تأثیر تاریخ و تراکم کاشت بر ماده خشک و ظرفیت آنتی‌اکسیدان‌های ریشه Echinacea purpurea (L.) Moench

گیاه دارویی سرخرگال

سمانه اسدي صنم، محسن زواره، همت الله پردرشتی، فاطمه سفیدکن، و قربانی‌نیمن

گروه زراعت، دانشکده علوم کشاورزی، دانشگاه گیلان، گروه زراعت، پژوهشگاه ویژه زنگ، ویژه فناوری کشاورزی طبستان، دانشکده علوم کشاورزی و منابع طبیعی، گروه تحقیقات گیاهان دارویی، مؤسسه تحقیقات جنگل‌ها و منابع کشور، گروه اصلاح نباتات، پژوهشگاه ویژه زنگ، ویژه فناوری کشاورزی طبستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری

(تاریخ دریافت: 3/10/14، نیویورک، نشر نهایی: 2/10/13)

چکیده

با هدف بررسی اثر تاریخ کاشت و تراکم بونه بر ویژگی‌ها، عملکرد ماده خشک، ترکیب فنی و ظرفیت آنتی‌اکسیدان‌های ریشه گیاه دارویی Echinacea purpurea، آزمایشی به صورت کرت‌های خردسال در قابل طرح یا پلک‌های کامل بهترین کاربرد زنگ ویژه‌ها و سازمان‌های طبیعی انجام شد. از تاریخ کاشت (20 فروردین) و 18 خرداد (1392) و همچنین (1391) اجرا شد. تیمارهای آزمایش شامل سه تاریخ کاشت (20 فروردین و 19 اردیبهشت و 16 خرداد) و تراکم 10 بونه در دو مربعی بود. پیش‌ترین حجم و ماده خشک رشد در طرح تاریخ کاشت 18 خرداد و تراکم 8 بونه به تاریخ کاشت 19 اردیبهشت و تراکم 11 بونه در دو مربعی بود. پیش‌ترین مقدار اسید شیکوریک (9/16 میلی‌گرم در گرم ماده خشک) و نقل کل (30/8 میلی‌گرم در گرم ماده خشک) رشد و مربوط به سرخرگال‌ها کشت بود. در تاریخ 19 اردیبهشت و تراکم 11 بونه در دو مربعی بود. پیش‌ترین مقدار فلورانتوند کل و ظرفیت آنتی‌اکسیدان‌های ریشه گیاه دارویی Echinacea purpurea، ظرفیت آنتی‌اکسیدان‌های ریشه گیاه دارویی Echinacea purpurea، و ظرفیت آنتی‌اکسیدان‌های ریشه گیاه دارویی Echinacea purpurea به بالارفتن تراکم و در 18 خرداد کشت شدند. در کل، میزان بررسی نسبت به نتایج کشف شد. در 18 خرداد برای تولید پیش‌ترین ماده خشک، محصول فلورانتوند کل و ظرفیت آنتی‌اکسیدان‌های ریشه گیاه دارویی Echinacea purpurea به بالاریفتن تراکم و در 18 خرداد کشت شدند.

واژه‌های کلیدی: اسید شیکوریک، سرخرگال، نقل کل، ماده خشک رشد.

مقدمه

است که گچبگان مهمی بین گیاهان دارویی کشور ایالت مندید. D. purpurea (Hobbs, 1989). کونه Echinacea جنس از خانواده آترسیسه و بومی آمریکای شمالی mazavareh@guilan.ac.ir

 contractor's name
شنا ناده که مقدار فلهاهای کل اندازه‌های مختلف سرخارگی با
یکپاره متغیران و ترتیب کاهشی آنها به صورت گروه < برگرها > ساقط < ریشه بوده است (2011). از
طرز تجزیه‌های کمی عصاره‌های انلاین و آب سرخارگل
هم، شنا ناده است که غلظت‌های بالای محتوای فلتها در
گیاه ه‌ها به‌دست می‌آید که به گیاه تولید و ذخیره
این ترکیبات بیش از یک سال فرصت داده شود
(Cech et al., 2006). با این وجود، اطلاعات کمی در مورد
ترکیبات فلتها موجود در عصاره روش سرخارگی وجود دارد
که لازم است بررسی بیشتری در این زمینه انجام شود
(Tsai et al., 2012; pellati et al., 2004)
عملکرد و مواد مؤثر گیاهان دارویی بسته به مکان‌های
رشد، شرایط عملی، عملکرد زراعی، مراحل رشد و
ویژگی‌های زنبوری غیره می‌کند که این نگرش در بین
جمعیت‌های زراعی و وحشی به روشی دیده می‌شود
(Millausksas et al., 2004). پژوهش جولین تیلی گیاهان دارویی
را وابسته به شرایط بوم‌شناختی دانسته و کنترل عنصر محیطی
و مدیریت اجرای سیستم رشدی گیاه از حالت تراکم و تراکم
کشتن را راهکاری مناسب در دستیابی به عملکرد بهینه
ترکیبات مؤثر در گیاهان دارویی معرفی کردن
(Rafieiollahsaini et al., 2010). استقرار تراکم
مناسبی از بوته‌ها در منابع تراکم کشت، اساس یک
سیستم زراعی موفق گزارش شده است (2009).
(Coffelt et al., 2009). اگرچه در مورد کشت مواد مغذی از تراکم
در بخش 2 (Chen et al., 2008; Thomsen et al., 2012)
منطق (2012)
و Callan et al., 2005; Parmenter and Littlejohn, 1997; Shalaby et al., 1997)
پژوهش‌های انجام شده است واگذاری در مورد اثرات
رشد و تراکم بوته بیولوژی مهیج و مواد مؤثر سرخارگل
هلوس، خیلی محدود می‌باشد.
استاندارد کیفی مواد چهاری ریشه در سرخارگل می‌تواند نا
محتوای بیش از 15 میلی گرم بر گرم ماده خشک برای اسید
شیکوریک در نظر گرفته شود. کمترین استاندارد برای بار
گیاههای صنعتی و علی قسم است که قدمتی طولانی در مصرف
دارویی در آمریکا شرایط (2002) و
استرالیا (1999) دارد. در حدود 1000 سال
پیش، سرخ پوست آمریکای اولین باز از این گیاه به عنوان
داروی موثر در گیرالدو نهاده گردیده است. هم‌اکنون، سرخارگل
برای اهداف دارویی در داروی تعبیه و جمله علوفت‌های
و اداری، سوخت‌های و اکسیرتی از جمله علوفت‌های
ویروسی، ناامنی‌های پوستی و بیماری‌های مزمن به علت
نقش در پاسخ‌های ایمنی، کشت و استفاده می‌شود
(Linde et al., 2009).
این گیاه محرک سیستم ایمنی و پنل استاندارد آن دارای اثر
ضدالتهابی می‌باشد (Bone, 1997). (معنی)
سرخارگل از راه مکاپشیمی مختلف از جمله علوفت‌های
ضعیف‌کننده، تحریک فیلتراسیون و مهار التهاب
موجب بی‌ثباتی می‌شود (1998). در اروپا،
این گیاه به مدت چند سال از پرفروشترین گیاهان دارویی
بود (Stanisavijevic et al., 2009). در ایالات متحده،
فوائد و اهمیت گیاهان داروی جزو شمش‌های گیاه دارویی پرورش
Blumenthal et al., 2005)
فلتها گیاهی در واقع، متابولیت‌های ثانویه هستند که در
شرایط مطلوب محیطی، از ماده شیمیایی اسید و از متابولیسم
فیور پروتابندیه سنت می‌شوند (2008). این
Razali et al., 2010)
ترکیبات ذخیره‌ای و ظرف‌یابی بزرج‌های بر
برهمن کشش محیطی می‌باشد. جذب حشرات گردش‌افشان
ملاحظه گیاهان در مقابل عامل نشان‌زیات ریزی و
غیریزیات، رشد و تولید مثل گیاهان و گیاه‌های
 ضدین‌گیر شیکوریک و فلوراسیونی بر
در (Dalby-Brown et al., 2005; Pellati et al., 2004)
مان این ترکیبات، پنل‌ها، آن‌که کم‌تری از
مونوفلیک گزارش شدند (2001). (Duff Stoley et al., 2001)
فرآیند و کارکرد گیاهی جلد 5: شماره 15, سال 1395
پسندی قالی‌فیول اسید شیکوریک در ریشه‌ها، بیش از پنج میلی‌گرم بر گرم ماده خشک بیان شده است (Wills and Stuart, 1999). ریشه جمعیت‌های اهلی و بین‌النهرین سرخرگل در کانادا، بیشترین مقدار اسید شیکوریک به میانگین ۷۰۷ میلی‌گرم در گرم ماده خشک در ریشه‌های گیاه سرخرگل به دست آمد و به کاشت مقدار این ترکیب در ریشه‌ها و افرازی کوزیا و Thomansen et al. (2002) در آزمایش همکاران (2012)، مقدار این اسید فنی در سرخرگل‌های رشدی در دانمارک از ۲/۷۹ تا ۲/۷۹ میلی‌گرم بر گرم ماده خشک منحرف بود. در مطالعه Callan و همکاران (2005) تا ۱۰ گیاه در متر مربع سرخرگل، غلظت اسید شیکوریک را در رشته حدود ۱۲ میلی‌گرم در گرم ماده خشک در سال دوم رشد حضور کرد.

مقادیر فنی در ریشه سرخرگل‌ها در مطالعه Wu و همکاران (۲۰۰۸) ۳/۵ و ۵/۶ میلی‌گرم در گرم ماده خشک و مقدار فلز‌نویسی کل ۲/۳۸ میلی‌گرم در گرم ماده خشک گزارش شده است. همکاران (2004) در پژوهش، مقدار فنی کل اندام‌های هواپیمایی و سرخرگل از منفعت‌گر شکرده به طوری که اسید شیکوریک در ریشه‌های اصلی حدود ۷۸ درصد فنی کل را تشکیل داده بود. این مطالعه در دانمارک، زمانی غلظت کل محلویان فنی ریشه سرخرگل ۳/۴۹ میلی‌گرم در گرم ماده خشک به دست آمده که با توجه به مقادیر اسید شیکوریک اندام‌گری شده این مقدار قابل انظار بود (Thomsen et al., 2012) در پژوهش دیگری که در پنج منطقه از تونسی‌بلند انجام شد، سرخرگل به شکل دور ریفه با فاصله ۲۰ متر از هم روی سطحی به عرض ۱/۵ متر مربع و با تراکم ۲۸ کیلو در متر مربع کشت شد. نتایج این آزمایش نشان داد که عملکرد ماده خشک ریشه‌پس از دو فصل رسیدن نسبتاً پایین و بطور متوسط ۴۲۴ گرم در متر مربع بوده است (Parmenter et al., 1992). به این ترتیب، همکاران و Parmenter کشف می‌توانند اصل مهمی بر ساختار گیاه سرخرگل داشته باشند.
جدول 1- برخی ویژگی‌های فیزیکی و شیمیایی خاک مروره آزمایش

| عمق | هایدات | نمونه‌برداری | گرم بالا (ds.m²) | سایه‌پذیری | ردیابی خاک
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2- اطلاعات هواشناسی مربوط به ته نمای از فصل رشد سارکارگل در سال 1392

<table>
<thead>
<tr>
<th>ماه های سال</th>
<th>روز</th>
<th>تعداد</th>
<th>دمای (درجه سلسیوس)</th>
<th>رطوبت نسبی (درصد)</th>
<th>ساعت</th>
</tr>
</thead>
<tbody>
<tr>
<td>جمع</td>
<td></td>
<td>97</td>
<td>73</td>
<td>1/08</td>
<td>52</td>
</tr>
<tr>
<td>آذر</td>
<td>91</td>
<td>41</td>
<td>25</td>
<td>3/21</td>
<td>46</td>
</tr>
<tr>
<td>آبان</td>
<td>85</td>
<td>16</td>
<td>1/10</td>
<td>7/06</td>
<td>18</td>
</tr>
<tr>
<td>شهریور</td>
<td>96</td>
<td>41</td>
<td>21</td>
<td>2/18</td>
<td>43</td>
</tr>
<tr>
<td>مهر</td>
<td>96</td>
<td>41</td>
<td>21</td>
<td>2/18</td>
<td>43</td>
</tr>
<tr>
<td>آیان</td>
<td>91</td>
<td>38</td>
<td>1/11</td>
<td>6/21</td>
<td>72</td>
</tr>
<tr>
<td>آذر</td>
<td>97</td>
<td>49</td>
<td>27</td>
<td>3/27</td>
<td>39</td>
</tr>
<tr>
<td>جمع</td>
<td>88</td>
<td>38</td>
<td>1/11</td>
<td>6/21</td>
<td>72</td>
</tr>
<tr>
<td>میانگین</td>
<td></td>
<td>103</td>
<td>1/06</td>
<td>5/06</td>
<td>47</td>
</tr>
</tbody>
</table>

مطالعه انجام‌گر، د. ریف نکاشته در نظر گرفته شد. همچنین، فاصله بین بلورهای آزمایش دو متر بود. عملیات آباده‌سازی بستر شامل شخم پایای تراز و دو دیسک عمود برهم پیش از کاشت بود. سپس ردیف‌های کاشت به حلته طراحی شد. از آنجایی که در بستر کاشت نشانه‌های خزانه، ماسه غالب بود، در هنگام انتقال نشانه‌های زمین اصلی نیز مقدار ماسه نرم دبی با خاک پشت مخلوط شد. با تأکیدن پس از کاشت شنا و پس از آن بنا به شیب‌های آب و هوايی منطقه، آبیاری به صورت قطعی انجام شد. برای جلوگیری از اثرات اقتصادی عفون‌کشی‌های شیمیایی بر ترکیبات دارویی گیاه صورت پذیرفته‌است و در مراحل استقرار بیونه، انتهای کارده و 50 درصد کل بلوری انجام شد. در این آزمایش، به شکل پایه نیتروژن (40 کیلوگرم در هكتار) نیتروژن شامل از منبع اوره به اساس عرف منطقه از هیچ گونه کود شیمیایی دیگری در کرت‌ها استفاده نشد.
تأثیر تاریخ تراکم کاشت بر ماده خشک و ظرفیت آتی اکسیدازی ریشه

و حفظ آن در 100 درصد برای 10 دقیقه بود. سپس جریان خلع 100 درصد خالی قرار داده و در 10 دقیقه کاهش یافت. سرعت جریان 1/5 میلیلیتر در دقیقه و طول موج شناساگر فرابنیف 330 نانومتر، تنظیم شد. حجم نمونه تزریق 20 میکرویلتر بود. از تزریق نمونه، ابتدا از استاندارد اسید شیکوریک پچ غلتکی مخلوط نه شده و به دستگاه HPLC تزریق شد تا زمان اندازه‌گیری، نسبت و شیب جریان حلال در ستون HPLC به منظور جاداسازی پهلو این ترکب کالیبر شود. سپس با استفاده از کروماتوگرام به‌دست آمده (شکل 1)، منحنی استاندارد مربوط به اسید شیکوریک رسم شد تا افت و پیش از استاندارد محوریت، غلتکی این ترکب بر حسب میلی گرم بر ماده خشک محاسبه و بیان شود. کرومکرتون اسید شیکوریک در نمونه استخراج شده از ریشه سرخک‌گلار تحت تبادلگر پشت تاریخ 18 خرداد و تراکم 15 بیوت در متر مربع در شکل 2 نشان داده شد.

است. Folin–Ciocalteu ارزیابی فلز کل ریشه: ارزیابی فلز کل با روش Folin–Ciocalteu (Singleton et al., 1999). به عنوان بالابوون غلتکی ترکیبات فلزی، بسته نمونه‌ها 10 بر ریچ شدند. 125 میکرویلتر از عصاره ماتانی استخراج شده با 2/5 میلیلیتر مخفف فولیون 10 درصد مخلوط شدند. به مخلوط حاصل پس از شیب دقیقه، دو میلیلیتر کرومکرتون 75 درصد اضافه شد. میزان جدب مخلوط واکنش پس از 90 دقیقه نگهداری در شرایط بدون نور در Unico 765 نانومتر و سپس دستگاه طیف سنج (USA) اداسی گری شد. در نهایت مقدار فلز کل از روی منحنی استنداردر به‌حساب میلی گرم کربن اسید کلایک در یک گرم ماده خشک بیان شد. درصد رقیق‌کردن نیز، در محاسبات منظور گردید.

ارزیابی فلزونه کل ریشه: مقدار فلز ونونید کل با روش Du et al., 2009) کالیبره شده الکترونیک کلاژن اداسی گری شد (Kalb et al., 2000). ابتدا به 150 میکرویلتر عصاره استخراج‌شده به ترتیب 1700 میکرویلتر تابعیتی دستیم 1/5 میکرویلتر اتانول 30 درصد، 150 میکرویلتر تابعیتی

استخراج عصاره فلز: استخراج عصاره فلز از بافت ریشه سرخک‌گلار بر اساس روش و همکاران (2000) با Thyesen کمی تغییر انجام شد. ابتدا نمونه‌های خشک ریشه‌ها توسط دستگاه قهوه خردکن (مدل 90 W-E G 12000) یونیتی و از اکل 4040 مش عبر فشل شدند. سپس به 1400 گرم از پودر کارس تهیه شده و 10 میلی لیتر متانول، آب (3:1) اضافه شد. نمونه‌ها سپر از ورناتکا کوتاچی به مدت 30 دقیقه در حمام اوترسونیک (Ultrasonic Cleaner) با هم‌بستگی 500 لیتر نگهداری شدند. سپس به مدت 75 دقیقه در هم‌بستگی 10000 rpm به مدت 15000 سیکل نگهداری شدند. آبازی اسید شیکوریک ریشه: مقدار اسید شیکوریک ریشه Kitts و Hu (2000) و با استفاده از دستگاه HPLC تعیین شد. پیدا می‌شد، در ابتدا با توجه به بالابوون غلتکی ترکیبات فلزی استخراج نمونه‌ها دچار پاسخ با مسئله 50 درصد ریچ شدند. سپس یک میلیلیتر از عصاره استخراج‌شده ریشه، پس از تزریق به دستگاه به دستگاه افتر فنل‌های پروتئینی (Sigma, 50-3-80) گذاری و کار سافتیچ و دار انجمد شد. نمونه‌های به‌دست آمده تا واریسی خزه‌های شیمیایی در دمای 20 درجه سلسیوس تهیه شدند.
شکل ۱- کروماتوگرام اسید شیکوریک در نمونه استاندارد

شکل ۲- کروماتوگرام اسید شیکوریک در نمونه استخراج شده از ریشه سرخارگلها تحت تیمار برهمکنش تاریخ کشت ۱۸ خرداد و تراکم ۱۵ بروند در متر مربع

در طول موج ۵۰۶ نانومتر ثبت شد. در نهایت محترای فلاآنتید کل با استفاده از رسم آنلاین استاندارد کوتزرستین بر حسب میلی گرم کوتزرستین در گرم ماده خشک محاسبه و بیان شد. میلی مولار و ۱۵۰ میکرولیتر کلرید آلومینیوم ۱/۰ میلی مولار اضافه و بالا قرار گرفته شده است به همراه گذشت پنج دقیقه، ۱۰۰ میکرولیتر محلول هیدروکسید سدیم یک میلی مولار اضافه شد. پس از ۱۵-۱۰ دقیقه، مقدار جذب با دستگاه طیف سنج
ارزیابی ظرفیت آنی اکسیدانی ریشه: طرفیت آنی اکسیدانی عصاره ریشه، از راه خاصیت فلزی و جدایی راکدی کالآژاد DPPH
(20-189 کیلولتر) با استفاده از روش طیف سنگی تایبین (Brand-William et al., 1995) برای این مقدار مقدار می‌گردد
950 میکرولتر محلول بهبود اثربخشی و بهبود در شرایط تایبینی و در دمای اتاق اکسیدازی شد. سپس، مقدار
جذب نمونه‌ها در طول موج 517 نانومتر خوانده شد. ظرفیت آنی اکسیدانی عصاره ریشه به صورت درصد پایدار بینی با
DPPH استفاده از رابطه 1 محاسبه شد.

\[
%DPPH_{sc} = \left(A_{cont} - A_{samp} \right) / A_{cont} \times 100
\]

SAS برای تجزیه آماری داده‌ها، از نرم‌افزار SAS نسخه 9 (Institute, 2002) استفاده شد. مقایسه میانگین تیمارها، با
آزمون LSD و در سطح احتمال پنج درصد مقایسه شده و نمودارهای S, SAS: شاخص یکپارچه زودی (2002).

نتایج:

ذبایی تبضید 20 و تبضید 50

\[
\text{ذبایی} = \frac{100}{\text{میزان تبضید}}
\]

میزان تبضید (شکل 1) در کرتیفیکات‌های به‌دست‌آمده که دارای دریم و بالا فاصله کشی یشه تبضید (30 میلی‌متر) در
سبرفه‌ها (دیو) هفت سه‌پنجمیک فصل پال (19 اردیبهشت ماه) و با نمودار در کیفیت کشتی کشتی (شکل 3). این
عمق 3/0 میلی‌متر، حدود 65 درصد کشی چهار محوری نمونه به میانگین 75/8 سانتی‌متر بود که در تایبین کشت
18 خرد و تراکم هفت سه‌پنجمیک یک‌پارچه درست بود (شکل 4).

\[
\text{حجم ریشه} = \text{ترکیبیاری آوازخوانی حجم ریشه} (\text{دغدغه} + \text{مکانیکی})
\]

سزایی بی‌پاره کشت بر ماده خشک و طرفیت آنی اکسیدانی ریشه...
<table>
<thead>
<tr>
<th>لرطای</th>
<th>۶۴</th>
<th>۶۴</th>
<th>۶۴</th>
<th>۶۴</th>
<th>۶۴</th>
<th>۶۴</th>
<th>۶۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>لرطای</td>
<td>۶۴</td>
<td>۶۴</td>
<td>۶۴</td>
<td>۶۴</td>
<td>۶۴</td>
<td>۶۴</td>
<td>۶۴</td>
</tr>
<tr>
<td>لرطای</td>
<td>۶۴</td>
<td>۶۴</td>
<td>۶۴</td>
<td>۶۴</td>
<td>۶۴</td>
<td>۶۴</td>
<td>۶۴</td>
</tr>
</tbody>
</table>

توضیحات

<table>
<thead>
<tr>
<th>عنوان</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>توضیحات</td>
<td>توضیحات</td>
</tr>
<tr>
<td>توضیحات</td>
<td>توضیحات</td>
</tr>
<tr>
<td>توضیحات</td>
<td>توضیحات</td>
</tr>
<tr>
<td>توضیحات</td>
<td>توضیحات</td>
</tr>
</tbody>
</table>

نتایج

<table>
<thead>
<tr>
<th>نتایج</th>
<th>نتایج</th>
<th>نتایج</th>
<th>نتایج</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>نتایج</td>
<td>نتایج</td>
<td>نتایج</td>
<td>نتایج</td>
<td>نتایج</td>
</tr>
</tbody>
</table>
تأثیر تاریخ و تراکم کاشت بر ماده خشک و ظرفیت آبی کسب‌وبیدی ریشه

شکل ۳- برهم کنش تاریخ کاشت و تراکم بونه بر عملکرد ریشه در مرحله گلدهی کامل سرشارگل

شکل ۴- برهم کنش تاریخ کاشت و تراکم بونه بر حجم ریشه در مرحله گلدهی کامل سرشارگل

بوته تراکم بهبوده است (شکل ۶). در حالی که کمترین مقادیر ماده خشک کل بونه (۵/۴ گرم در بونه) در گیاهانی به دست آمد که در تراکم ۱۶ بونه در متر مربع کشت شدند (شکل ۶).

نسبت ماده خشک ریشه به شاخسار: بر اساس نتایج پژوهش حاضر، نسبت ماده خشک ریشه به شاخسار سرخاگل‌ها هم، تحت تأثیر برهم کنش معنادار تاریخ کشت و تراکم بونه قرار گرفت. یک برهم کنش‌ها به‌وسیله تراکم بونه نشان داد که در بین تاریخ‌های کاشت، منجر به ایجاد اختلاف بسیار معنی‌داری در ماده خشک کل بونه شده است. بجای تراکم ۱۶ بونه در متر مربع که در سطح پنج درصد معنی‌دار بود (جدول ۴)، مقایسه میانگین‌های ماده خشک کل در بونه نشان داد که کشت تأخیری در همیشه تراکم‌ها سیب کاهش ماده خشک بونه می‌شود (شکل ۶). با این حال، بیشترین ماده خشک کل بونه (۵/۴ گرم در بونه) در همیشه تاریخ‌ها در تراکم ۱۶ بونه در متر مربع به دست آمد که نشان می‌داد احتمالاً این تراکم از نظر تولید ماده خشک کل
اسید شیکوریک ریشه: افزایش شدید گسترش و تراکم بوته در مراحل نهایی کاشت مشاهده می‌شود که با افزایش تراکم بوته و تعداد بوته در هر متر مربع افزایش می‌یابد. در تصویر 5، هر یک از خطوط به تراکم بوته و تعداد بوته در هر متر مربع سبب افزایش شدید گسترش و تراکم بوته در مراحل نهایی کاشت می‌شود. در موارد که تراکم بوته بیش از 10 بوده، گسترش و تراکم بوته در هر متر مربع زیادتر می‌شود.

این گزارش به‌منظور بررسی تاثیر تراکم بوته و تعداد بوته در هر متر مربع بر گسترش و تراکم بوته و نتایج آزمایشات خودآزمایشی در مراحل نهایی کاشت ارائه می‌شود. منجر به این امر که تعداد بوته و تراکم بوته در هر متر مربع به‌[minium] شکلی متغیر می‌شود، افزایش تراکم بوته در هر متر مربع باعث افزایش گسترش و تراکم بوته در مراحل نهایی کاشت می‌گردد.

این نتایج به‌منظور بررسی تاثیر تراکم بوته و تعداد بوته در هر متر مربع بر گسترش و تراکم بوتهمی‌اندازه‌گیری می‌شوند. در موارد که تراکم بوتهم‌اندازه‌گیری بیش از حد و تعداد بوتهم‌اندازه‌گیری بیش از حد می‌باشد، باعث بیشتر شدن گسترش و تراکم بوتهم‌اندازه‌گیری می‌گردد.

این نتایج به‌منظور بررسی تاثیر تراکم بوتهم‌اندازه‌گیری و تعداد بوتهم‌اندازه‌گیری بر گسترش و تراکم بوتهم‌اندازه‌گیری می‌شوند. در موارد که تراکم بوتهم‌اندازه‌گیری و تعداد بوتهم‌اندازه‌گیری بیش از حد می‌باشد، باعث بیشتر شدن گسترش و تراکم بوتهم‌اندازه‌گیری می‌گردد.

این نتایج به‌منظور بررسی تاثیر تراکم بوتهم‌اندازه‌گیری و تعداد بوتهم‌اندازه‌گیری بر گسترش و تراکم بوتهم‌اندازه‌گیری می‌شوند. در موارد که تراکم بوتهم‌اندازه‌گیری و تعداد بوتهم‌اندازه‌گیری بیش از حد می‌باشد، باعث بیشتر شدن گسترش و تراکم بوتهم‌اندازه‌گیری می‌گردد.

این نتایج به‌منظور بررسی تاثیر تراکم بوتهم‌اندازه‌گیری و تعداد بوتهم‌اندازه‌گیری بر گسترش و تراکم بوتهم‌اندازه‌گیری می‌شوند. در موارد که تراکم بوتهم‌اندازه‌گیری و تعداد بوتهم‌اندازه‌گیری بیش از حد می‌باشد، باعث بیشتر شدن گسترش و تراکم بوتهم‌اندازه‌گیری می‌گردد.

این نتایج به‌منظور بررسی تاثیر تراکم بوتهم‌اندازه‌گیری و تعداد بوتهم‌اندازه‌گیری بر گسترش و تراکم بوتهم‌اندازه‌گیری می‌شوند. در موارد که تراکم بوتهم‌اندازه‌گیری و تعداد بوتهم‌اندازه‌گیری بیش از حد می‌باشد، باعث بیشتر شدن گسترش و تراکم بوتهم‌اندازه‌گیری می‌گردد.

این نتایج به‌منظور بررسی تاثیر تراکم بوتهم‌اندازه‌گیری و تعداد بوتهم‌اندازه‌گیری بر گسترش و تراکم بوتهم‌اندازه‌گیری می‌شوند. در موارد که تراکم بوتهم‌اندازه‌گیری و تعداد بوتهم‌اندازه‌گیری بیش از حد می‌باشد، باعث بیشتر شدن گسترش و تراکم بوتهم‌اندازه‌گیری می‌گردد.

این نتایج به‌منظور بررسی تاثیر تراکم بوتهم‌اندازه‌گیری و تعداد بوتهم‌اندازه‌گیری بر گسترش و تراکم بوتهم‌اندازه‌گیری می‌شوند. در موارد که تراکم بوتهم‌اندازه‌گیری و تعداد بوتهم‌اندازه‌گیری بیش از حد می‌باشد، باعث بیشتر شدن گسترش و تراکم بوتهم‌اندازه‌گیری می‌گردد.

این نتایج به‌منظور بررسی تاثیر تراکم بوتهم‌اندازه‌گیری و تعداد بوتهم‌اندازه‌گیری بر گسترش و تراکم بوتهم‌اندازه‌گیری می‌شوند. در موارд...
تأثیر تاریخ و تراکم کاست بر ماده خشک و ضرایب اکسیداتی ریشه...

شکل 7- پرهمکنش تاریخ کاشت و تراکم بوته بر نسبت ماده خشک ریشه به شاخاسره در مرحله گلدهی کامل سرخاگر

شکل 8- پرهمکنش تاریخ کاشت و تراکم بوته بر تغییرات اسید شیکوریک ریشه در مرحله گلدهی کامل سرخاگر

سرخاگرل داشت. (جدول 3). نتایج بر اینش بیانگر است که تراکم بوته نشان داد که این اثر در بین تاریخ‌های کشت بسیار معنی‌دار شده است (جدول 4). مقایسه میانگین‌های نشان داد که تراکم نسبت کل ریشه به عوامل آنتی اکسیدان در تاریخ کشت دور (19 اردیبهشت) در همه تراکم‌ها بین مقدار بوده است (شکل 9). بیشترین مقدار فل کل 10/18 میلی گرم کالیک اسید در گرم ماده خشک در تراکم 18 بوته در متر مربع و در 19 اردیبهشت ماه به دست آمد. درخالی که تراکم میانگین این ترکم آنتی اکسیدانی 18/11 میلی گرم کالیک اسید در گرم ماده خشک) مربوط به تراکم هفت بوته در متر مربع در تاریخ طوری که بیشترین مقدار اسید شیکوریک ریشه با میانگین 19/5 میلی گرم در گرم ماده خشک در تراکم 18 بوته در متر مربع و در تاریخ کشت 19 اردیبهشت به دست آمد (شکل 8). کمترین مقدار این ترکم 17/3 میلی گرم در گرم ماده خشک) مربوط به تراکم هفت بوته در متر مربع در تاریخ کاشت زودهنگام (20 فوروردی) بود که با تیمار تراکم 18 بوته در متر مربع و تاریخ کشت 20 فوروردی اختلاف معنی‌داری نداشت و در یک گروه آماری قرار گرفت (شکل 8).

فل کل ریشه: پرهمکنش تاریخ کاشت و تراکم ریشه بر تغییرات اسید شیکوریک ریشه در مرحله گلدهی کامل سرخاگر معنی‌داری در سطح یک درصد بر مقدار فل کل ریشه.
فطآیٙس و وبضوطز ٌیبٞی، خّس 5، قٕبضٜ 15، ؾبَ 1395

شکل 9- برهمکنش تاریخ کاشت و تراکم پوته بر تغییرات فنل کل ریشه در مرحله گله دهی کامل سرخرگ

شکل 10- برهمکنش تاریخ کاشت و تراکم پوته بر تغییرات فلاونونئید کل ریشه در مرحله گله دهی کامل سرخرگ

کاشت 20 فروشندان بود (شکل 9).

فلاونونئید کل ریشه: نتایج تجزیه واریانس داده‌ها نشان داد که برهمکنش تاریخ و تراکم‌های مختلف کاشت بر محتوای فلاونونئید کل ریشه تأثیر بسیار معنی‌داری (P<0.01) داشته است (جدول 3). نتایج برش دهی با تراکم پوته داد که محتوای فلاونونئید کل ریشه بجر در تراکم 16 پوته در متر مربع که در سطح احتمال 1% درصد معنی‌دار بود، در دیگر تراکم‌های کاشت معنی‌دار نشد است (جدول 4). در بررسی
تأثیر تراکم و ترارک در پدیداری عضوک و ظرفیت آنتی-اکسیدانی ریشه در مرحله گل‌دهی کامل سرخارگل

سرخارگل‌های نشانه‌گذاری شده در کشت زده‌گان 200 فوریه، یا تراکم کشت کمتر (هفت بونه در متر مربع) به دست آمد (شکل 10). در این آزمایش، بیشترین عملکرد ریشه در سرخارگل‌های ترارک با افزایش تراکم در حال کاهش تأثیر تراکم باعث شده، باعث افزایش عملکرد ریشه در کشت گردیده است (شکل 3). افزایش عملکرد ریشه سرخارگل‌ها با ترارک بیشتر را می‌توان احتمالاً به عوامل متعددی دسترسی به آب به سبب افزایش رقابت بین گونه‌های باریک منابع آب در تراکم بالا نسبت داد (2001 et al. برکنریو و فاجی،). بیش‌ترین ظرفیت آنتی-اکسیدانی، شده است (شکل 11). بیش‌ترین طرفی آنتی-اکسیدانی ریشه تراکم بونه را یکی از عوامل مؤثر در عملکرد ریشه‌زایی و حجم ریشه دانسته است. از طرفی ثبت بلندترین ریشه در 19 اردهپشت ماه نشان داد که نیمه‌ای از اردهپشت‌ها، احتمالاً تراکم کشت مناسب برای این گیاه است زیرا در اردهپشت‌های زودتر از آن و هم در کشت تأخیری بس از آن، عملکرد ریشه کاهش یافته است. کمی عملکرد ریشه می‌تواند بر کارایی گیاه در بهره‌وری از حجم خاک در دسترس اثر بگذارد. علی رغم بیش‌ترین عملکرد ریشه در اردهپشت‌های، بیش‌ترین حجم ریشه در 18 خرداد ماه اندازه‌گیری شد (شکل 4). در مطالعه‌ای، عملکرد و فعالیت بیولوژیک سرخارگل‌های دیگر به کمکی مورد
افراش تراکم سرخارگل به بینی از 10 بوته در متر مربع، حجم تک رنگ را کاهش داد ولی هیچ اثر بر عملکرد کل رنگ پس از سال دوازده (Martin and Deo, 1997) به کاهش حجم رنگ در کالستر دیره‌گم گیاهان درونی خلاء‌گیری چنین از جمله زیر جهت و رازی‌ها

ابزاره تراکم که مخلوط با تجربه ای آزمایش‌بوده است. در آزمایش حاضر، ماده حسی افراشنگین در 18 هرداد ماه نسبت به کشت زوده‌گم آنها در 20 فروردین ماه داشت (شکل 5). کاهش ماده حسی رنگ در گیاهان ناشی از دیربردار گرم شدن مقایسه زمان داده شد. در این مطالعه، ماده حسی کل بوته (شاخه‌ی + ریشه) به طور مکانی و افرادی که از 15 به 25 سانتی‌متر ری رنگ فیسی افراش عابد به‌طوری که بیشترین مقدار ماده حسی کل بوته در فاصله کشت 25 متر یافت (شکل 6). این تفاوت در مقدار ماده حسی کل در تراکم‌های پایین تر و بالاتر می‌تواند بخاطرب‌سازی علت غیر عتی مانماشی از ساختار سایه‌ای و استرس گیاه به منابع رشد در این تراکم‌ها باشد. افراش ماده حسی کل بوته در فاصله کشت‌ها بیشتر در برخی گیاهان دارویی Bhati and (Tagetes erecta) و Melissa officinalis (Chitkara, 1987) و (بادنریزی) نیز، کاهش حسی است. در مطالعه Shalaby et al. (1992) در گسترش هفت تراکم کالستر سرخارگل از 31/3 تا 18/9 کیلو در متر مربع از شرکت‌های مورد بررسی قرار گرفت، در نتایج آن به تولید ماده حسی بالاتر ریشه در جمع‌بندی بسیار متراکم Callan (شیب) از 15 بوته در متر مربع اما مطالعه است (et al., 2005) در این مطالعات آگه چه تراکم زایم توانسته عملکرد ماده حسی کل سرخارگل از افراش دهد ولی تفاوت را هزی جلگری کند ولی این نتیجه با معاوضی از جمله گسترش پیدامی چارچوب اضافی که مربوط به اضافه در خاک‌های (Parmenter et al., 1992) و همینه افراش داده 5/8 بوته
تأثیر تاریخ و تراکم کاشت بر ماده خشک و ظرفیت آنی اکسیدانی ریشه...

(Callan et al., 2005)

در این مطالعه، افزایش مقدار اسید شیکوریک ریشه در کشت گیاه سرخارگل در میانه‌های بهار (19 اردیبهشت ماه) احتمالاً می‌تواند به شرایط دمایی و یونر بهتر در طول دوره رشد گیاه سرخارگل در اواخر بهار و اولین تابستان و ایجاد فرستن کاشت برای استفاده از منابع رشد برای تولید این ترکیبات باشد. کاهش مقدار این ترکیبات در ریشه در تاریخ کشت زوده‌گنگ 20 فوریه، می‌تواند به تعلل جایگاه‌دان این گروه از ترکیبات فنی از ریشه‌ها به اندازه روشنی و یا تغییرات واپس‌هنه به زمان و مکان در مسیرهای بیستونی گیاهان این تاریخ کشت (Millauskas et al., 2004). از طرفی، افزایش مقدار اسید شیکوریک در ترکم بالاتر می‌تواند به تعلل یافتن فیت گیاهان برای دسترسی به منابع و جدایی متان (شرايط تشکیل) در تراکم زیادی باشد. در نهایتی از یوپوزه‌ها

از مزرعه‌ها که به ترتیب اثرات تراکم و تغییرات فصل بر مقدار اسید شیکوریک در ریشه‌های سرخارگل در نیوزیلند پرداخته شده. پیش‌ترین مقدار اسید شیکوریک ریشه در بیش از ترکم سرخارگل‌ها در بهار به‌دست آمد. همچنین در این مطالعه، کاهش اسید شیکوریک ریشه با افزایش تراکم بوده به‌دست آمد که این یافته مأموری به توجه آزمایش (Callan et al., 2005). در نهایت، این مطالعه نشان می‌دهد که در تاریخ‌های

مکان‌های 19 یا 19/1 برای افزایش نسبت به تراکم پایین‌گرفته بوده در متغیر به‌دست آمد (شکل) 8. این مطالعه نشان می‌دهد که Callan و همکاران (2005) آمده است که Callan اگرچه تراکم بالاتر موجب افزایش عملکرد ماده خشک ریشه‌ها می‌شود ولی اندکی از ریشه‌ها کاهش داده و با محدودیت‌هایی از جمله افزایش هزینه نشازگی، پرداخت و نمک‌بندی ریشه‌ها می‌سازد. در ریشه‌های رشدی‌کننده متمایل رشد و تغییرات در دامنه نیز، نمایشگرینگ‌های شیکوریک به اثرات ترکیبات خود و این تراکم (اواخر) ریسی و پس از آن تا زمان‌که گیاهان در گذشته کام‌بودن، کاهش نشان داد (Thomsen et al., 2012) در تشکیل با این مطالعه، Liu و همکاران (2007) در چنین به
تأثیر گذار نیم جعل فلیا در سرخرگ‌ها، هنوز ناشناخته است. در پژوهش‌های انجام شده بر روی ریشه‌ها یکسال سرخرگ در چن (2007) و دامنارک (2012) (Liu et al., 2007) و تارک (2012) در تایوان نشان داد که سرخرگ‌های رشدی‌شده در پایه، ترکیبات فلیا بهتر تری نسبت به سرخرگ‌های رشدی‌شده در پایه داشته اند. با توجه به مشاهدات آنها، در تحقیقات سرخرگ بسودین و کارآمد، می‌باشد که گیاه بتواند رشد خود را در تیاسان به پایان برساند.

اکنون هوایی آن در پایی در آزمایشگاه به گیاهی فرشت بازویشیز از ریزوم به بعد داده شود و پس از آن Zemin با گیاه‌هایی جدید جهت شوی (Chen et al., 2010) در مطالعه خود شکم رشد سرخرگ‌های قصیب سال توصیه کرده است. در شرایط مطالعه حاضر، رشد فلیا کل ریشه سرخرگ سال‌ها و نسبتاً پایین گزارش شده است (Pellati et al., 2004)؛ در آزمایش‌های حاضر نیز، رشد سرخرگ‌هایی در همی اندامی سرخرگ سال‌ها نسبتاً پایین بود (دهدها نشان داده شده). در کل، نتایج این آزمایش نشان داد که با تغییر مقدار میزان با تغییر تاریخ کاشت و تراکم بیونیت ریشه‌ها، ترکیبات فلیا و لولید ریشه سرخرگ‌ها در محله گل دهی کامل تغییر داد. با توجه به نتایج این آزمایش، می‌توان چنین استنباط کرد که تغییرات نسبتاً کاهش دهگام سرخرگ در بهار (18 خرداد) برای تولید بیشتر ماده خشک، مقادیر فلایونیز گل و تولید ریشه اسید شیکوریک و فلین.

نتایج گیری کلی:

در کل، نتایج این آزمایش نشان داد که با تغییر مقدار میزان با تغییر تاریخ کاشت و تراکم بیونیت ریشه‌ها، ترکیبات فلیا و لولید ریشه سرخرگ‌ها در محله گل دهی کامل تغییر داد. با توجه به نتایج این آزمایش، می‌توان چنین استنباط کرد که تغییرات نسبتاً کاهش دهگام سرخرگ در بهار (18 خرداد) برای تولید بیشتر ماده خشک، مقادیر فلایونیز گل و تولید ریشه اسید شیکوریک و فلین.

Cech, N. B., Eleazer, M. S., Shoffner, L. T., Crosswhite,

