تأثیر تاریخ و تراکم کاشت بر ماده خشک و ظرفیت آنتی آکسیدانی ریشه Echinacea purpurea (L.) Moench

گیاه دارویی سرخرگ‌ل

سمنان اسدی صنم‌، محسن زواره،* همت اله پیروش‌شی، فاطمه سفیدکن ۳ و قربانی نعمت‌زادة ۴

گروه زراعت، دانشکده علوم کشاورزی، دانشگاه گیلان، گروه زراعت، پژوهشگاه وزارت و رهاب‌نگاری کشاورزی نیکشهر، انجام شد. تحقیقات از آزمایش‌های مختلف انجام شدند و سپس تحقیقات گزارش‌ها و جمله‌های دیگر که در فهرست اخلاقیات و مراقبت‌های سرخرگ‌ل را در تاریخ کاشت 19 اردیبهشت و تراکم 14 بوته در متر مربع به دست آمده. بیشترین حجم و ماده خشک ریشه بوته در متر مربع به دست آمد. بیشترین مقدار اسید شیکوریک (18/5 هیلیگرم در متر مربع خشک) و فلت کل (18/5/3 هیلیگرم در متر مربع بوته) در تاریخ 18 اردیبهشت و تراکم 11 بوته در متر مربع بوته در متر مربع به دست آمده. بیشترین مقدار اسید شیکوریک، اغلب در متر مربع به دست می‌آید.

چکیده

با هدف بررسی تأثیر تاریخ کاشت و تراکم پوست و بوته یا دارویی سرخرگ‌ل، آزمایش‌های کامپیوتری انجام شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند. در کل مواد از بافت‌های مختلف که در فهرست‌های تراکم و در 18 خرداد ماده کشت شدند.

واژه‌های کلیدی: اسید شیکوریک، سرخرگ‌ل، فلت کل، ماده خشک ریشه.

مقدمه

است که جابه‌گاه مهمی بین گیاهان دارویی شرق آسیا و چین می‌باشد. E. purpurea (Hobbs, 1989). گونه‌بندی و نام فارسی سرخرگ‌ل، جنس Echinacea از خانواده آسیان و بومی آمریکای شمالی است.
انتشارات و کارکرد گیاهی جلد 5، شماره 16، سال 1395

گیاهی چندساله و غلیظ است چند طولانی در مصرف
داروی در آمریکای شمالی، اروپا (2002) و
استرالیا (1999) دارد. در حدود 1000 سال
پیش، سرخپوست آمریکا بار اولین بار از این گیاه به عنوان
داروی مؤثر در برابر خود استفاده کرده. همچنین، سرخپوست
برای اهداف دارویی در درمان عفونت‌های حاد سببگاهگر نفیسه
و اداری، گیاه‌های اخلاقی و حیاتی عفونت‌های
ویروسی، ناراک، دیسولوئیسیو و بیماری‌های مزمن به عنوان
نادر در پایه‌های ایمنی، کشت و استفاده مورد
پیشنهاد‌های پزشکی و پیشنهادی آن دارای اثر

عملکرد و مواد مؤثر گیاهان دارویی بسته به مکانی‌های
رشد، شرایط محلی، عملیات زراعی، مراحل رشد و
ویک‌زیکی زنجیری نگر می‌کند که این نگری در بین
گیاهان زراعی و ژنتیکی به روشنی دیده می‌شود.
(Millauskas et al., 2004). پروشته و تولید گیاهان دارویی
را وابسته به شرایط بوم‌شناختی دانسته و کنترل عنصر محیطی
و مدیریت احراز مستنداتی که از جمله تاریخ و تراکم
کشت را راهکاری مناسب در دستیابی به عملکرد بهینه
درک‌کرده مسئول در گیاهان دارویی معرفی کردن
(Rafieiolhosaini et al., 2010). از طرفی، استقرار تراکم
مناسبی از گیاهان در محدوده‌های گیاهان دارویی
(Coffelt et al., 2009). اگرچه در مورد کشت مواد بخصوص آنتی‌بیوتیک‌ها
در بخش از و (Chen et al., 2008; Thomsen et al.,
Callan et al., 2005; Sarkanen et al., 1997;
Parmenter and Littlejohn, 1997; Shalaby et al., 1997
زوشه‌های اسکیپری انجام شده است ولی اطلاعات در مورد اثر
قلمی رشد و تراکم بتوان بر تولید ماده خشک و مواد مؤثره سرخپرگ
هنوز خیلی محدود می‌باشد.

استانداردهای کیفی مواد گیاهی ریشه در سرخپرگ می‌تواند تا
محتوا بیش از 15 میلی‌گرم بگرم ماده خشک باید اسید
شیکوریک نگر در نظر گرفته شود. در ضمن استاندارد برای بار
غیربرتری و گیاه‌های ثابت تولید می‌باشد. (Duff Stoley et al., 2001)

دانل داده که مقدار فلتها کل اندازه‌های مختلف سرخپرگ با
یک‌واحده اندازه‌گیری می‌تواند کاهشی به صورت گذرا
برگزا = ساخته = ریش یک بوده است (2011). از
طرز تجزیه‌های کمی عصاره‌های اندازه‌ای و آی اسیناک
هم، دانل داده است که غلظت‌های بالای محتوا فلتها در
گیاه هنگامی به کمیمیت می‌آید که به گیاه تولید و ذخیره
ابن تراکمهایی از یکی سال فرصت داده شود
(Cech et al., 2006). با این وجود، اطلاعات کمی در مورد
تراکم فلتها موجود در عصاره‌های سرخپرگ وجود دارد
که لازم است بررسی‌های پیشرفته از این زمین انجام شود
(Tsai et al., 2012; Bellati et al., 2004)

واضحشی روش‌بوده می‌باشد (1998). در اروپا،
این گیاه به مدت چند سال از پرفروشترین گیاهان دارویی
بود (Stanisavijevic et al., 2009). در ایالات متحده
فرآورده‌های گیاه دارویی جزو شش‌گانه گیاه دارویی پرفروش

فلتها گیاهی در واقع، متابولیت‌های ثانویه‌ست می‌باشد که در
شرایط مطلوب محیطی، از مسیر شیمی‌ای اسید و منابعی
فیتنژی‌بندین سنتز می‌شوند (2008). Razali et al.
این ترکیب از کلسیم و اسید و فلتها رونده یا
برهنه کوشش حفره‌کشان به گیاه‌های محافل گیاهان در مقابل عوامل شناسایی زیستی و
غیرزیستی، رشد و تولید می‌رایزد. ویک‌زیک
ضد‌بیماری‌های و ضد‌بیماری‌های کاردیاکی، آنتی‌بیوتیکی، آنتی‌بیوتیکی
ارد. Sun et al., 2001; Curir et al., 1990) (Sun et al., 2001; Curir et al., 1990)
خواری‌های سرخپرگ ناشی از ترکیب‌های فلتها از ماده ماین فیتنژی‌بندین سنتز
برخورداری، استعدادهای فیتنژی‌بندین فلتها از شیکوریک و نشان‌دهنده
که در (Dalby-Brown et al., 2005; Pellati et al., 2004)
است. (2004) منابع این ترکیب‌ها، فلتها، آنتی‌بیوتیک‌های بهترین
موشک‌نیکت‌ها گزارش شده (2001). Αزماشی‌ها
ب طوری که بیشترین عملکرد ریشه در تراکم یا بین 20 بونه در
۲ متر مربع به‌دست آمد.
با توجه به آغاز تولید تجاری این گیاه در کشور و نیز
اطلاعات دیداره تاریخ کاشت و تراکم مناسب ترین گیاه,
پژوهش حاضر با هدف پروری و بررسی عملکرد ماده خشک,
ترکیبات فلزی و ظرفیت آنتی‌ایکسیدانی ریشه سرخارگل در
و اکتش به تاریخ و تراکم کاشت، طراحی و اجرا شد.

مواد و روش‌ها
این آزمایش در مزرعه پژوهشگاه زنبیل و
ریزه‌زاری طبیعتی، دانشگاه علوم کشاورزی و
متغیر طبیعی ساری و در بهار ۱۳۹۲ به‌کار برده شد. پس از اختلاف
طول جغرافیایی ۲۳ درجه و ۳۹ دقیقه شمالی
و طول جغرافیایی ۳۴ درجه و چهار دقیقه شرقی و ازتفاع
۱۱ متر باینی تر از سطح دریا به صورت کرت ماهی خردشده در
قلب طرح یک‌بلوک‌های کامل تصادفی به سه تکرار در سال
زاواج ۱۳۹۲، طراحی و اجرا شد. پس از شروع آزمایش، از
خاک هر تکرار سه نمونه مجار برداشت و پس از اختلاف
جهت بررسی و دریگه‌سازی آن به آزمایشگاه خاک منتقل شد که
برخی از یوزکیهای فیزیکی و شیمیایی آن در جدول ۱ اورده شد. این آزمایش یوزکیهای فیزیکی و شیمیایی، با رای سال اجرا
از هواشناسی کشاورزی ترازیلی (قائم‌شهر به نمایندگی شد.
۱۹۹۲) از اداره تحقيقات
هواشناسی کشاورزی پارسی (قائم‌شهر به نمایندگی شد.
۱۹۹۲).

عوامل آزمایش شامل تاریخ کاشت، تراکم ۲۰۰۰ بونه،
ارگشت و ۱۸ خرداد با عنوان عامل اصلی در کرتی
اسلو و تسهیل کاشت هفته ۱۰ و ۱۶ بونه در متر مربع به
عنوان عامل فرعی در کرتی فرعی قرار داده شد. کشت به
صورت نشان‌گری انجام شد و نشان‌گری در مرحله سه تا چهار
برگی از کناره‌های پیش‌هشته یک‌پایه از داروی جهاد دانشگاهی
کرج به این اصلی انتقال و جهت دستیابی به تراکم‌های مورد
نظر به ترتیب در فاصله ۳۵ و ۲۵ سانتی‌متر روی ریفک
در کرت‌های با ابعاد ۳۵×۳۵ سانتی‌متر کشت شدند. در هر کرت،
نسل ریفک به فاصله ۴۰ سانتی‌متر کاشته شده. فاصله بین
کرت‌های هر تراکم گسترده، یک ریفک نکشیده و فاصله بین
پانصد قالب‌بندی شده کشتی سیکورکیک در ریشه‌ها، پیش از پر
میلی‌گرم بر گرم ماده خشک بین شده است.
(Wills and Stuart, 1999) در بررسی تغییرات فیتوشیمیایی
ریشه جمع‌بندی‌های اهلی و تحت سرخارگل در کانادا،
پیش‌ترین مقدار اسید شیتی‌وسیکورکیک ۸۰ میلی‌گرم در
گرم ماده خشک در ریشه‌های جوان سرخارگل به‌دست آمد و
به کاهش مقدار این ترکیب در ریشه‌ها با افزایش سن گیاه
و Thomansen (2002) در آزمایش به همکاران (۲۰۱۲)، مقدار این ماده فنی در ریشه
سرخارگل‌های رشدی‌آمیز در دانمارک از ۲/۷۵ تا ۲/۶۹ میلی‌گرم
بر گرم ماده خشک متوسط بود. در مطالعه و همکاران
Callan و همکاران (۲۰۱۰)، تراکم ۱۰ گیاه در متر مربع سرخارگل، غلظت
اسید شیتی‌وسیکورکی در ریشه حدود ۱۲ میلی‌گرم در گرم ماده
خشک در سال دوم رشد حکم کرد.

مقدار فنی کل در ریشه سرخارگل‌های در مطالعه
و Wu و همکاران (۲۰۰۸) ۵۱/۸ میلی‌گرم در گرم ماده خشک و مقدار
فلاونئرید کل ۲۳۸/۸ میلی‌گرم در گرم ماده خشک گزارش شده
و و همکاران (۲۰۰۴) در پژوهشی مقدار فنی کل
اندام‌های هولیک و زیرزمینی سرخارگل را متفاوت گزارش
کردند به طوری که اسید شیتی‌وسیکورکی در ریشه‌های اصلی حدود
۷۸ درصد فنی کل را تشکیل داده بود. در مطالعه‌های
دانمارک، یوزکیهای غلظت کل محصولان فنی ریشه سرخارگل
۳/۹۴ میلی‌گرم در گرم ماده خشک به‌دست آمد که با توجه به
مقدار اسید شیتی‌وسیکورکی اندام‌گیری شده، این مقدار قابل
اناظر بود (2012). (Thomasen et al., 2012) در پژوهش دیگری که در
بین منطقه‌ای تونس‌الدینگرام شد، سرخارگل به شکل دو ریفک
با فاصله ۷۶ متر با هم ریزه یک چهار گرم در متر مربع کشت شد. نتایج این
آزمایش نشان داد که عملکرد ماده خشک ریشه پس از دو
فصل رشد نسبتاً پایین و به‌طور متوسط ۲۴۲ گرم در متر مربع
بوده است (۱۹۹۱). (Parmenter et al., 1992) به این تیپ مدل رابطه یکتا کرت
کشت مشابه اثر مهمی بر ساختار گیاه سرخارگل داشته باشد.
جدول ۱- برخی یوگه‌های فیزیکی و شیمیایی خاک مزرعه آزمایش

<table>
<thead>
<tr>
<th>عضو</th>
<th>واحد</th>
<th>نمونه‌برداری (تن/۲درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>فضای نیترژن</td>
<td>جفت</td>
<td>۴/۰۰۲۴۴</td>
</tr>
<tr>
<td>ارگنیک</td>
<td>جلد</td>
<td>۳/۷۷۰۵</td>
</tr>
<tr>
<td>آهان قابل</td>
<td>جلد</td>
<td>۲/۷۶۰۷</td>
</tr>
<tr>
<td>مکنتر قابل</td>
<td>جلد</td>
<td>۱/۶۸۰۶</td>
</tr>
<tr>
<td>روز قابل</td>
<td>جلد</td>
<td>۰/۶۸۰۶</td>
</tr>
<tr>
<td>۲۳۹ خشک</td>
<td>مدل کرم بر پیکرک (کریم)</td>
<td></td>
</tr>
</tbody>
</table>

سیلیک رس

جدول ۲- اطلاعات هواشناسی مربوط به نه‌ما از فصل رشد سرخارگل در سال ۱۳۹۲

<table>
<thead>
<tr>
<th>ساعت</th>
<th>رطوبت نسبی</th>
<th>تعداد</th>
<th>ماه‌های سال</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبی</td>
<td>(درصد)</td>
<td>(درجه سلسوس)</td>
<td></td>
</tr>
<tr>
<td>کمیه</td>
<td>بیشتره</td>
<td>کمیه</td>
<td>بیشتره</td>
</tr>
<tr>
<td>۱۴/۶</td>
<td>۹۴</td>
<td>۱۹/۸</td>
<td>۳۱</td>
</tr>
<tr>
<td>۲۴/۱</td>
<td>۹۴</td>
<td>۱۹/۸</td>
<td>۳۱</td>
</tr>
<tr>
<td>۳۴/۱</td>
<td>۹۴</td>
<td>۱۹/۸</td>
<td>۳۱</td>
</tr>
<tr>
<td>۴۵/۸</td>
<td>۹۴</td>
<td>۱۹/۸</td>
<td>۳۱</td>
</tr>
<tr>
<td>۱۵/۴</td>
<td>۹۴</td>
<td>۱۹/۸</td>
<td>۳۱</td>
</tr>
<tr>
<td>۱۵/۹</td>
<td>۹۴</td>
<td>۱۹/۸</td>
<td>۳۱</td>
</tr>
<tr>
<td>۱۵/۴</td>
<td>۹۴</td>
<td>۱۹/۸</td>
<td>۳۱</td>
</tr>
<tr>
<td>۱۵/۹</td>
<td>۹۴</td>
<td>۱۹/۸</td>
<td>۳۱</td>
</tr>
<tr>
<td>۱۴/۳</td>
<td>۹۴</td>
<td>۱۹/۸</td>
<td>۳۱</td>
</tr>
</tbody>
</table>

۵۰ درصد گلدهی بر اساس خروج گلها در مرحله پودوم، مانگهای موجود و پایان گلدهی بر اساس خروج گلها در پایان اندام‌گیری رشد و عملکرد رشد سرخارگل، در پایان گلدهی سرخارگل‌ها، رشدگاه چهار پایه با راه آتات حاشیه‌ای بطور کامل و به وسیله بیل از خاک نمک‌آب اطراف ریشه خارج و سپس، شستشو و توزی شدن. برای تعمیم عمق نفوذ ریشه، طول بالای‌ترین ریشه از محل طوفان گیاه اندام‌گیری شد. حجم ریشه از طریق اختلاف حجم ایجاد شده پس از قرار دادن ریشه در حجم مشخصی از آب (۵۰۰ میلی لیتر) محاسبه شد. سپس ریشه‌ها در محیط خشک و سیلیک به مدت شش روز خاوی شده و پس از آن در شرایط ارگنیک آب (۲۰ درصد) به‌کار گرفته شد. در این آزمایش، یک دود پایه نیتروژن (۲۰ کیلوگرم در هektار نیتروژن خالص از منبع ادور بر اساس عرف منطقه) از هیچ گونه کود شیمیایی دیگری در کرت‌ها استفاده نشد.
و حفظ آن در 100 درصد برای 10 دقیقه بود. سپس جریان خطا 100 درصد خطا 10 دقیقه کاهش یافت. سرعت جریان 1/5 میلیلتر در دقیقه و طول موج شناساگر فرابیف در 330 نانومتر، تنظیم شد. حجم نمونه تزریق 20 میکرو لیتر بود. از تریز نمونه‌ها، ابتدا از استاندارد اسید شیمیاکی پیچ غلظت مختلط ته و به دست‌آمده است. (E G 90 W-120205) و (Sigma 3-30K) کار سانترزیفون در انجام شد. توصیه‌های بکرش سه‌گانه شیمیایی در دمای 20 درجه سانتی‌گراد ته‌سنج شد.

\[\text{Folin–Ciocalteu Method} \]

در عصاره فلزی استخراجی بر اساس روش (Kanuer, Germany) HPLC تعیین شد. بدین منظور، در ابتدا با توجه به بالا‌بودن غلظت ترکیبات فلزی از عصاره استخراجی توصیه‌های ته‌سنج ثبت 75 درصد همبستگی بین سیستم MAPD (45 میکرومتر) و شناساگر فرابیفان (Unico) مجد به بیش از 1000 mmx4.6 mmx5 (RP-C18, سنتر HPLC) ریخته شد. سپس به سیستم کرکت سیستم شناساگر کلیک شد. (Du et al., 2009) کالیبراسیون شیما یافته شد.

\[\text{آزمایش بالا‌بودن حلال} \]

\[B = \text{دیسک اسید سفرویک با} \]

\[A = \text{ورود فاز متحرک خمایی داخل} \]

\[C = \text{ورود فاز متحرک خمایی داخل} \]

\[D = \text{دیسک اسید سفرویک با} \]

\[E = \text{ورود فاز متحرک خمایی داخل} \]
شکل ۱- کروماتوگرام اسید شیکوریک در نمونه استاندارد

شکل ۲- کروماتوگرام اسید شیکوریک در نمونه استخراج شده از ریشه سرخ‌گل‌ها تحت تیمار برهمکنش کش و تراکم ۱۵ بهن در متر مربع

در طول موج ۵۰۹ نانومتر ثبت شد. در نهایت محتوای فلورسنتید کل با استفاده از رسم منحنی استاندارد کوئرستین بر حسب میلی‌گرم کوئرستین در گرم ماده خشک محاسبه و بیان شد.

میلی‌مولار و ۱۵۰ میکرو‌لیتر کلسید آلومینیوم ۳ میلی‌مولار اضافه و بالا‌الاصل به هم زده شد. پس از گذشت پنج دقیقه، ۱۰۰ میکرو‌لیتر محلول هیدروکسید سدیم یک میلی‌مولار اضافه شد. پس از ۱۵-۱۰ دقیقه، مقدار جذب با استفاده طیف سنگ
ارزیابی چربیک‌کلی آنتی‌اکسیدانی ریشه: چربیک‌کلی آنتی‌اکسیدانی عصاره ریشه، از راه خاصی کتیل کندیگی رادیکال آزاد (Brand-William et al., 1995) و روی طیف سنجی تعیین شد (جدول 4) در شرایط تازیکی و در دمای اتفاق تکنهاشی شیس مقدار گذب نمونه‌ها در طول موج 517 نانومتر خوانده شد. چربیک‌کلی آنتی‌اکسیدانی عصاره‌ها با صورت درصد بازدارندگی با استفاده از رابطه 1 محاسبه شد:

\[
\%DPPH_{sc} = \frac{(A_{cont} - A_{samp})}{A_{cont}} \times 100
\]

SAS برای تجزیه آماری داده‌ها، از نرم‌افزار SAS نسخه 9 استفاده شد. مقايسه میانگین تیمارها با آزمون LSD و در سطح احتمال پنج درصد مقايسه شدند و نمودارهای خاکسازی با نرم‌افزار SigmaPlot‌ با رابطه 2 تهیه شد.

نتایج:

عمق نفوذ ریشه: تجزیه واریانس داده‌ها نشان داد که برهمکنش تازیکی چربیک‌کلی و تراکم چربیک‌کلی بر عمق نفوذ ریشه تغییری نداشت (جدول 5). در این افراد این برهمکنش چربیک‌کلی بر عمق نفوذ ریشه به سرعت تراکم چربیک‌کلی کاهش یافت که این برهمکنش در همه تازیکی چربیک‌کلی بسیار متغیر بوده است (جدول 4). مقایسه میانگین‌ها نشان داد که در همه تازیکی های چربیک‌کلی تراکم بالاتری منجر به عمق نفوذ بیشتر شده است (شکل 3). بیشترین عمق نفوذ (29/3 سانتی‌متر) در سرخرگ‌های بیت شد که در میان‌های فصل بهار (19 اردیبهشت ماه) در بالاترین تراکم کشت شدند (شکل 3). این عمق (29/3 سانتی‌متر)، حدود 65 درصد بیشتر از کمترین عمق نفوذ شد. در سرخرگ‌های بیت شد که در تازیکی کشت 18 هرود و تراکم هفت بونه در متر مربع به دست آمد (شکل 3).

محاسبه ریشه: تجزیه واریانس داده‌ها حجم ریشه نشان داد که برهمکنش تازیکی چربیک‌کلی و تراکم چربیک‌کلی با حجم ریشه تغییری نداشت (جدول 6). در این افراد این برهمکنش با حجم ریشه کاهش یافت که این برهمکنش در همه تازیکی‌های چربیک‌کلی بسیار متغیر بوده است (جدول 4). مقایسه میانگین‌ها نشان داد که در همه تازیکی‌های چربیک‌کلی تراکم بالاتری منجر به حجم ریشه بیشتر شده است (شکل 4). بیشترین حجم ریشه (29/3 سانتی‌متر) در سرخرگ‌های بیت شد که در میان‌های فصل بهار (19 اردیبهشت ماه) در بالاترین تراکم کشت شدند (شکل 4). این حجم (29/3 سانتی‌متر)، حدود 65 درصد بیشتر از کمترین حجم ریشه شد. در سرخرگ‌های بیت شد که در تازیکی کشت 18 هرود و تراکم هفت بونه در متر مربع به دست آمد (شکل 4).
تأثیر تاریخ و تراکم کاشت بر ماده خشک و ظرفیت آتی اکسیدانی ریشه‌های بافت‌گری در بذری علیه روش‌های مبتکر

瑜فا، تراکم بهره‌ای است (شکل ۶). در حالی که، کمترین مقدار ماده خشک کل بونه (۴۵ گرم در بونه) در گیاهان به دست آمده است که در تراکم ۱۶ بونه در متر مربع کشت شده (شکل ۶). نسبت ماده خشک ریشه به شاخ، بر اساس نتایج پژوهش حاضر، نسبت ماده خشک ریشه به شاخاره سرخاکلها هم، تحت تأثیر برهم کنش معنی‌دار تاریخ کشت و تراکم بونه قرار گرفت (جدول ۳). برای نرمی برهم کنش‌ها به‌وسیله تراکم بونه نشان داد که در بین تاریخ‌های کشت، منجر به ایجاد اختلاف بسیار معنی‌دار در ماده خشک کل بونه شده است به‌چنین، تراکم ۱۶ بونه در متر مربع که در سطح پنج درصد معنی‌دار بود (جدول ۴)، مقایسه معنی‌گذاری می‌داد. خشک کل در بونه نشان داد که کشت تاخیری در همیت تراکم‌ها سبب کاهش ماده خشک بونه می‌شود (شکل ۶). با این حال، بیشترین ماده خشک کل بونه (۱۲۰/۵ گرم در بونه) در همیت تاریخ‌ها در تراکم ۱۰ بونه در متر مربع به‌دست آمد که نشان می‌دهد احتمالاً این تراکم از نظر تولید ماده خشک کل
ایسید شیکوریک ریشه: اثر برمکش تراکم بونه و تاریخهای مختلف کاشت بر مقدار اسید شیکوریک ریشه سرخرگل بسیار معنی‌دار (P<0/01) بود (جدول ۳). برش دهنده برمکش‌ها به وسیله تراکم بونه نشان داد که در همه تراکم‌های بونه به جز تراکم ۱۰ بونه در متر مربع، تاریخ‌های کاشت بهاره منجر به ایجاد اختلاف بسیار معنی‌دار بر مقدار اسید شیکوریک ریشه شده است (جدول ۴). مقایسه میانگین‌ها نشان داد که مقدار اسید شیکوریک ریشه به افزایش تراکم بونه در همه تاریخ‌های کاشت بین‌ترین مقدار بوده است به تراکم بونه منجر به ایجاد اختلاف بسیار معنی‌دار بر این اثر شده است (جدول ۴). بیشترین نسبت ماده خشک ریشه به شاخص‌های سرخرگ‌ها، ۱/۰/۰ محسوب شد که هم‌رستا با نتیجه ماده خشک ریشه در کرت های به دست آمده که گیاهان با تأخیر در خروج ماده و با تراکم هفت بونه در متر مربع نشاکار شدند (شکل ۷). در روند معکوس با این تیمار، بین‌های یک میزان زود سرخرگ‌ها در ۲۰ فوریه در تراکم ۱۶ بونه در متر مربع، کمترین نسبت ماده خشک ریشه به شاخص‌های محاسبه شد که ۱/۶/۰ بود (شکل ۵).
تأثیر تاریخ و تراکم کاشت بر ماده خشک و ظرفیت آب‌سیبدیانی ریشه...

![نمودار تأثیر تاریخ و تراکم کاشت بر ماده خشک و ظرفیت آب‌سیبدیانی ریشه](#)

طوری که یک تراکم کاشت در ماده خشک از تراکم 16 بیوت در متر مربع و در تاریخ کشت 19 اردیبهشت بهدست آمده (شکل 8) کمترین مقدار این تراکم 7/3 میلی‌گرم در گرم ماده خشک مربوط به تراکم هفت بیوت در متر مربع در تاریخ کشت زودهنگام (20 فروردین) بود که با تیمار تراکم 16 بیوت در متر مربع و تاریخ کشت 20 فروردین اختلاف معنی‌داری نداشت و در یک گروه آماری قرار گرفت (شکل 8).

فلک کل ریشه: برهم‌کنش تاریخ کشت و تراکم بیوت نتیجه‌گیری‌های اسید شیکوریک ریشه در مرحله گل‌دهی کامل سرخارگل
کاشت ۲۰ فوروردين بود (شکل ۹).
فلاتونئید کل ریشه: نتایج تجزیه واریانس داده‌ها نشان داد که برهم‌کنش تاریخ کاشت و تراکم بوده بر تغییرات فلاتونئید کل ریشه در مرحله گلدهی کامل سرخاک‌گل کاشتی‌ها مشاهده شد که کاهش فاصله کشت نشان‌دهنده کاهش سرخاک‌گل در ۱۵ سانتی‌متر و به بینی تراکم بیشتر (تراکم ۱۶ بونه در متر مربع) نشان‌دهنده آفزایش میزان فلاتونئید کل ریشه‌های سرخاک‌گل شود (شکل ۱۰). در این تراکم بونه، بینی جمعیت فلاتونئید کل با میانگین ۶۳ میلی‌گرم کوترستین در گرم ماده خشک در گیاه‌های به‌دست آمد که در نمودار ۱۸ خرداد نشان‌گر شدند. کمترین مقدار فلاتونئید با میانگین ۷۳/۹ میلی‌گرم کوترستین در گرم ماده خشک از
تأثیر تاریخ و تراکم کاشت بر ماده عشک و تغییرات ظرفیت آنتی اکسیدانی ریشه در مرحله گلدهی کامل سرخارگل

سرخارگل‌های نشان‌کننده شده در کشت زده‌گانم (۲۰۰ فرمول) با تراکم کاشت کمتر (هفت بونه در متر مربع) به دست آمد (شکل ۱۰). به عنوان مثال، درایه ۱۰ این آزمایش، مقدار ظرفیت آنتی اکسیدانی ریشه‌ها از سرخارگل‌های نشان‌کننده در جدول ۳ مشاهده شده است (جدول ۳). افزایش عمق طوفان زده‌گانم با تراکم بیشتر می‌تواند تنش داده داشته باشد. این باعث می‌شود که انتشار تنش زده‌گانم به علت افزایش عمق طوفان و حجم درونهای است. از طرفی نیز در این مطالعه روی بیشترین عمق طوفان زده‌گانم (۴ متر) در سرخارگل‌های نشان‌کننده شده در کشت آخرین تاریخ کاشت مناسب‌تر برای یک است، زیرا هم در تاریخ‌های زودتر از آن و هم در کشت تکراری پس از آن، عمق طوفان زده‌گانم کاهش یافته است. کمی عمیق طوفان زده‌گانم می‌تواند بر کارایی گیاه در یک حاکم در دسترس اثر گذاشته و سپس ترین حجم بیشتر روی بیشترین عمق طوفان زده‌گانم در اردهیست‌های ماده عشک و تغییرات ظرفیت آنتی اکسیدانی ریشه در مرحله گلدهی کامل سرخارگل.

بررسی حفره است. کمی عمیق طوفان زده‌گانم می‌تواند بر کارایی گیاه در یک حاکم در دسترس اثر گذاشته و سپس ترین حجم بیشتر روی بیشترین عمق طوفان زده‌گانم در اردهیست‌های ماده عشک و تغییرات ظرفیت آنتی اکسیدانی ریشه در مرحله گلدهی کامل سرخارگل.

بحث:

عملکرد و فعالیت بیولوژیک سرخارگل کلیه نشان‌کننده عمیق‌ترهای ماده عشک و تغییرات ظرفیت آنتی اکسیدانی ریشه در مرحله گلدهی کامل سرخارگل.
افزایش تراکم سرخرگ‌گل به بینی از 10 بُنَه در متر مربع، حجم تک ریشه‌ها کافی داده هیچ اثری بر عملکرد کل ریشه‌ها پس از سال ندانست (Martin and Deo, 1997). در سال 2000، بی کاهش حجم ریشه به کشت سرخرگ گیاهان دارویی خدانیانترین جمله زیره سیز و زایمانه اشتهار شد که محققی با تجربی این آزمایش بوده است.

در آزمایش حاضر، مدل خشک ریشه افرازیون چشمگیری در کشت درجه‌گانی سرخرگ‌گل در 18 خرداد ماه نسبت به کشت زیرگانی آنها در 20 فوردود ماه داشت (شکل 5). کاهش ماده خشک ریشه در گیاهان کشت به فرودود ماه می‌تواند به دلیل دمای پایین ناشی از دمبرگ گرم شدن خاک به ویژه هوا و خشکت بودن درک روشی گیاه و تغییرات با پایین تردن حیات و در نتیجه، ناز کمتر به رشد گیاهی عمیقتر و گسترش بیشتر ترای تامین رطوبت از دست رفته باشد. از سوی دیگر، گیاهان کشت به در حد دما شیاطین در این سرپرستی دای ویژه در دوره رشد زاپ شیر خود ریشه‌ها بیشتر و ریشه‌های گیاهی در حد مداوم به رقابت کمتر از این تراکم و احیاناً تسهیم مهم ماده خشک ساغتهایی به رشد آنها ارتقای داده شود. در اولین آزمایش‌های مزروعه‌ای در نیویورک که عملکرد ریشه‌های سرخرگ‌گل در کسته و سپسی از تراکم‌های 50 بُنَه در متر مربع بررسی شد، تغییرات ماده خشک ریشه از 30 بُنَه در 2006 به بینی در پایین ترین تراکم‌ها تا نهایی گرم در بُنَه در بالاترین تراکم‌ها مشاهده شد (Parmenter and Littlejohn, 1997). در این تراکم‌ها، مقدار خشک ریشه در این آزمایش (39/10) بُنَه در پایین ترین تراکم‌های به تغییرات ماده خشک ریشه در این آزمایش (1/77 بُنَه در پایین ترین تراکم‌های تراکم زیاد (16 بُنَه در متر مربع) مطابق داشت (شکل 5). در سطوح و سطوحی که تراکم کاست و تغییرات فصلی بر رشد و عملکرد سرخرگ‌گل مورد بررسی قرار گرفت، نتایج با گزارش پیش‌گویی ویژگی‌های اکستریونی‌های بیشتر در حالت‌های استگنی و همینه (Parmenter et al., 1992) و سبکی هم‌هارمه بوده (Callan et al., 2005). در این تراکم‌ها، میزان خشک ریشه 244 بُنَه در متر مربع باید تراکم 7/9 بُنَه
بیشترین غلظت اسید شیکوریک در ریشه‌های یک‌ساله سرخارگل در اواخر بهار دست‌به‌دست به‌کار می‌گیرد و به‌کار می‌گیرد. این گله دهی کامل سرخارگل‌ها در طول تاکستان اشک‌درکن است. با این وجود، مقادیر اسید شیکوریک در ریشه‌ها به‌طور معمول از مطالعات به‌طور مداوم گرفته شده‌اند. است. (Thomsen et al., 2012). در آزمایش‌های حاضر، مقادیر اسید شیکوریک ریشه و (Wills en Stuart 2000) و ۲/۳۰۷ میلی‌گرم در گرم ماده خشک کاهش معنی‌داری گزارش شده است. در بخش‌هایی از ترکیبات فنلی، از ریشه‌ها به‌دست آمده روش‌ها و یا تغییرات وابسته به زمان و مکان در میزان نوسان‌های برخی از گیاهان این تورم (Callan et al., 2005). حاضر است که بیشترین مقادیر اسید شیکوریک در تراکم ماکروهم ۱۴ بار افزایش نتیجه بود. تراکم یافته بود در طی میلی‌گرم هچمیانگان در گزارش که Callan et al. (2005) همچنین در گزارش و همکاران (2005) اگرچه تراکم بالاتر موجب افزایش عملکرد ماده خشک ریشه‌ها می‌شود ولی اندازه ریشه‌ها یک‌ساله داده و به محدودیت‌هایی در عملیات افزایش ظهور شکارگل به دلیل عملکرد ریشه‌ها و نیز غلظت اسید شیکوریک به بیشترین مقادیر خود در اواخر خوشه (آوازی) می‌رسد و پس از آن تا زمانی که گیاهان در خروش افزایش می‌یابد، کاهش نشان داد. (Thomsen et al., 2012) در نتیجه با این مطالعه، Liu و همکاران (2007) در چین به این مطالعه، Liu و همکاران (2007) در چین به این مطالعه، Liu و همکاران (2007) در چین به

(2007). (Callan et al., 2005).

است (2007). (Callan et al., 2005).
افراز غلتک ترکیب‌های فنلی مقدار توانایی عصاره‌های مختلف در مهار رادیکال‌های آزاد را به‌طور مستقیم افزایش می‌دهد. در غلتک‌های بالاتر ترکیب‌های فنلی، به‌دلیل افزایش تعداد گروه‌های هیدروکسی موجود در محیط واکنش، احتمال اهدای هیدروژن به رادیکال‌های آزاد و به دنبال آن قدرت مهارکننده عصاره افزایش می‌یابد. به‌طوری که تفاوت مشاهده شده بین ترکیب‌های کنترلی و افزایش غلظت افزایش می‌تواند در مطالعه حاضر، افزایش ترکیب کنترلی و همکاران (2010) گزارش کرده که در مطالعه گزارش‌کننده (Bai et al., 2010) در این تجارب باشد.

اثری از اکسیدان ریشه در برخی کنش‌های پیش‌آمده در نسبت ماده خشک در مقدار ماکزیمم آن به‌دست آمد (شکل ۹) که ۹ فاکتور از مقدار ماده خشک هر یک از اندازه‌های هوایی اندازه‌گیری شد (داده‌ها نشان داده شدند).

فلالوئیت‌ها، گروه بزرگی از ترکیبات طبیعی هستند که با ساختار C6-C3-C6 (بایندهای متداول مشخص شده) غلطک فلاتوئیت‌های اندام‌های مختلف سرخرگ‌ها نسبتاً پایین گزارش شده است (Pellati et al., 2004) در آزمایش‌های حاضر، میلی‌گرم در ماده خشک در مقدار ماکزیمم آن به‌دست آمد (شکل ۹) که ۹ فاکتور از مقدار فنل که هر یک از اندازه‌های هوایی اندازه‌گیری شد (داده‌ها نشان داده شدند). و کمترین مقدار در ریشه‌ها اندازه‌گیری شد. با این وجود، افزایش غلتک فلاتوئیت‌ها در ریشه‌های سرخرگ‌های کشت شده در ۱۸ خرداد ماه می‌تواند احتمالاً به تعیین رشد عامل رشد گیاه در شرایط دما و رطوبت خاک در نتایج باشد (Thygesen et al., 2004) که احتمالاً باعث گسترش ترکیب‌های متداول سرخرگ‌های مناسب و موثر تر بوده است. از طرفی افزایش متداول فلاتوئیت رشد در تراکم ۹ است. این میزان تفاوت در میان پرستاری فلاتوئیت در تراکم ۹ می‌تواند به مکانیسمی متداول در رشد و کاهش در نتایج باشد (شکل ۹).

Cech, N. B., Eleazer, M. S., Shoffner, L. T., Crosswhite,

