncommon heavy metal stress on leaf chlorosis oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: Causes and consequences for photosynthesis and growth.

Behavior 7: 1456-1466.
Contamination of Toxicology 85: 256–263.
Effect of cadmium on photosynthetic pigments, proline, soluble proteins and some antioxidant enzymes in lentil (*Lens culinaris* Medik.) seedlings

Fatemeh Barandeh and Hamid Reza Kavousi*

Department of Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

(Received: 3 March 2015, Accepted: 1 July 2015)

Abstract:

Cadmium (Cd) is absorbed easily by the root system of many plant species. Due to its solubility in water and toxicity is considered as a major pollutant. The aim of this study was to investigate the cadmium toxicity on some physiological characteristics of lentil seedlings. Two-week-old seedlings were treated with different concentrations (0 as control, 0.125, 0.25, 0.5, 1, 2.5 and 5 mM) of cadmium chloride in a completely randomized design with three replications for 10 days and then the amounts of photosynthetic pigments, proline, soluble proteins and activity of some antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) were investigated. Results indicated that with increase of cadmium concentration, significant reduction was observed in photosynthetic pigments. Furthermore, the cadmium significantly increased the amount of proline in treated seedlings compared with control. Also, cadmium has imposed drastic decrease in total soluble proteins and the amount of proteins declined progressively with increasing concentrations of cadmium. Antioxidant enzymes evaluation determination showed that with increasing concentrations of cadmium, the activity of antioxidant enzymes such as superoxide dismutase, catalase and ascorbate peroxidase were increased in lentil seedlings. Due to the reduction of protein contents and photosynthetic pigments, the present results allow us to conclude that the lentil plants adversely affected by cadmium toxicity. To overcome cadmium stress, seedlings have increased the activity of antioxidative enzymes as well as proline.

Key words: Lentile, Cadmium stress, Proline, Photosynthetic pigments, Antioxidant Enzymes.
اثر کلرید کادمیوم بر رنگ‌های فتوستاتیک، محتوای پولی‌نی، میزان...