تأثیر تاریخ و تراکم کاشت بر ماده خشک و ظرفیت آنتی‌اکسیدانی ریشه Echinacea purpurea (L.) Moench

چکیده

با هدف بررسی اثر تاریخ کاشت و تراکم بونه بر ویژگی‌ها و عملکرد ماده خشک، ترکیبات فنی و ظرفیت آنتی‌اکسیدانی ریشه گیاه دارویی سرخارگل، آزمایشی به صورت کرت‌های خردساز در تالاب طبیعی ولکه‌های کامل تصادفی با 50 نمونه از ژنتیک و زیست‌شناسی طبیعت‌نامه انجام شد. در آزمایشات تاریخی کشت 20 فروردین و 19 اردیبهشت تراکم 16 بونه در متر مربع نشان داد. بیشترین حجم و ماده خشک ریشه مربوط به تاریخ کاشت 18 خرداد و تراکم پایین‌هفته پنج بونه در متر مربع بود. در حالیکه بیشترین ماده خشک کل بونه (10/30 کغم در بونه) مربوط به گیاهان کشت‌که در تاریخ 20 فروردین و تراکم 10 بونه در متر مربع بود. بیشترین نسبت ماده خشک ریشه به ماده خشک کل و نیز ماده خشک ریشه به شاخ‌های گیاهان تاریخ کاشت 18 خرداد با تراکم هفت بونه در متر مربع به‌دست آمد. بیشترین مقدار اسید شیکوریک (19/5 میلی‌گرم در گرم ماده خشک) و فنل کل (3/0/8 میلی‌گرم اسید در گرم ماده خشک) مربوط به سرخارگل‌های کشت‌که در تاریخ 19 اردیبهشت و تراکم 16 بونه در متر مربع بود. بیشترین مقدار فلورید‌کل و ظرفیت آنتی‌اکسیدانی ریشه از سرخارگل‌های بالاترین کیفیت که در بالاترین تراکم و در 18 خرداد ماده کشت شدند. در کل می‌توان چنین استنباط کرد که احتمالاً تاریخ کاشت و تراکم 19 خرداد برای تولید بیشتر تر ماده خشک، محیط‌های فلورید‌کل و ظرفیت آنتی‌اکسیدانی ریشه و تاریخ کاشت میانه 19 اردیبهشت برای تولید بیشتر تر اسید شیکوریک و فنل کل در ریشه‌های سرخارگل در شرایط این آزمایش مناسب است. همچنین، تراکم پایین‌هفته پنج بونه در متر مربع منجر به افزایش تولید ماده خشک ریشه و کاهش مقدار اسید شیکوریک، محتوای فنل و ظرفیت آنتی‌اکسیدانی ریشه سرخارگل‌ها شد.

واژه‌های کلیدی: اسید شیکوریک، سرخارگل، فنل کل، ماده خشک ریشه.

مقدمه

است که چنین جایگاه مهمی بین گیاهان دارویی شرق آسیا و ایالات متعدد (Hobbs, 1989). گونه E. purpurea (Echinacea) جنس که از خانواده استارسه و پایدار آمریکای شمالی است. تاریخ گیری در زمان کشتی که حدود 1392 تا 1395 میلادی می‌باشد.
تأثیر تراکم کاشت در ماده محکم و ظرفیت آنی اکسیدانی ریشه

پسندی قابل قبول است که شبکه‌کاری در ریشه‌ها، بیش از پنج میلی‌گرم بر گرم ماده محکم، نشان دهنده است. (Wills and Stuart, 1999) یکی از بررسی‌های اصلی از وقایع درک و رشد، استفاده از شبکه‌کاری ظرفیت آنی و گرم در کشت در کشت در کشت در محیط شرکتی را در ریشه‌های گرم ماده محکم به دست آمد و به کاهش مقدار این تراکم در ریشه‌ها با افزایش سطح گیاه و Thomsen et al. (2002)، در آزمایش همکاران (2012)، مقدار این اندس دلالت در ریشه‌های سرخرگ‌های رشدی است در دانمارک از 2/25 تا 2/5 میلی‌گرم بر گرم ماده محکم متغیر بود. در مطالعه Callan و همکاران (2005) نشان دادند که تراکم 9 میلی‌گرم در متر مربع سرخرگ شغل ظرفیت شبکه‌کاری را در ریشه‌های حذف 12 میلی‌گرم در متر مربع شکل نمی‌گیرد. خلاقانه و Wu مقدار فل سرخرگ‌های مطالعه و همکاران (2008)، 55 میلی‌گرم در متر مربع ماده محکم و مقدار فل او به ترتیب به استاندارد هزینه‌های اصول حذف 78 درصد فل کل را تشکیل داده بود. در مطالعه‌های دانمارک، میانگین ظرفیت کل محتوای فلی ریشه سرخرگ 3/4 میلی‌گرم در متر مربع شکل نشان دهنده است که به کاهش مقدار این شبکه‌کاری اندس زیادی دارد. این مقدار قابل اندازه‌گیری از پژوهش دیگری که در پنج منطقه از انگلیس انجام شد، سرخرگ‌کاری به شکل دو ریشه با فاصله 2 متر از هم روی با عرض 1/5 متر مربع و 2/5 کیلومتر با روش کنپنت. نتایج این آزمایش نشان داد که عملکرد ماده محکم ریشه پس از دو فصل رشد نسبتاً پایین و یک طور متوسط 246 گرم در متر مربع پوده است. (Parmenter et al., 1992) به این ترتیب ریشه‌های کم تراکم Parmenter و همکاران (1992) به این ترتیب ریشه‌های کم تراکم کشت می‌تواند اثر مهمی بر ساختار گیاه سرخرگ‌کاری داشته باشد.
جدول 1- برخی ویژگی‌های فیزیکی و شیمیایی خاک مزرعه آزمایش

<table>
<thead>
<tr>
<th>عمق</th>
<th>هایاله</th>
<th>نمونه‌داری (کامیک)</th>
<th>(سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>60</td>
<td>250</td>
<td>0.3</td>
</tr>
<tr>
<td>20-40</td>
<td>65</td>
<td>550</td>
<td>0.5</td>
</tr>
<tr>
<td>40-60</td>
<td>61</td>
<td>260</td>
<td>0.6</td>
</tr>
<tr>
<td>60-80</td>
<td>58</td>
<td>900</td>
<td>0.8</td>
</tr>
<tr>
<td>80-100</td>
<td>55</td>
<td>650</td>
<td>1.0</td>
</tr>
</tbody>
</table>

جدول 2- اطلاعات هوشمندی مربوط به همه از فصل شرکارگر از سال 1392

<table>
<thead>
<tr>
<th>سورت</th>
<th>رطوبت نسبی (درصد)</th>
<th>دما (درجه سلسیوس)</th>
<th>تعداد</th>
<th>ماه‌های سال</th>
<th>روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>زیرین</td>
<td>کم‌بسته</td>
<td>کم‌بسته</td>
<td>بهترین</td>
<td>فرمودن</td>
</tr>
<tr>
<td>2</td>
<td>مرطوب</td>
<td>بالا</td>
<td>بلند</td>
<td>بهترین</td>
<td>ابستهتهت</td>
</tr>
<tr>
<td>3</td>
<td>مرطوب</td>
<td>بالا</td>
<td>بلند</td>
<td>بهترین</td>
<td>خناد</td>
</tr>
<tr>
<td>4</td>
<td>مرطوب</td>
<td>بالا</td>
<td>بلند</td>
<td>بهترین</td>
<td>نوبر</td>
</tr>
<tr>
<td>5</td>
<td>مرطوب</td>
<td>بالا</td>
<td>بلند</td>
<td>بهترین</td>
<td>مراد</td>
</tr>
<tr>
<td>6</td>
<td>مرطوب</td>
<td>بالا</td>
<td>بلند</td>
<td>بهترین</td>
<td>شهپور</td>
</tr>
<tr>
<td>7</td>
<td>مرطوب</td>
<td>بالا</td>
<td>بلند</td>
<td>بهترین</td>
<td>آبی</td>
</tr>
<tr>
<td>8</td>
<td>مرطوب</td>
<td>بالا</td>
<td>بلند</td>
<td>بهترین</td>
<td>آذر</td>
</tr>
<tr>
<td>9</td>
<td>مرطوب</td>
<td>بالا</td>
<td>بلند</td>
<td>بهترین</td>
<td>جمع</td>
</tr>
</tbody>
</table>

مکانیک

تراکم‌های کشت، به دیدگاه نکست درنظر گرفته شد.
همچنین، فعالیت بین یک‌پایه‌های آزمایش در متر بود. عملیات آماده‌سازی بست شامل شخم پایی، تنظیم و دو دیسک عمود برهم بست شده که سپس رفتنی‌های کشت به حالت پشتی پراکنده شد. از ناحیه‌های که در بستر کشت نشانگرفته مورد انتظار بود. هنگام انتقال نشانی به زمین‌اشی نیز، مقداری ماسه نرم دریا با کاهش مخلوط شد. بلاصه، پس از کشت نشانگر و پس از آن با توجه به شرایط آب و هوای منطقه، آبیاری به صورت دقیق انجام شد. برای جل oblی‌های از اثرات اختلال غلاف‌کش‌های شیمیایی بر تکنیک‌های استقرار بافت، تا این‌گونه که به وسیله بیل از خاک نمک اطراف رشته‌های جه مشترک و سپس شستشو و تمیز شدن. برای تعیین عمق نفوذ ریشه، طول یک‌ساله کمرنی ریشه از محل طبقه‌گذاری در شرایط امتیاز‌گیری شد. جرم ریشه از طریق اختلاف جرم ایجاد شده پس از قرار دادن ریشه در حجم مشخصی از آب (500 میلی لیتر) محاسبه شد. سپس ریشه‌ها در محیط خشک و ساده به مدت شش روز لذت می‌شود. و پس از آن در خشک‌کنگ (آن) تهورداد در دمای 23 درجه سلسیوس با دمای رساندن به رطوبت 10 درصد خشک شدن و در نهایت برای تعیین ماه‌های خشک ریشه‌ها وزن شدند. پس از اندازه‌گیری ماه‌های خشک

مراحل 5 درصد گل‌دهی بر اساس خروج گل‌ها در 446.9 درصد میانگین موجود و پایان گل‌دهی بر اساس خروج گل‌ها در بیش از 96 درصد میانگین موجود تعیین شدند. برای اندازه‌گیری و عملیات رشته‌ریزی شرکارگر، در پایان گل‌دهی شرکتگرها، به بهبود پایه و رفع اثرات حاشیه‌ای به‌طور کامل به وسیله بیل از خاک نمک اطراف رشته‌های خارج و سپس شستشو و تمیز شدن. برای تعیین عمق نفوذ ریشه، طول یک‌ساله کمرنی ریشه از محل طبقه‌گذاری در شرایط امتیاز‌گیری شد. جرم ریشه از طریق اختلاف جرم ایجاد شده پس از قرار دادن ریشه در حجم مشخصی از آب (500 میلی لیتر) محاسبه شد. سپس ریشه‌ها در محیط خشک و ساده به مدت شش روز لذت می‌شود. و پس از آن در خشک‌کنگ (آن) تهورداد در دمای 23 درجه سلسیوس با دمای رساندن به رطوبت 10 درصد خشک شدن و در نهایت برای تعیین ماه‌های خشک ریشه‌ها وزن شدند. پس از اندازه‌گیری ماه‌های خشک
ارزیابی فلز کل ریشه از اولین فلز کل با روش سپس جریان خطا 100 درصد برای 10 دقیقه بود سپس جریان خطا 100 درصد در صفحه 10 دقیقه کاهش یافت. سرعت جریان 1/5 میلیتر در دقیقه و طول موج شناسنگار فراوری در 330 نانومتر، تنظیم شد حجم نمونه تزریق شد 20 میکرولیتر بود. از تریب ترکیب نمونه، ابتدا بسته استاندارد اسید شیکوریک به غلظت مختلف نهاده و به سمت HPLC توزیع شد تا زمان اندام‌گیری، نسبت و شب جریان خلال در ستون HPLC به منظور جادویی بهتر این ترکیب کالیبره شود. سپس با استفاده از کروماتوگرام به‌دست آمدن (1) مفنی استاندارد مربوط به بسته شیکوریک، رسم شد تا با استفاده از مفنی استاندارد مربوطه، غلظت این ترکیب بر حسب میلی گرم بر مقدار خشک محاسبه و بیان شود. کروماتوگرام اسید شیکوریک در نمونه استخراج شده از ریسه سرامیک‌های تحت تیمار برهم کشش 18 هریو و تراکم 15 بونه در متر مربع در شکل 2 نشان داده شده است.

ارزیابی فلز کل ریشه از اولین فلز کل با روش Folin–Ciocalteu (Singleton et al., 1999).

استخراج عصاره فلزی از بافت ریشه

در عصاره فلزی استخراج در اسید روشن (Kanuer, Germany) HPLC (2000) و با استفاده از دستگاه سرامیک‌های تحت تیمار، یافته‌های همانی در عصاره فلزی استخراج در فیلترهای سرامیک 13 میلی‌متر، صاف HPLC ریخته شد. دستگاه HPLC خصوصی HPLC (Auto sampler) سپس جریان خطا 30 دقیقه بود. صفحه 10 دقیقه کل ریشه از فلزوندید کل میکرولیتر. به‌دست آمد کل ریشه از فلزوندید کل با روش Du et al., 2009) کالیبره شد. سپس جریان خطا 100 میکرولیتر در صفحه 30 دقیقه و 150 میکرولیتر نتیجه‌سنج. درصد ریشه از فلزوندید کل ریشه از فلزوندید کل با روش Du et al., 2009).
شکل 1- کروماتوگرام اسید شیگوریک در نمونه استاندارد

شکل 2- کروماتوگرام اسید شیگوریک در نمونه استخراج شده از ریشه سرخارگلها تحت تیمار پر هم کش تاریخ کشت 18 خرداد و تراکم ۱۵ بونه در متر مربع

در طول موج ۵۰۰ نانومتر ثابت شد. درنهایت محتمل فلوتاندید کل با استفاده از رسم منحنی استاندارد کوئستین بر حسب میلی گرم کوئستین در گرم ماده خشک محاسبه و بیان شد. میلی مولار و ۱۵۰ میکرویلتر کلرید آلومینیوم ۱۰۰ میلی مولار اضافه و بالا قرار گرفت. پس از گذشت پنج دقیقه، ۱۰۰ میکرویلتر محلول هیدروکسید سدیم یک میلی مولار اضافه شد. پس از ۱۵-۲۰ دقیقه، مقدار جذب با دستگاه طیف‌سنج
تأثیر تاریخ و تراکم کاشت بر ماده خمشک و ظرفیت آنتی اکسیدانی ریشه...

از رایبای ظرفیت آنتی اکسیدانی ریشه: ظرفیت آنتی اکسیدانی عصاره ریشه، از طریق خصائص خشک گیردنگی رادیکال آزاد DPPH (2-بیپرولین هیدرازیل) با استفاده از روشه طیف سننی تعیین شد (Brand-William et al., 1995). برای این نظریه، به 50 میکروالترم عصاره استخراج شده نمونه‌ها، به 500 میکروالترم محلول DPPH اضافه شد و بعد از 30 دقیقه در شرایط تاریخی و در دمای اتفاق تغییر داد. سپس، مقدار جذب نمونه‌ها در طول موج 517 نانومتر، خوانده شد. ظرفیت آنتی اکسیدانی عصاره‌ها به صورت درصد پاسخ‌انگشتی با استفاده از رابطه 1 محاسبه شد.

\[
% DPPH_{sc} = \frac{(A_{cont} - A_{samp})}{A_{cont}} \times 100
\]

SAS برای تجزیه آماری داده‌ها، از نرم‌افزار SAS نسخه 9 استفاده شد. مقایسه میانگین تیمارها، با آزمون LSD و در سطح احتمال پنج درصد مقایسه شدند و نمودارها، با نرم‌افزار SigmaPlot ساخته شد.

نتیج‌ها:

عمق ریشه رشد: تأثیر تاریخ کاشت و تراکم کاشت بر ماده خمشک رشد بسیار معنی‌دار (P<01) بود (جدول 4). بر اساس مقایسه میانگین داده‌های بر مهقند تاریخ کاشت و تراکم کاشت، کاهش خرد و متوسط و کاهش خرد در میانگینها باعث تجربه آنتوسندراتور ماده خمشک رشد شده است. خصود 4 درصد کاهش داشت (شکل 4).

ماده خمشک کل (ریشه + خشکی) در این آزمایش‌ها، ماده خمشک کل (جمع‌میزان ماده خمشک اندازه‌های هوای و زیرزمینی سرخ‌رانگ) تحت تأثیر معنی‌دار بر مهقند تاریخ و تراکم کاشت بوده است. برای مثال یک درصد قرار گرفت (جدول 5). بر اساس این بررسی کاشت، سطوح تراکم به نشان داد که در همه تاریخ‌ها کاشت و رشد می‌تواند به عنوان یک روش مناسب برای کاهش خشکی و تفریکت در این نمونه‌ها مورد استفاده قرار گیرد.
<table>
<thead>
<tr>
<th>کلمه</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلمه 1</td>
<td></td>
</tr>
<tr>
<td>کلمه 2</td>
<td></td>
</tr>
<tr>
<td>کلمه 3</td>
<td></td>
</tr>
<tr>
<td>کلمه 4</td>
<td></td>
</tr>
</tbody>
</table>

**پیش نمایش**

<table>
<thead>
<tr>
<th>کلمه</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلمه 1</td>
<td></td>
</tr>
<tr>
<td>کلمه 2</td>
<td></td>
</tr>
<tr>
<td>کلمه 3</td>
<td></td>
</tr>
<tr>
<td>کلمه 4</td>
<td></td>
</tr>
</tbody>
</table>
تأثیر تاریخ و تراکم کاشت بر ماده خشک و ظرفیت آبی اکسیدانی ریشه...

![نمودار 1](http://example.com/image1.png)  

**نمودار 1**  
بر-logی تراکم کاشت و تراکم بونه بر حجم ریشه در مرحله گلدهی کامل سرخارگال

![نمودار 2](http://example.com/image2.png)  

**نمودار 2**  
بر-logی تراکم کاشت و تراکم بونه بر حجم ریشه در مرحله گلدهی کامل سرخارگال

منجر به ایجاد اختلاف بسیار معنیدار در ماده خشک کل بونه شده است به‌جز، تراکم 16 بونه در متر مربع که در سطح پنج درصد معنی‌دار بود (جدول 4). مقایسه میانگین‌های ماده خشک کل در بونه نشان داد که کشت تأخیری در همه تراکم‌ها سبب کاهش ماده خشک کل بونه می‌شود (شکل 6). با این حال، بیش‌ترین ماده ماده خشک کل بونه (130/5 گرم در بونه) در همه تاریخ‌ها در تراکم 10 بونه در متر مربع به‌دست آمد که نشان می‌دهد احتمالاً این تراکم از نظر تولید ماده خشک کل

متوجه، تراکم بونه است (شکل 6). در حالی که، کمترین مقدار ماده خشک کل بونه (5/4 گرم در بونه) در گیاهانی بود که کشت شدند (شکل 6). نسبت ماده خشک ریشه به شاخسار: بر اساس نتایج پژوهش حاضر، نسبت ماده خشک ریشه به شاخسار سرخاکلها هم، تحت تأثیر برهم کش مجددا تاریخ کشت و تراکم بونه قرار گرفت (جدول 3). بررسی برهم کش‌ها به‌وسیله تراکم بونه نشان داد که در بین تاریخ‌های کشت،
ایده شیکوریک ریشه: اثر برهم کشت تراکم بوته و تأثیر اندکی مختلف کاشت بر مقدار اسید شیکوریک ریشه
سرخرگال بسیار معنی‌دار 
(اسید ۱۰/۰۱/۰۰) بود (جدول ۲). بر شهوت
برهم کشت‌ها به وسیله تراکم بوته نشان داد که در همه
تراکم‌های بوته به‌جای تراکم ۱۰ بوته در متر مربع، تأثیر
کشت به‌هاء منجر به ایجاد اختلاف بسیار معنی‌دار بر مقدار
اسید شیکوریک ریشه شده است (جدول ۴). مقایسه میانگین
نشان داد که مقدار اسید شیکوریک ریشه با افزایش تراکم بوته
در همه تأثیر‌های کشت بین‌ترین مقدار بوده است به

تراکم بوته منجر به ایجاد اختلاف بسیار معنی‌دار بر این اثر
شده است (جدول ۴). بیشترین نسبت ماده خشک ریشه به
شاخص‌های سرخرگالها ۱/۰۷ محاسبه شد که هم‌ریتم با نتایج
ماده خشک ریشه در کرت‌هایی به‌دست آمده که گیاهان با تأکید
در خردام و با تراکم هفت بوته در متر مربع نشان‌کنند
(شکل ۷). در روی داده معکوس با این تیمار به‌عنوان یک
سرخرگالها در ۲۰ فورودین و تراکم ۱۶ بوته در متر مربع،
کم‌ترین نسبت ماده خشک ریشه به شاخص‌های محاسبه شد که
۱/۰ۮ بود (شکل ۷).
تأثیر تاریخ و تراکم کاشت بر ماده خشک و ظرفیت آب‌پذیری ریشه...

سرخارگل داشت (جدول ۳). نتایج نشان داد که این اثر در بین تاریخ‌های کشت بسیار معنی‌دار نیست (جدول ۴). مقایسه میانگین‌های نشان داد که مقدار نهایی کشت از عوامل آب‌پذیری‌های در تاریخ کشت دوم (۱۹ اردیبهشت) در همه تراکم‌ها بیشتر مقدار می‌شود (شکل ۹). بیشترین مقدار نهایی کشت (۳۰/۱ میلی‌گرم کالیک) اسید در گرم ماده خشک در تراکم ۱۶ بونه در متر مربع و در ۱۹ اردیبهشت ماه به‌دست آمد. در نتیجه که کمترین مقدار این تراکم آب‌پذیری‌های (۱۸/۱ میلی‌گرم کالیک) اسید در گرم ماده خشک) مربوط به تراکم هفت بونه در متر مربع در تاریخ طوری که بیشترین مقدار اسید شیکوریک ریشه با میانگین ۱۹/۵ میلی‌گرم در گرم ماده خشک از تراکم ۱۶ بونه در متر مربع و در تاریخ کشت ۱۹ اردیبهشت به‌دست آمد (شکل ۸). 

کمترین مقدار این تراکم (۳/۷ میلی‌گرم در گرم ماده خشک) مربوط به تراکم هفت بونه در متر مربع در تاریخ کشت زودهنگام (۲۰ فروردین) بود که با تیمار تراکم ۱۰ بونه در متر مربع و تاریخ کشت ۲۰ فروردین اختلاف معنی‌داری نداشت و در یک گروه آماری قرار گرفت (شکل ۸).

فلک کل ریشه: بیش‌ترین کاهش کاشت و تراکم بونه تأثیر معنی‌داری در سطح یک درصد بر مقدار نهایی کل ریشه
کاشت 20 فوررده بود (شکل 9). فلازونیتید کل ریشه، نتایج تجزیه واریانس داده‌ها نشان داد که برحسب کنش‌های تاریخ و تراکم‌های مختلف کاشت برحسب محصول فلازونیتید کل ریشه تأثیر به‌سیار معنی‌داری (P<0.01) داشته است (جدول 3). نتایج بررسی با تراکم بونه، نشان داد که محصول فلازونیتید کل ریشه بالده در تراکم 16 بونه در متر مربع که در میان مقدار فلازونیتید با میانگین 13/9 میلی‌گرم کوترستین در کرم بافت حشک از

برهم کنش‌ها مشاهده شد که کاشت فصل‌هی کشت نشان‌های سرخرگ‌گی به 15 سانتی‌متر و به بینی تراکم بیشتر (تراکم 16 بونه در متر مربع) توانست موجب افزایش میزان فلازونیتید کل ریشه گیاه سرخرگ‌کشود (شکل 10). در این تراکم بونه، بیشتر محصول فلازونیتید کل با میانگین 6/6 میلی‌گرم کوترستین در کرم ماده حشک در گیاهانی به‌دست آمد که در تاریخ 18 خرداد نشان‌گیری شدند. کمترین مقدار فلازونیتید با میانگین 3/9 میلی‌گرم کوترستین در کرم بافت حشک از

شکل 9- برهم کنش تاریخ کاشت و تراکم بونه بر تغییرات فنل کل ریشه در مرحله گل‌دهی کامل سرخرگ‌گی

شکل 10- برهم کنش تاریخ کاشت و تراکم بونه بر تغییرات فلازونیتید کل ریشه در مرحله گل‌دهی کامل سرخرگ‌گی

فلازونیتید کل ریشه: تراکم بیشتر (تراکم 16 بونه در متر مربع) نشان داد که در تراکم بیشتر (تراکم 16 بونه در متر مربع) نشان داد که در تراکم بیشتر (تراکم 16 بونه در متر مربع) نشان داد که در تراکم بیشتر (تراکم 16 بونه در متر مربع) نشان داد که در تراکم بیشتر (تراکم 16 بونه در متر مربع) نشان داد که در تراکم B
تأثیر تازه و تراکم کاشت بر ماده عضوک و ظرفیت آنتی-اکسیدانی ریشه...

شکل 11- برهم کنش تاریخ کاشت و تراکم بوته بر تغییرات ظرفیت آنتی-اکسیدانی ریشه در مرحله گلدهی کامل سرخارگل

ظرفیت آنتی-اکسیدانی ریشه: این آزمایش، مقادیر ظرفیت آنتی-اکسیدانی گیاهی تحت تأثیر معنی دار برهم کنش تاریخ و تراکم کاشت بوته‌ها در سطح اماری یک درصد قرار گرفت (جدول 3). برای این که برهم کنش با استفاده از تراکم بوته نشان داد که ظرفیت آنتی-اکسیدانی ریشه‌ها در همه تراکم‌ها در سطح اماری یک درصد معنی‌دار غیر از تاریخ (چند 4) مقایسه ویاگنی‌ها نشان داد که در همه تاریخ‌های کشت تراکم لیزری بر عه ده (شدت 11). برهم کنش ظرفیت آنتی-اکسیدانی ریشه‌ها (84 درصد) در سرخارگل‌های تازه که در کشت تاخری (18 خرداد ماه) و در بین تراکم کشت شدند، با این حال کمترین ظرفیت آنتی-اکسیدانی ریشه‌ها، با کاهش حدود 176 درصدی، معنی‌دار بوده و این تراکم بوته‌ها معنی‌دار هفت بوته در متر مربع و تاریخ کشت 20 فوریه دی با ویاگنی 70 درصد بوته.

بحث:
عملکرد و فعالیت بیولوژیک سرخارگل معمولاً به بوته مورد
افراشات تراکم سرخارگل به بخش از 10 بوته در متر مربع، حجم تک رشته را کاهش داد هیچ اثر بر عملکرد کل رشته پس از سال ندامت (1997) در گزارش پس از حجم رشته در کاشت دیره، گیاهان داروی خانواده چتریان از جمله زیور سیز و زایه و اشاره شده است که مطلوبیتی از افزایش یافته است.

در آزمایش حاضر، ماده خشکة افزایش چشمگیری در کشت دیره گزارشگل به 18 خرداد ماه نسبت به کشت زودهگاران آنها در 10 گرو مکعبه (شکل 5). کاهش ماده خشکة رشته در گیاهان کشت سرخارگل می تواند احتمالاً به دلیل دمای پایین ناشی از دمای کم می‌شود. علاوه بر هوا و خشکت بودن در بهبود رشد گیاه و نقاشی باریک در تغییرت، نیز کمتر به رشد یافته های عمیق‌تر و گسترده‌تر در این ناحیه رطوبت از دست رفته باشد. این نوعی درک، گیاهان کشت شده در خرداد ماه شرایط دمایی و می‌توهی نسبت به گیاهان کشت شده در فروردین به ویژه در دوره رشد زایشی برخوردار بودند. زایدتر بودن ماده خشکة رشته در تراکم پایین (قفته بوته در متر مربع) هم می‌تواند به رقابت قم در این تراکم و احیاناً تسهیل بهبود ماده خشکة ایستی و به رشد آزاد ها از جمله گیاهان دارویی در 70 گرو مکعبه را کاهش داده است (Callan et al., 2005).

در این آزمایش، ویژگی‌های رشد رضت و عملکرد ماده خشکه گیاه پایخوان در یکله کامل می‌تواند بین گیاهان کشت در فصله 15 سانتی‌متر و سه‌تیمیت از گیاهانی که در فصله 25 یا 35 سانتی‌متر ریوی دیده کشت شده‌اند، شاخص دار و ماده خشکه کل بوته ایستی و گزارشگل بیشتر در برخی گیاهان دارویی گروه Melissa officinalis و (Bhati and Chitkara, 1987) و (Bomme et al., 1992) (Parmenter and Littlejohn, 1997) تفاوت در مقایسه ماده خشکه کل در تراکم گروه پایین‌تر در بالاتر (Callan et al., 2005) نشان می‌دهد. افزایش ماده خشکه کل بوته در فصله کشت‌های پیش‌تر در برخی گیاهان دارویی (Tagetes erecta) (Shalaby et al., 1992) و (Bhattacharya et al., 2005) در مطالعه، نشان داده که تراکم کاشت سرخارگل می‌تواند در 3/1 گیاه در متر مربع در سرفه موانع مورد بررسی قرار گرفت. در نتیج آن که تراکم به تولید ماده خشکه بالاتر رهی از جمعیت‌های بیض مراکم Callan (تیپ 15 گرو متر مربع) اضافه شده است (et al., 2005). در این مطالعه اگر چه تراکم زاید توانسته عملکرد ماده خشکه کل سرخارگل را افزایش دهد و از رشد علف‌های هرز جلوگیری کند ولی این مزیت با معایبی از جمله کاسترش پیش‌مدی تاریکی انسکولوئی‌تی باعثه در خاک‌های سنگی شده بوده (Parmenter et al., 1992) و همینه (Callan et al., 2005).
تأثیر تاریخ و تراکم کاشت بر مراحل خشک و ظرفیت آنی اکسبیدانی ریشه... (Callan et al., 2005).

(Thomsen et al., 2002; Binns, 2002; Lin et al., 2011) در این مطالعه، افزایش منجر اسید شیکوریک ریشه در کشت گیاه سرخارگل در میانه‌های بهار (19 ارديبهشت ماه) احتمالاً می‌تواند بعمل شرایط دما و بارش بهتر در طول دوره‌ی رشد سرخارگل در اواخر بهار و اوایل تابستان و ایجاد فرآیند تراکم به بار برای استفاده از منابع رشد تولید این ترکیبات یافته. کاشت مقدار این ترکیبات در رشته‌ی تاریخ کشت زوده‌گل ۲۰ فوریه در میزان بعلت جایگاهیانگی (۲۰۰۸) این گروه از ترکیبات فنی از رشته‌ها به‌أندازه‌ی روشن و یا نابودیت وابسته به زمان و مکان در مرزهای بیوزئی کیانه‌ای تاریخ کشت (Mølgaard et al., 2004) از طرف، افزایش مقدار اسید شیکوریک در تراکم بالاتر می‌تواند بعمل رفتار پیشرفت گیاه‌پردازی در این مواد برای نمونه به منابع رشد و به‌حدودی منابع (شرايط تشیع) در تراکم زیادی باشد. در نمونه‌ی از پژوهش‌های موزعه‌ی که بررسی اثرات تراکم و تغییرات فصل بر مقدار اسید شیکوریک در رشته‌ی سرخارگل در نیوزیلند پرداخته شد؛ پیش‌ترین مقدار اسید شیکوریک ریشه در پیش از گل‌های سرخارگل‌ها در بهار بحث‌دست آمد. همچنین در این مطالعه، کاشت اسید شیکوریک ریشه با افزایش تراکم بوده بحث‌دست آمد که این نتیجه می‌تواند با نتیجه آزمایش Thomsen et al., 2005) حاصل است که پیش‌ترین مقدار اسید شیکوریک در تراکم ماکروهمی ۱۲ یوت ۲۹۱۶ برای افزایش بسته به تراکم پایین‌هفت بوده در متر مربع به‌حدودی آمد (شکل ۸). همچنین در گزارش و همکاران (2005) آمد است که Callan et al., 2005 اگرچه تراکم بالاتر منجر افزایش عملکرد مراحل خشک ریشه‌ها می‌شود ولی اندوزه‌ی ریشه‌ها کاهش داده و با محدودیت‌هایی از جمله افزایش هرین داشتگی، پرداخته و نمایدکننده ریشه‌ها مواج می‌شود. در رشته سرخارگل‌ها رشد و تغییرات در متراکم نیز، غل 행복 اسید شیکوریک به پیش‌ترین مقدار خود در اوایل خروج (اخر می‌رسد) و پس از آن تا زمانی که گیاهان در گل‌دهی کامل بوده، کاهش نشان داد (Thomsen et al., 2012) در تشخیص باین این مطالعه، Liu و همکاران (2007) در بین به...
تأثیر گذار یک نیروی ماجراجویی در سرخرگ‌ها. هنوز ناشناخته است. در یک پژوهش‌های انجام شده بررسی‌های خودسازی سرخرگ‌های
چین (2007) (Liu et al., 2012) و دانمارک (Thomsen et al., 2005) بیشترین غلظت ترکیب‌های سنگ در بهار می‌باشد. آمده.

تیپ‌هایی که:

در حالی که نتایج نشان داد که سرخرگ‌های رشدی در پاییز، ترکیب‌های سنگ بیشتر نسبت به سرخرگ‌های رشدی‌های یک بافت داشتند. با توجه به مشاهدات آن‌ها، زراعتی برای سرخرگ‌های سودمند و کارآمد می‌باشد که گیاه بتواند رشد بتواند در نتایج به‌پایان پرداخت.

اندام‌های هویایی آن در پاییز از آمار نیز در داده‌های خود و پس از آن Zimin et al., 2015 (2008) در حالی که تعداد یک سال متوسطه که است. در شرایط مطعه حاضر، مقدار یک کمیت سرخرگ در C6-C3-C6 خاک گزارش شده است (Pellati et al., 2004). C6-C3-C6 همبستگی می‌گم در قیاضیات لازم می‌باشد که در C6-C3-C6 اندازه‌گیری شد (داده‌ها نشان داده نشان داده).

فلاتون‌فیتا. گروه پروکستریک از ترکیب‌های طبیعی هستند که با

ساختار C6-C3-C6 غلظت فلاتون‌فیتا در اندازه‌های مختلف سرخرگ‌ها نسبتاً پایین است. (Pellati et al., 2004) در آزمایش‌های حاضر نیز، مقدار فلأتون‌فیتا در همه اندازه‌های سرخرگ‌ها نسبتاً پایین بود (داده‌ها نشان داده نشان داده).

کمیت‌های کلی:

در کل، نتایج این آزمایش نشان داد که تغییر منابع زراعی

از راه تغییر نامرئی کاست و تراکم بیشتر می‌توان ویژگی‌های

رضایت‌کننده و ترکیب ترکیب‌های آگاه ممنک است نتایج به شیوه‌های

مختلف استفاده شده در آزمون فعالیت جاروکننده رادیکال

آزمایش نشان داده شد (Bai et al., 2010).

نتیجه‌گیری:

در کل، نتایج این آزمایش نشان داد که تغییر مدیریت زراعی

از راه تغییر نامرئی کاست و تراکم بیشتر می‌توان ویژگی‌های

رضایت‌کننده و ترکیب ترکیب‌های آگاه ممنک است نتایج به شیوه‌های

مختلف استفاده شده در آزمون فعالیت جاروکننده رادیکال

آزمایش نشان داده شد (Bai et al., 2010).

تایبی گفته که:

در کل، نتایج این آزمایش نشان داد که تغییر مدیریت زراعی

از راه تغییر نامرئی کاست و تراکم بیشتر می‌توان ویژگی‌های

رضایت‌کننده و ترکیب ترکیب‌های آگاه ممنک است نتایج به شیوه‌های

مختلف استفاده شده در آزمون فعالیت جاروکننده رادیکال

آزمایش نشان داده شد (Bai et al., 2010).


